Final Project Report

Arun Reddy

Table of Contents

INtroducCtioN.....oovv e e

A brief overview of the project, its aims and objectives and the
alternatives being considered to solve the problem.

Web Servicesooovveiiiiiiiiie,
An outline of what constitutes a web service, the technologies
involved and benefits of such an approach.

AXIS: Apache’s SOAP Solution

AXIS is an opensource SOAP Server for Java which makes
deploying web services a trivial task.

MSSOAP ToOIKit 3.0 .ot ve s it e iiieiinennnns

Version 3 of Microsoft's SOAP Toolkit for VB6 has added
features and tools helping achieve interoperability with other

SOAP Implementations.

Interoperabilitycccoviiiiiiiiii e
Getting Java to talk to VB6 and vice-versa.

Mid Semester Conclusions

Why go down the Web Services path and also a brief discussion on
how web services will help Kiwiplan better structure communications

between ESP and other applications in their suite.

Pilot Implementation............................

Implementing the concepts investigated in the previous section on
Kiwiplan software to prove their feasibility.

MeSSagiNg......coovveiiie i i e

Designing a reliable messaging architecture spanning Java and VB6

SCreenshots ... oo

A few screenshots from some of the applications created during the
course of implementation.

11

18

22

25

29

39
42

5 CoONCIUSION.... ..o

6 Referencescooiiiiiiiiiiiii,

7 APPEeNndiCeSccviiiiiiii e,

Source code for examples, WSDL files, WSML files ...

Introduction

Background

This project has been offered by Kiwiplan (www.kiwiplan.com), which specialises
in software servicing the corrugating industry. Kiwiplan is a well established
company in this sector for over 20 years. Their core competency has been in the
sophistication of their scheduling solutions. Kiwiplan software is in use in over
350 sites in 27 countries, and its customer base is rapidly increasing.

ESP is an order-processing, estimation and costing product written in Microsoft's
Visual Basic 6. This application is deployed on machines running Microsoft
Windows 2000. ESP currently integrates with legacy Kiwiplan products written in
FORTRAN via a TCP/IP protocol. They foresee a ‘small steps’ migration where
equivalent Java modules replace FORTRAN code until all FORTRAN code is
supplanted. Kiwiplan are also in the process of developing new Java products
that integrate with legacy code via the Java Native Interface (JNI). These
products have a distributed architecture with a thin-client Java Swing and Web
user interfaces.

As more code migrates from FORTRAN to Java, fewer services may become
available to ESP through the socket interface. And so, to ensure smooth
migration ESP needs access to the Java version of these services.

Benefits
Java being a multi-platform and object oriented programming language will be
easier to maintain. Java will also allow addition of improved and enhanced

services to the manufacturing products. These services may need to be made
available to ESP, so integration is critical.

Integrating new server-side Java products with ESP would enable reporting
across all enterprise objects, from the Java or the ESP side. This would create
opportunities to develop powerful decision support analysis tools tailored to
Kiwiplan software in such a way that they could effectively compete against
competitors offering OLAP and ERP solutions that currently dominate this kind of
reporting.

The Project

The project is effectively a feasibility study of various approaches of integrating
Java and Visual Basic 6. No work has yet been done so far towards integrating
the new Java products and ESP, and Kiwiplan hope that the results of this
project will be useful in the integration process.

The feasibility study hopes to use simple prototype implementations to establish
proof-of-concept. The possible benefits, drawbacks and other factors of each
approach will also be discussed.

A number of approaches have been suggested for the integration of Java and
VB6 including COM Bridges, SOAP RPC and CORBA. In the first half of this
year, | have decided to investigate the new technology of web services as a
possible solution.

Considerations

Certain considerations must also be taken into account when evaluating the
various approaches. Kiwiplan products are deployed on a variety of platform and
configurations. ESP is always deployed on a Microsoft Windows 2000 machine
but other products may be deployed on different platforms. The technology being
considered for integration must work across platforms.

One of the key goals for Kiwiplan products is good performance over a Wide
Area Network. The integration solution should not significantly affect performance
of products.

Finally, the development effort required to implement the solution should also be
taken into account. The skills and strengths of the company in various
technologies must be taken into consideration when making a recommendation.

Acknowledgements

| would like to thank Mr. Van Bellen, Managing Director of Kiwiplan NZ Ltd., for
offering this project. | would also like to thank my supervisor Sameer Kalidas for
his help, encouragement and support throughout the year. And finally | would like
to thank Mr. Gareth Cronin for his support and help through trying times with the
AXIS Toolkit and JORAM.

Web Services

A Web Service is a piece of software functionality that is accessible over a
network and built on technologies that are independent of platform,
programming language and component model.

- AXIS: Next Generation of Java SOAP (J. Basha & R. Irani)

Web Services as a new technology has been accepted and hailed by the
software industry as an important concept which will influence development in
cross platform communications in much the same way as TCP/IP did. More
importantly, it has been embraced by all sides of the software divide.
Implementations for most of the major platforms have been available for almost
three years now, and have been continually improved.

The focus in this project will be on Web Service Implementations for Java and
VB6. Sun’s Java Web Services Toolkit provides a good implementation.
However, the latest from the Apache XML Project, the Apache AXIS SOAP
Server, is gaining ground. On the VB6 side, Microsoft's MSSOAP Toolkit 3.0
makes exposing certain methods as Web Services an easy task. Following
sections discuss AXIS and MSSOAP 3.0 in detalil.

Service Oriented Architecture

Web services are based on aService Oriented Architecture (SOA) where
software functionality is distributed as a set of services.

An SOA describes three basic roles:

Service Provider: The service provider implements the web service,
describes the interface to this service and publishes this interface to a
registry for service consumers to find the web service.

Service Registry: The service registry is a repository of web services
to which service providers publish their web service definitions to. Web
service consumers use the service registry to find web services and
also necessary information in order to bind to and invoke the web
services.

Service Consumer: The service consumer makes use of the web
service created by the service provider.

A typical Service Oriented Architecture:

Service
Registry
Find Publish
Service) _ Service
Consumer ° Bind v Provider
in

To achieve the above mentioned functions of finding a web service and binding
to it, if you are a service consumer, or publishing your web service, if you are a
service provider, one requires a platform and vendor neutral implementation.
Several companies like IBM, Microsoft among others have described a web
services stack to achieve this interoperability.

UDDI : A standard mechanism for

o ﬁf;ult?u / publishing and discovering web
ublication i
ik UDDI services

WSDL : A standard mechanism for

wabL describing web services

SOAP SOAP : A standard mechanism for
invoking web services

T&:L‘J‘,';’.‘EL‘ EPEI;, Transport Network: The network

responsible for communication
between endpoints.

SOAP

SOAP is an XML based communications protocol and encoding format for inter-
application development. It was originally conceived by Microsoft and Userland
and has steadily gained approval.

Simple Object Access Protocol (SOAP) version 1.0 was released in 1999.
Version 1.1 incorporated XML Schema Data Types instead of a native type
system. Following this change SOAP has been widely accepted, and is now the
standard communications protocol in use with web services. The W3C's XML
Protocol working group (http://www.w3.0rg/2000/xp/Group/) is in the process of
turning SOAP into a true open standard, and is in the process of formulating
version 1.2 of the SOAP protocol. It is hoped that 1.2 will clear some grey areas
in the SOAP 1.1 spec.

Structure of a SOAP Message

<SOAP- ENV: Envel ope

xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope"
xm ns: xsd="htt p:// www. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

SQOAP-

ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng
[7>

<SOAP- ENV: Header >
</ SOAP ENV: Header >
<SOAP- ENV: Body >

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

The SOAP Envelope
The SOAP envelope is a mandatory element which encapsulates a SOAP

message. It must contain a SOAP body element although a SOAP header is
optional.

The SOAP Header
The SOAP header is an optional element which can contain information needed

to successfully process the data in the SOAP body. For example, the SOAP
header could convey authentication, security or versioning information, which

would otherwise be inappropriate to be included in the SOAP Body.

The SOAP Body

The SOAP Body contains the information being conveyed by the SOAP
Message. It could be an RPC Call or just a simple message. SOAP Faults, which
are exceptions thrown by the service provider, are also conveyed through the
SOAP Body. The SOAP Specification describes how an RPC call is mapped into
the XML Structure of a SOAP Message.

SOAP Faults

SOAP Faults are a specially formatted SOAP message as described in the
SOAP Specification. SOAP Faults can occur due to a number of factors. For
example, the server side can return a SOAP Fault message if the received SOAP
Message has not been properly formatted or if it is not understood, or if there
was an error on the server-side while the message was being processed, etc.

<SOAP- ENV: Body>

<Faul t >
<faultcode> ... <\faultcode>
<faultactor> ... <\faultactor>
<faultstring> ... <\faultstring>
<detail> ... <\detail >

</ Faul t >

</ SOAP- ENV: Body>

The FaultCode identifies the source of the error. A faultcode of VersionMismatch
is returned when the recipient of the message failed to understand the
namespace attribute of the Envelope element. A MustUnderstand faultcode is
returned when the recipient failed to understand an attribute in the SOAP header
marked with the 'mustUnderstand = 1" attribute. A Client faultcode id returned
when the recipient failed to receive all necessary information for processing the
request. And finally a Server faultcode indicates a server-side problem.

The FaultActor identifies the service that caused the fault.
The FaultString describes the problem in detail.

Detail provides application specific information for the cause of the SOAP Fault.

Benefits of Using SOAP

SOAP is an XML protocol, hence is character based and consequently
cross-platform.

A mechanism for error handling through SOAP fault messages using which
error and error-diagnostic information can be exchanged between
participants.

SOAP is easily extensible.

A flexible mechanism for representing data already serialized in some
format (text, XML, etc).

A convention for representing Remote Procedure Calls and responses as
SOAP messages.

SOAP bhinds to HTTP, the most common communication protocol on the
internet.

SOAP is an infrastructure technology. One need not know the intricacies of
SOAP to be able to program or use Web-services.

10

AXIS: Apache’s SOAP Solution

AXIS is an open source web service toolkit for Java. It is a successor to the
Apache Soap Toolkit. It fully supports SOAP version 1.1, and support for version
1.2 is being continually added as the specification is finalised. The current
version of AXIS is wiitten in Java and runs as a servlet in a servlet container
(most commonly deployed on Tomcat 4.0.1 and above), but a C++ version is
being developed. AXIS is supported by major players like IBM, Macromedia and
Computer Associates in its development and is reputed to be the best and most
compliant implementation of SOAP for Java.

A Simple AXIS Web Service

Writing a web service for the AXIS SOAP Server is a trivial task as it requires no
special AXIS specific code. To demonstrate this fact, | have written a simple web
service, the code for which can be found in Appendix A. The Web Service is a
MathsHelper service which simply returns the addition of two integers supplied.
The example has been intentionally kept simple to illustrate the communications
between the client and service.

A Simple AXIS Web Client

Writing a client for the web service in Java requires more effort, as the client
opens a socket connection between itself and the AXIS. But the complexities of
network programming in Java have been abstracted away, and invoking a
service is kept simple. The AXIS API includes helper classes Call and Service (in
the org.apache.axis.client package) which facilitate this.

Supported Data Types
AXIS supports all the data types specified in the SOAP Specification. The

following Table from the AXIS User Guide shows the standard mapping from
WSDL to Java.

WSDL Mapping Java data type

xsd: base64Bi nary | |byte[]

xsd: bool ean bool ean
xsd: byte byt e
xsd: dat eTi e java.util . Cal endar

11

xsd: deci mal j ava. mat h. Bi gDeci nal

xsd: doubl e doubl e

xsd: f | oat fl oat

xsd: hexBi nary byte[]

xsd: i nt i nt

xsd: i nt eger j ava. mat h. Bi gl nt eger

xsd: | ong | ong

xsd: QNane j avax. xm . nanmespace. QNane
xsd: short short

xsd: string java.l ang. Stri ng

SOAP Messaging between the simple Client and Service

The Client sends a properly formatted SOAP Message to the SOAP Server
hosting the service. The parameters are sent in the <soapenv: Body>

</ soapenv: Body> of the message. In this instance, the client requests the
addition of two integers (1 and 2).

Client = Service

<----- HTTP Headers ----- >
POST / axi s/ Mat hsHel per.jws HTTP/ 1.0
Cont ent- Type: text/xm; charset=utf-8
Accept: application/soap+xm , application/dine, multipart/related,
text/*
User - Agent : Axi s/ 1. 1RC2
Host: | ocal host
Cache- Control : no-cache
Pragma: no-cache
SOAPActi on: "*
Cont ent- Length: 428

<----- SOAP Document ----- >
<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="http://schems. xn soap. or g/ soap/ envel ope/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<soapenv: Body>
<add
soapenv: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<int_1 xsi:type="xsd:int">1</int_1>

<int_2 xsi:type="xsd:int">2</int_2>
</ add>
</ soapenv: Body>
</ soapenv: Envel ope>

The SOAPAct i on HTTP header helps the server identify the message as a
SOAP Message and specifies the intent of the message. Usually the value of the

header is the URI of the web service. An empty string means the intent of the
SOAP Message is provided by the HTTP P OST request URI (in this case,

/axis/MathsHelper.jws).

Service 2 Client

The Web Server passes the clients SOAP Message to the SOAP Server for

processing. The SOAP Server (AXIS) parses the message and invokes the
appropriate web service with the parameters supplied by the client. The web

service’s response, if any, is packaged into a new SOAP Message and sent back
to the Client.

In this example, the result of the addition (1 + 2 = 3) is sent back to the client
within the <addRet urn xsi : t ype="xsd: i nt">3</ addRet ur n> tag, where

xsd:intindicates that the returned value is of typeint.

<----- HTTP Headers ----- >
HTTP/ 1.1 200 OK
Set - Cooki e: JSESSI ONI D=0679FB7C0CB503710E27EOBC63E95824; Pat h=/ axi s
Cont ent- Type: text/xm; charset=utf-8
Dat e: Thu, 15 May 2003 23:48:50 GMVI
Server: Apache Coyote/1.0
Connection: close

<----- SOAP Document ----- >
<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="http://schemas. xnm soap. or g/ soap/ envel ope/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >
<soapenv: Body>
<addResponse
soapenv: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<addReturn xsi:type="xsd:int">3</addRet urn>
</ addResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

13

Deployment of a Web Service on AXIS

There are two methods of deploying a web service on AXIS.

Drop-in Deployment

This is the simpler of the two methods, and is practical when one has the source
code for the web service to be deployed. The source file’s extension needs to be
changed from . j ava to.] ws (Java Web Service) and put in the servlet
container. There is no requirement to write any additional configuration files. The

source file is automatically compiled and run when a client requests the web
service.

Web Service Descriptor (WSDD) Deployment
This method of deployment is useful when we do not have the source files for the

web service. It also works in instances when the necessary files are packaged as
partofa.j ar file.

A Web Services Descriptor (WSDD) is an XML based file which includes
configuration information for deploying a web service on AXIS. The following is a
simple WSDD with minimal configuration information.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmins:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="Web Servi ce Nanme" provider=" Provi der Type">
<parameter name="cl assNane" value=" Java Class Name "/>
<parameter name="al | owedMet hods " value=" method Name "/>
</service>
</deployment>

Web Service Name: is a unique name provided to the web service.

Provider Type: A provider could be thought about as an AXIS module
responsible for invoking a web service. AXIS provides two basic providers, an
RPC based provider, java:RPC, and a message based provider, java:MSG.
There is also an EJB Provider and according to the book AXIS: Next Generation
of Java SOAP, a COM provider is currently being written.

Class Name: The fully qualified class name of the web service
(packageNane. cl assNane).

Allowed Methods: A whitespace-delimited list of methods available to the client.
Care should be taken here of not including private and other methods the author
wishes not to expose.

Deploying web services on AXIS is made easy using the AdminClient tool which
is discussed in the following section on AXIS tools. If successfully deployed, the

14

web service appears as being deployed on AXIS administration servlet’s
‘deployed services list'.

AXIS maintains a list of deployed web services in the server-config.wsdd file.

So suppose we used the WSDD deployment to deploy our example MathsHelper
web service, the following is added to the server-config.wsdd file.

<service name="MathsHelper" provider="java:RPC">
<parameter name="allowedMethods" value="add"/>
<parameter name="className" value="MathsHelper"/>
</service>

Undeploying a Web Service on AXIS

Undeploying a deployed web service on AXIS is fairly straightforward and
requires another WSDD file, this time a much simpler version with only the name
of the web service to be undeployed required. Here is a sample undeploy script.

<undeployment xmIns="http://xml.apache.org/axis/wsdd”>
<service name="ser vi ce nane"/>

</undeployment>

Running the AdminClient tool to undeploy the web service has the effect of
removing the appropriate <service> </service> configuration details from the
server-config.wsdd file.

AXIS Tools

In this section | briefly discuss three important tools provided as part of the AXIS
package which help in administering, creating, deploying and undeploying web
services on AXIS.

Java2WSDL (java org.apache.axis.wsdl.Java2WSDL)
Java2WSDL is a utility which creates a WSDL file given a Java source file. One
would require a. wsdl file when dealing with the problem of interoperability.

MSSOAP requires a wsdl file of the web service it is trying to invoke.

WSDL 2Java (java org.apache.axis.wsdl.WSDL2Java)

WSDL2Java has a dual purpose.
Given a WSDL file, it can create a client stub (a Java class with the same
interface as the web service) which can be used to access the service.

Given a WSDL file, it can generate server-side skeleton code and also
additionally create WSDD files for deploying and undeploying the web

service.

15

The first purpose, that of generating client stubs is useful when we wish to create
a clientfor a web service whose WSDL interface we have access to. This
situation might arise when the web service has been created by another
organisation and they expose the service on the web by providing a URL to the
WSDL file of that service.

The second purpose, that of generating server-side skeleton files, given a WSDL
of the service seems a bit strange at first. This involves writing a WSDL file for
the web service we wish to create first and then allowing the utility to generate
server-side skeleton classes for the service. This method of creating a web
service might be useful if one is not daunted by the verbosity of a typical WSDL
file and can write such a file in reasonable time without errors. This does seem a
long -winded way of creating a web service, especially if its functionality is limited.

AdminClient (java.or.apache.axis.client. AdminClient)

As we have seen in a previous section, AdminClient is useful in deploying and
undeploying a web service on AXIS using a WSDD file. The simple effect of
using AdminClient is that it add configuration details of the web service to the
server-confi g. wsdd file typically found in the / WVEB- | NF folder of the AXIS
installation.

TCP Monitor (org.apache.axis.utils.tcpmon)

TCP Monitor monitors HTTP traffic between the client and web service displaying
the messages being passed. All the HTTP headers and SOAP message is made
available. This utility is useful when trying to debug errors and also for
demonstrating the communication between the client and the service.

TCP Monitor was used to capture the SOAP transactions between the simple
client and the MathsHelper web service.

Benefits of using AXIS

AXIS is open source. So there are no user agreements to sign, no product
activating and no license fee to pay. Also since the source is freely
available it can be compiled for platform’s for which the binaries aren’t
available yet. One can, at least in theory, modify the code to suit company
needs.

AXIS is fully compliant with SOAP 1.1 and is being continually updated to
meet the v1.2 specifications as they are finalised by the W3C.

AXIS team comprises of web service experts from companies like HP, IBM
and Macromedia. AXIS started off as an IBM product and members of the
above mentioned companies are actively involved in coding and testing.
AXIS is highly extensible. One of the shortcomings of IBM’'s SOAP4J was
that it was inflexible. AXIS was designed specifically with extensibility and
flexibility in mind. This means that AXIS can be tuned to work for the
specific job at hand

16

AXIS can run on a simple servlet engine such as Tomcat or on a full-
featured J2EE application server.

17

MSSOAP Toolkit 3.0

The MSSOAP Toolkit is an ‘add-on’ package for Visual Basic 6, enabling web
services and clients to be written in VB6. SOAP Toolkit 3.0 supports SOAP
version 1.1 and WSDL version 1.1. A web service written in VB6 typically runs on
the Internet Information Server version 5.x on the Windows 2000 and XP
Professional Platforms, and on IIS Version 4.x on Windows NT 4.0.

On the Server side, a server-side component is required which maps invoked
XML web service operations to COM object method calls as described by the
WSDL and Web Services Meta Language (WSML) files.

WSML files are a Microsoft invention and required only for using the toolkit,
whereas WSDL files are a W3C specification and part of the official web services

infrastructure.

The Toolkit offers a high-level as well as alow-evel API for creating SOAP
Messages. The high-level APl makes programming easier by abstracting away
the underlying details of creating the message and requires just a few lines of
code to generate a SOAP message. But one does not have much control on the
formatting of the SOAP Message itself. The low-level API offers several

interfaces for low-level interactions. These low-level interfaces allow the client
and server to generate, build, exchange, and process SOAP messages.

Data Mapping Visual Basic data Types to XSD Types
The following is the data type mapping from visual basic to XSD types in the
WSDL files generated by the WSDLGen3 utility. One will need to take into
consideration the data types understood by AXIS when dealing with

interoperability issues.

WSDL Mapping Visual Basic data type

xsd:base64Binary Byte()

xsd:string String
xsd:Boolean Boolean
xsd:dateTime Date

18

xsd:decimal Variant
xsd:short Integer
xsd:int Long
xsd:unsignedint Long
xsd:float Single
xsd:double Double
xsd:anyType Variant

SOAP Messaging between the Simple Client and Service

Client > Service (Request)

POST / Mat hsHel per/ VB/ Server/ Mat hsHel per. WsDL HTTP/ 1. 1
SOAPAction: "http://tenpuri.org/ Mat hsHel per/acti on/Cl assl. add"”
Cont ent- Type: text/xm ; charset="UTF- 8"

User - Agent: SOAP Tool kit 3.0

Host: 127.0.0.1

Cont ent- Lengt h: 536

Connection: Keep-Alive

Cache- Control : no-cache

Pragma: no-cache

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<SOAP- ENV: Envel ope xml ns: SOAPSDK1="htt p: // www. W3. or g/ 2001/ XM_Schema"
xm ns: SOAPSDK2="ht t p: / / ww. W3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: SOAPSDK3="htt p:// schemas. xm soap. or g/ soap/ encodi ng/" xml ns: SOAP-
ENV="htt p: // schemas. xnm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: add
xm ns: SOAPSDK4="htt p://tenpuri.org/ Mat hsHel per/ message/ ">
<int_1>2</int_1>
<int_2>3</int_2>
</ SOAPSDK4: add>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The SOAP Toolkit makes use of the SOAPAction HTTP header, however it is
upto the server side to make use of the header or ignore it. The AXIS SOAP
Server currently ignores the SOAPAction header.

19

Service > Client (Response)

HTTP/ 1.1 100 Conti nue

Server: Mcrosoft-11S/5.1

Date: Tue, 27 May 2003 19: 16: 10 GMVI
HTTP/ 1.1 200 OK

Server: Mcrosoft-11S/5.1

Date: Tue, 27 May 2003 19: 16: 10 GVI
Cont ent- Type: text/xm ; charset="UTF-8"
Content-Length: 538

Expires: -1;

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<SOAP- ENV: Envel ope xml ns: SOAPSDK1="htt p: // www. W3. or g/ 2001/ XM_Schema"
xm ns: SOAPSDK2="ht t p: / / www. W3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAPSDK3="htt p://schemas. xm soap. or g/ soap/ encodi ng/" xml ns: SOAP-
ENV="htt p: // schemas. xnm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: addResponse
xm ns: SOAPSDK4="htt p://tenpuri . org/ Mat hsHel per/ message/ ">
<Resul t >5</ Resul t >
</ SOAPSDK4: addResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Using the Low Level API
The Low Level API gives more control to the programmer in terms of generating,
building, exchanging and processing SOAP messages.

The Low Level API should be used when the WSDL file of the service is not
available but information such as the port number and message formatting is

known. Programming with the Low Level API is similar to the ‘Simple Client for
Java’ example for the AXIS SOAP Server, where configuration information such
as port number, method name and parameter types was hard coded.

The Low Level API also comes in handy when we want to manually create the
WSDL file rather than use the WSDLGen3 utility (described later).

MSSOAP 3.0 Toolkit Tools
There are three tools packages with the toolkit to help in web service

development. They are quite similar in nature to what comes packaged with
AXIS.

WSDL/WSML Generator (WSDLgen3.exe)
This utility generates WSDL and WSML files for a given web service. The WSDL
file generated by this utility can be copied over to the client side if the client has

been programmed using the high level API. The WSML file stays with the service
and is a toolkit specific file.

SOAP Tracer (MsSoapT3.exe)

The SOAP Tracer is similar to the TCP Monitor utility of AXIS. It monitors the
SOAP messages being passed between the client and service and displays the
requests and responses. | prefer to use the TCP Monitor utility rather than SOAP
Tracer, firstly because it's easier to use and the interface is more user friendly
and secondly, | have found TCP Monitor to be more stable than SOAP Tracer.
On one occasion, an incorrectly formatted SOAP Message sent SOAP Tracer
into an infinite loop.

SOAPVDIR.CMD

This is a batch file running a visual basic script which configures a virtual
directory on IS to use SOAP Toolkit 3 ISAPI. SOAP requests are sent by the
client as POST requests. Not running this batch file when configuring a virtual
directory on 1IS causes IIS to refuse HTTP POST requests and IIS replies with a

405 Met hod Not Al | owed. It is easy to forget to run this file. On two

occasions, | lost almost an hour each time trying different virtual directory setups
as IIS was refusing POST requests. So it is most important to run this batch file.

21

Interoperability

After introducing the various pieces of software and tools needed to solve the
problem of interoperability, we finally get down to making it happen. | decided to

first focus on getting a VB client to interoperate with a Java Service.

Client: VB € - Service: Java

| am using the same example (the MathsHelper service). So the code for the
Client remains unchanged. If we decide to use the high level API to code the
client we have to supply the WSDL file for the service, so that the client can
actually locate the service and format the query it sends to the service.

To generate the WSDL file for the service, | used the Java2WSDL utility from the
AXIS package. The following command generates a WSDL file where

java org. apache. axi s.wsdl . Java2WsDL - o Mat hsHel per.wsdl -1
"http://1ocal host: 8080/ axi s/ servi ces/ Mat hsHel per" -n
"urn: Mat hsHel per” Mat hsHel per

Where, - 0 is the name of the WSDL file to be created, - | is the URL of the web
service and—n is the target namespace.

Java2WSDL creates a properly formatted WSDL file, but in the <ser vi ce>

section of the file, which defines the name of the web service, it appends
“Service” to the name of the java class.

For example, on running the above command, we get the following in our WSDL
file

<wsdl : servi ce nane=" Mat hsHel per Servi ce">
<wsdl : port bi ndi ng="i npl : Mat hsHel per SoapBi ndi ng"
nane=" Mat hsHel per" >

<wsdl soap: addr ess

| ocation="http://| ocal host: 8080/ axi s/ servi ces/ Mat hsHel per"/
>

</ wsdl : port>
</ wsdl : servi ce>

Using this WSDL file with the VB client will obviously not work as the VB client is

looking for the service names MathsHelper in WSDL file. This is because the
following line in the VB6 source file defines the name of the service.....

Call Soapd i ent 3. nssoapi nit (" Mat hsHel per. wsdl ",
" Mat hsHel per", "MathsHel per™)

where the first parameter of the mssoapinit method refers to thewsdl file, the
second to the name of the service and the third to the port.

So the two alternatives are to change the second parameter from MathsHelper to
MathsHelperService

OR

To edit the name of the service in the WSDL file from MathsHelperService to
MathsHelper. Either alternative will solve this problem.

There are some further observations which can be made form looking at the
SOAP Request

POST [/ axi s/servi ces/ Mat hsHel per HTTP/ 1.1
SOAPAction: ™"

Cont ent- Type: text/xm; charset="UTF-8"
User - Agent: SOAP Tool kit 3.0

Host: 127.0.0.1

Cont ent- Lengt h: 500

Connection: Keep-Alive

Cache- Control : no-cache

Pragma: no-cache

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<SOAP- ENV: Envel ope xm ns: SOAPSDK1="htt p://ww. w3. or g/ 2001/ XM_Schem"
xm ns: SOAPSDK2="ht t p: / / ww. W3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAPSDK3="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ " xm ns: SOAP-
ENV="htt p://schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: add xm ns: SOAPSDK4=" Mat hsHel per ">
<i n0>2</i n0>
<i n1>3</inl>
</ SOAPSDK4: add>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Notice that the parameters haven't been XSD typed. Ideally we would have liked
the following so that the receiving server can properly interpret the message.

<i n0 xsi:type="xsd:int">2</in0>
<inl xsi:type="xsd:int">3</inl>

MSSOAP Toolkit doesn’t type the parameters being passed, however it does
check that the proper parameters are being sent. For example, if we sent a String
in place of an integer for either of the parameters, the toolkit will throw an
exception and will not forward the message.

This may not always work especially in instances where VB considers something
to be of one type, but Java another. So care should be exercised here and
proper testing needs to be carried out before the client and web service are
trusted to carry out critical calculations.

Client: Java € = Service: VB

The Interoperation between a Java client and a VB6 service proved slightly
tricky. The AXIS SOAP Server disregards the SOAPAction HTTP header and by
default sets the value to a null string in its requests.

SOAPAct i on:

The VB6 SOAP Toolkit however strictly requires the value of the SOAPAction

header to be set to the name of the service parameter in the WSDL Document
and refuses to accept a null string. Also the namespace for the message body
needs to be set for the toolkit to interpret the message correctly. The following
lines of Java code set the soapaction and body namespace.

/I Requests the use of a SOAPActi on Header in the request
cal | . set UseSOAPAct i on(true);

/| Sets the header val ue
cal | . set SOAPAct i onURI (“SOAPAct i on Header val ue”);

|l sets the SOAP Body Nanespace and nmethod to invoke
cal | . set Oper ati onName(new QNane(“ Nanespace”, Met hodNane)) ;

It is strange that the methodscal | . set UseSOAPAct i on(bool ean) and
cal | . set SOAPAct i onURI (St ri ng)are not in the APl documentation

released as part of the AXIS package. | luckily found references to them on a
web posting by one of the AXIS Developers who works for Macromedia.

An issue previously discussed is the fact that MSSOAP Toolkit 3.0 fails to specify
the type of parameters being passed. Here is part of the response from the VB
service to the Java client which shows the untyped result which AXIS does not
have a problem accepting as we have specified in the client code that the return
parameter is of primitive int type.

<SOAPSDK4: addResponse
xm ns: SOAPSDK4="htt p: // amal t hea. or g/ Mat hsHel per/ nessage/ " >
<Resul t >3</ Resul t >
</ SOAPSDK4: addResponse>

24

Mid Semester Conclusions

Considerations

Achieving interoperability between VB6 and Java certainly works using the
relatively new technology of web services as was demonstrated in the previous
sections. However, how does it weigh up in the face of the considerations for a
solution discussed in the introduction? To recap, some of the considerations

were,

The solution should work across hardware and software platforms.
Good performance across a Wide Area Network.
Minimal development effort.

Web Services are based on XML based protocols which are character based
protocols and work across software and hardware platforms. The messages
being passed around are text messages which are structured in a human-
readable form and debugging is vastly simplified due to this fact. There are
SOAP implementations for most platforms, be they Windows or some flavour of
UNIX.

Web Services as a concept was developed with wide area networks in mind.
Services can be invoked over a number of different protocols including HTTP and
SMTP, though HTTP is the predominate protocol for obvious reasons.

During my experiments with AXIS and the SOAP Toolkit, I didn’t find any
significant delays in clientserver communications. Communication between VB6
client and service was almost instantaneous. AXIS did take a few milliseconds at
times to create a SOAP message or interpret a received message, though this
may be due to the fact the AXIS currently runs as a servlet in a servlet container.
This may change when a C++ implementation of AXIS arrives which may run as
a CGl process or have its own built-in server. But havng a Java implementation
certainly makes it accessible to more platforms.

Incorporating any integration technology would involve some development effort.
The goal is to keep this to a minimum. As can be seen from the examples, there
is almost no additional effort needed to expose methods as services on the
server side other than creating a WSDL and a WSML files. A VB client requires

25

just a couple of lines of code when programming in the high-level API. The Java
client is also easy to program once one understands the AXIS API.

As mentioned earlier, debugging during development is made easier due to the
nature of SOAP messages. SOAP Faults thrown by both the VB Toolkit and
AXIS are helpful in recognising and fixing the problem.

Other Effects

The system at present is a one-way communication from ESP to the FORTRAN
side. Web Services would allow for communications to run both ways leading to
a better integrated product. Also one has the option of pursuing traditional RPC
style calls or Messaging calls, whiche ver suits the situation.

From investigations done upto this point, it is clear that Java and VB6
communicate seamlessly as long as the parameters being passed are primitive
data or strings.

Further investigations will have to be undertaken to evaluate the effectiveness of
this system if user defined types are used.

ESP currently sends packet data over to the FORTRAN side which is a bundled
set of parameters consisting of primitive data.

135452.23

5545

Packet Data

Any change to the structure of the packet leads to changing the pieces of code
which construct and interpret the packet. With web services one will be able to

26

retain this type of communications or move to a more manageable system
wherein only requested data is passed along the wire.

Kiwiplan as a company are moving towards a cross-platform and open source
approach of software development, reducing their dependence on a single
vendor. The web service solution, | have suggested above involves AXIS which
is an open source implementation of the JAX-RPC API and runs in any servlet
container including the Catalina container, a part of the Tomcat server, which is
also an Apache project. The VB Toolkit is a free add-on for SOAP development
on VB6. The good news is that Microsoft seems to be showing continued interest
in developing the toolkit even after releasing the .NET development platform
which seems to be the preferred platform for web service development
(MSSOAP Toolkit version 3 was released in March 2003).

Web Services has not been around for very long but it is already in wide use in
the industry. Microsoft’'s Windows Update site, for example uses a web service
which the Internet Explorer browser connects to determine which updates to
download.

The German IT magazine tecChannel, an IDG publication, recently revealed this
fact, that the site uses a web service and information is passed through SOAP
messages. Also revealed was the fact that MS seems to be gathering personal
information which the site denies, but allows itself the right to gather personal
information through a paragraph in the Win XP SP1 License agreement. ©

The only possible drawback could be the fact that AXIS requires JDK 1.4.0. This
would be a problem in which the JDK version is for some reason not available for
that platform.

| conclude with a few comments from some columnists at the IT publication
Computerweek from both sides of the argument on what they think about the
new technology.....

Web services will make it easier to integrate internal systems. If nothing
else happens, that will be a success story. Web services are likely to
replace what we now call electronic data interchange. They're a powerful

tool for automating supply chain activity among trusted partners.

Mitch Betts, features editor
The Web services Tsunami: already, Web services are being used internally and
externally. IT may never be the same.
Computerworld, May 19, 2003 v37 120 p25(1).

27

With the current economic slowdown, it is easy to see why the industry is

so desperate for web services to succeed.....Call me a cynic, but the

idea that web services will change the way we conduct business seems
an awfully familiar message.

James Roger's,

Web services; Cynics hear familiar ring to the next big thing,

Computer Weekly, May 13, 2003 p21.

Because of the global scope of Web-based services, the potential
financial upside is extremely attractive.....Web services also promise
improved collaboration with customers, partners and suppliers.....
However, the Web services vision is still new and not without risk.
Despite the significant potential, it remains to be seen how Web services
will play out on a large scale.
Frank P. Coyle,
(Author of XML, Web Services, and the Data Revolution, AddisonWesley,
2002)
Web services, simply put: here's an executive guide that explains XML, SOAP and web
services-- in plain English

Pilot Implementation

Introduction

The second part of this project dealt with a pilot implementation of the
interoperability ideas expressed during the first semester. Most of this work was
carried out at Kiwiplan using their present systems as a reference. The primary
objective was the transfer of business information from ESP (VB6) to Java
applications which would require the use of this information.

To demonstrate this, Customer information such as Address and Contact
information among others was chosen for the pilot implementation. A customer
could have a number of addresses with each address having a unique
‘AddressNo. Customers are identified with a ‘CustomerNo’. Thus the
combination of a CustomerNo and AddressNo uniquely identified a set of
address, contact and related information.

Before discussing the details, | would first like to explain how the AXIS Toolkit

and MSSOAP Toolkit deal with structured XML information. Although we are only
dealing with character based information here, this information needs to pass
through the network in a structured selfexplanatory manner. For example, we would
like to see the following type of structure

<Addr ess>
<Street>.</Street>
<CGity>.</City>

<Tel ephone>..</ Tel ephone>
<Emai | >..</ Emai | >
</ Addr ess>

The MSSOAP Toolkit works heavily off the WSDL file describing the web service.
There are a number of ways to have the Toolkit read and write structured XML,
but one of the easiest is to define a new data type (In the case of the above
example, an Address type). The WSDLGen utility will then create appropriate
WSDL files which the Toolkit uses for serializing and deserializing the data type.
The User-Defined Type Mapper, a part of the toolkit will perform the serializing
and deserializing functions in the background. One could also achieve this effect
programmatically by creating an IXMLDOMLIst, but this approach involves a lot

more work which seems unnecessary when the WSDLGen utility accomplishes
the same task without additional effort. Creating an IXMLDOMList is much more
appropriate when one is dealing with COM Data types.

The AXIS Toolkit has a BeanSerializer class which serializes and deserializes
any class which follows the JavaBean pattern of accessor and mutator methods.
This is similar in functionality to the User-Defined Type Mapper of the MSSOAP
Toolkit. The other alternative would be to write a custom serializer/deserializer.
This approach gives total control of the serializing and deserializing processes.
AXIS implements the JAX-RPC specification and so the custom serializers and
deserializers follow the pattern defined in the specification.

System Overview

L Server .
= System Overview
4)
~ SOAP Message
1S 5.0 Address Request
ESP files + . J Java_l Te_st
Test r N\ Application
Web Service SOAP Message
Address Info
_ J

The test system was a PC running Win2K with IIS 5.0. The business information
(address information, in this case) is held in a SQL Server database running on a
remote machine. The relevant ESP files dealing with database access and the
web service serving the address information ran on 1IS 5.0. The Java Test
Application utilized the AXIS API.

Implementation

| thought it would be best to describe the evolution of the implementation through
a series of versions. Each successive version describes an improvement over
previous implementations.

Version One:

Java Test Application requests Address information by sending across
CompanyNo and AddressNo.

HTTP Headers and SOAP Envelope/Body declarations

<Addr essRequest >
<ConpanyNo>12454</ ConpanyNo>
<Addr essNo>1</ Addr essNo>

</ Addr essRequest >

The web service looks up the database for the requested information and
creates an Addressinfo user defined variable type. This type is
automatically serialized and returned to the requesting Java Application in
the form of a SOAP message.

HTTP Headers and SOAP Envelope/Body declarations

<Addr essl nf o>
<Street>10 La Rascasse</ Street>
<City> Monte Carl o</ G ty>
<Tel ephone>123- 456789</ Tel ephone>
<Emai |l >jt@errari.it</Emil>

</ Addr essl nf o>

The Addressinfo deserializer on the Java side takes care of deserializing
the Address information and creating an appropriate object.

Version Two:

New feature: Ability to send and receive multiple requests.

To enable the application to request multiple addresses in just a single
call, an AddressRequest class was created and corresponding
serializer/deserializer pair written.

The Java Application now creates an array of AddressRequest objects
and calls the remote web service with this array as a parameter. The AXIS
Toolkit has inbuilt functionality to handle arrays, so no extra effort is
needed here.

31

HTTP Headers + Envel ope/ Body decl arati on
<nsl: get Addr esses namespace decl arati ons>
<Addr essBat ch xsi :type="soapenc: Array"
soapenc: arrayType="ns2: Addr essRequest [3]" nanespace
decl arati ons>
<item href="#i d0"/>
<item href="# d1"/>
<item href="#i d2"/>
</ Addr essBat ch>
</ nsl: get Addr esses>
<mul ti Ref id="id2" soapenc:root="0"
soapenv: encodi ngStyl e="http://schemas. xnl soap. or g/ soap/ encodi ng/ "
xsi :type="ns3: Addr essRequest" nanespace decl arati ons >
<ConpanyNo xsi :type="xsd:string" xsi:nil="true"/>
<Addr essNo xsi:type="xsd: i nt">0</ Addr essNo>
</mul ti Ref >
<mul ti Ref id="id0" soapenc:root="0"
soapenv: encodi ngStyl e="http://schemas. xnl soap. or g/ soap/ encodi ng/ "
xsi :type="ns4: Addr essRequest" nanespace decl arati ons >
<ConpanyNo xsi:type="xsd: string">108436</ ConpanyNo>
<Addr essNo xsi:type="xsd:int">1</ Addr essNo>
</mul ti Ref >
<mul ti Ref id="id1" >

Similarly on the VB side, the MSSOAP Toolkit handles arrays without any
additional effort. The web service then makes a series of database calls
for the necessary information which it returns in the form of an array of
Addressinfo structures.

Back on the Java side, this is deserialized by AXIS and an array of
Addressinfo objects in created.

Version Three

New Feature: Modification of the AddressiInfo structure to include a better
defined ‘OpenDays’ tag.

The ‘OpenDays’ tag in the Addressinfo structure defined the days on
which the address was open for accepting deliveries. ESP stores this
information a seven character string. For example, “NYYYYYN” means
that the business is open from Monday — Friday and closed on the
Weekends, with ‘N’ signifying a day when the business was closed and ‘Y’
representing a day open for business. ESP convention dictated that the
week always began on a Sunday and ended on a Saturday.

It was suggested that having a string like “NYYYYYN” could be better
expressed as an XML Structure.

32

HTTP Headers and SOAP Envelope/Body declarations + Other Data
<OpenDays>
<Sunday>f al se</ Sunday>
<Mbonday>t r ue </ Monday >
<Tuesday>t r ue</ Tuesday >
<Wednesday>t r ue</ Wednesday>
<Thur sday >t r ue</ Thur sday>
<Friday>true</Friday>
<Sat ur day>f al se</ Sat ur day>
</ OpenDays >

This modification involved defining a new VB6 type called OpenDays on
the VB side and a new OpenDays class with corresponding
serializer/deserializer on the Java side. This produces the following
standards compliant XML structure which AXIS has no problem in
deserializing.

Version Four

New Feature: Error Handling

Error Handling through SOAP Fault messages is considered as one of the
important features of SOAP. SOAP Faults are a specially formatted SOAP

message as described in the SOAP Specification. I'll skip over the finer
details as they have already been described in a previous section.

Error Handling in the MSSOAP Toolkit

The Toolkit will always respond with a SOAP Fault message when an
error occurs in the processing chain. The message will largely be of a default
nature with certain error specific information. The structure and contents of this
default Fault message is described in the SOAP Toolkit 3.0 User Guide.

However to respond to error with a custom SOAP Fault message, the
object must implement the 1ISoapError interface. The 1SoapError interface
basically has five properties. The following is a reduced reproduction of the
interface from the SOAP Reference guide.

Property Name Description
Detall (read-only) Provides the value of the <detail> element.
FaultActor (read-only) Provides the value of the <faultactor> element.
FaultCode (read-only) Provides the value of the <faultcode> element.

(read-only) Provides the namespace URI used to qualify the value

FaultCodeNamespace o 1 <fauitcode> element of the SOAP <Fault> element.

FaultString (read-only) Provides the value of the <faultstring> element.

The above properties may be customized for the error. The Toolkit will then use
these values when creating the Fault Message.

Error Handling in AXIS

The AXIS system throws an org.apache.axis.AxisFault whenever an exception
occurs. This class contains all the information pertaining to a SOAP Fault and
also methods for setting the various fault detail values, which can be customised
for the occasion.

The Implementation returned an appropriate Fault Message whenever an
exception occurred. For example, when the request was for a non-existent
CompanyNo or AddressNo.

Version Five

New Feature : Modification to the way the ‘Open Days’ information was handled.

As defined in version three, the string specifying the days on which a
particular address was open for accepting deliveries was not intuitive and
hence a self-explanatory XML Structure was implemented.

This conversion from a String 2> OpenDays type was being carried out by
the web service and then passed back to the Java end. It was rightly
pointed out, that the web service should have the right to serve data in its
native format and the consumers of the service should deal with format
conversion at their end.

So this new version refrains from performing any function on the
OpenDays string. The conversion is now carried out in the Addressinfo
deserializer where the string is intercepted and an OpenDays object
created from the information.

Further work

This section detail some further work done relating to data translation on the
information before it reaches the client. These methods would be applicable in
situations such as converting the OpenDays string to a self-explanatory
OpenDays structure.

Custom Handlers

The concept of SOAP Message Handlers is part of the JAX-RPC specifications.
A handler basically performs some pre-processing or post-processing on the

message travelling to or from a client or service. Examples listed in the
specifications for possible handler functions are encryption, logging and caching.

A

| investigated the use of handlers for data format conversion such as converting
the OpenDays string to a self-explanatory OpenDays structure. In theory, this
should be possible as a function like encryption also involves reading data from a
stream and writing back. However, | was unsuccessful using the AXIS API to
perform the data conversion.

SOAP Intermediaries

The semantics of one or more SOAP blocks in a SOAP message, or the SOAP
message exchange pattern used MAY request that the SOAP message be
forwarded to another SOAP node on behalf of the initiator of the inbound SOAP
message. In this case, the processing SOAP node acts in the role of a SOAP
intermediary.

http://www.w3.0rg/2000/xp/Group/2/02/27-SOAPIntermediaries.html

The concept of SOAP Intermediaries provides an excellent opportunity to
undertake processing on the message before it reaches its final destination. In
our case, we could have the Addressinfo structures pass through a SOAP
Intermediary which could have those structures converted to a format acceptable
to the client.

Unfortunately AXIS does not support SOAP Intermediaries at present. It is
expected that a future release will provide support as it is part of the SOAP
Specification. It is not clear whether the MSSOAP Toolkit supports this either.
Further experimentation will be required in this case.

However, one can always hard code the path followed by a message and
achieve the same effect. But of course this is not an ideal solution and will be
hard to manage.

v

Web Service Intermediary Client

J \

In the above proposed scenario, the intermediary would let the request pass

through to the service, but would perform some processing on the information
returned by the service before passing it on to the client.

Notes on the Implementation:

1. The implementation was fairly basic in its form, the main idea being to
prove the feasibility of using web service as medium for information
transfer between Java and VB6. And so it did not contain any advanced
database access functions. When requesting multiple addresses, the web
service merely made a series of database calls, each time requesting a
single address. Fetching multiple addresses with a single call would be a
much more efficient method than making multiple calls.

2. When requesting multiple addresses from the service, the array of
address requests needs to be one element longer (for instance, if | want to
request 50 addresses, | should send the service an array of address
requests of length 51. The final element should be of type
AddressRequest, but the contents of which can be null). The web service
will return an array 51 addresses with one of the addresses (usually the
last address) set to null. The VB web service, it seems, receives only an
array of 50 requests, which it processes and sends back 50 addresses.
The MSSOAP Toolkit for some reason seems to be adding the null
address to the last element. If the Java client sends an array of 50
address requests expecting a similar number of addresses back, it in fact
receives only 49, with one of the addresses (usually the last address) set
to null. The workaround is to send one extra request. | couldn'’t find a
mention of this feature in either the manual, published literature or on the
internet.

3. The following affects WSDL files created using the WSDL Generator utility

of the SOAP toolkit for services involving user-defined types. The WSDL
file by default instructs the web service to return the request as part of the

response.

For example, consider the following.....

SOAP Request

HTTP Headers

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope nanespace i nfo>
<soapenv: Body>
<nsl: get Addr ess namespace info>
<Addr essRequest href="#i d0"/ >
</ nsl: get Addr ess>
<mul ti Ref id="id0" nanmespace i nfo>
<ConpanyNo xsi:type="xsd: string">108436</ ConpanyNo>
<Addr essNo xsi:type="xsd: i nt">2</ Addr essNo>
</multi Ref >
</ soapenv: Body>
</ soapenv: Envel ope>

An AddressRequest user defined type is sent across in the request

SOAP Response
HTTP Headers

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>

<SOAP- ENV: nanespace i nf o>
<SOAP- ENV: Body nanespace info >
<SOAPSDK4: get Addr essResponse nanespace i nf o>
<Resul t href="#id1"/>

<Addr essRequest href ="#i d3"/>
</ SOAPSDK4: get Addr essResponse>

##Addr ess i nformati on##

<SOAPSDK7: Addr essRequest nanespace i nfo>
<ConpanyNo>108436</ Conpany No>
<Addr essNo>2</ Addr essNo>
</ SOAPSDK7: Addr essRequest >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The AddressRequest user defined type is sent back with the response by default.
Since we do not require this information and as it can be s ubstantial when a
request size is large or when we make multiple requests, we can make editions
to the .WSDL file to instruct the web service not to send the request back.

To avoid having the response sent back, editing the parts of the WSDL file which
instruct the web service to return the response is the solution...

The following are relevant parts from the WSDL file for the web service. The
highlighted portions need to be deleted from the file.

<?xm version="1.0" encodi ng="UTF-8" ?>

<definitions nane="Addr essAgent"” nanespace info >
<nessage nane="cl sAddr essAgent . get Addr essResponse" >
<part nane="Result" type="typens: Addresslnfo" />
<part nanme="AddressRequest” type="typens: AddressRequest" />
</ message>

<nessage nane="cl sAddr essAgent . get Addr essesResponse" >
<part nanme="Result" type="typens: ArrayO> Address" />
<part nanme="AddressBat ch"
type="typens: ArrayCtf Addr essRequest” />

</ message>

37

<nessage name="cl sAddressAgent . get FakeAddr essesResponse" >
<part nane="Result" type="typens: ArrayCf Address" />

<part nane="AddressBat ch"
type="typens: ArrayCf Addr essRequest” />

</ message>

<out put >

<soap: body use="encoded"
namespace="http://tenpuri.org/ AddressAgent/ nessage/"
encodi ngStyl e="http://schemas. xnm soap. or g/ soap/ encodi ng/"
parts=" Result AddressRequest" />

</ out put >

</ oper ati on>

<oper ati on nanme=" get Addr esses" >

<out put >

<soap: body use="encoded"
nanmespace="http://tenpuri.org/ AddressAgent/ nessage/"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/"
parts=" Result AddressBatch" />

</ out put >

</ oper ati on>

<oper ati on name=" get FakeAddr esses" >

<out put >

<soap: body use="encoded"
nanespace="http://tenpuri.org/ AddressAgent/ nessage/"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/"
parts=" Result AddressBatch" />

</ definitions>

Messaging

This section details the results of an investigation into possible architectures for a
messaging system. The MSSOAP Toolkit version 3 only supports RPC style
calls. The manual suggests editing the WSDL file of the service, to remove the
lines which list the return type for the call. This forces the toolkit to close the
connection on the VB side, which seems like a rather crude way. In addition,
there is no reliability mechanism for these types of calls. AXIS also supports
something similar (Described as a one -way input/outbound message pattern in
Jeelani!). Itis presently unclear whether it will ever support reliable
asynchronous messaging. While first investigating this matter the AXIS
developers seemed to be concentrating on ironing out the bugs and adding new
features to RPC style communication. Since then, there has not been any
movement on this front.

So | focused my investigations into enabling reliable asynchronous
communications in this type of a scenario using either of two Java APIs, which
support asynchronous messaging.

JAXM (Java API for XML Messaging)

The Java API for XML Messaging (JAXM) Optional Package enables applications to
send and receive document oriented XML messages using a pure Java API. JAXM
implements Simple Object Access Protocol (SOAP) 1.1 with Attachments messaging so
that developers can focus on building, sending, receiving, and decomposing messages
for their applications instead of programming low level XML communications routines

http://java.sun.com/xml/jaxm/

JAXM is one among the many Java APIs for XML Processing. Unfortunately,
JAXM seems to be loosing favour with the developer community and even within
the team which created the specifications. The reasons include existence of a
similar standard (JMS) for messaging which is reportedly easier to use and
provides better features.

JAXM which was part of the JWSDP version 1.1 (Java Web Services
Development Pack) has been dropped in version 1.2 and is offered as an
additional download.

The Reference Implementation for the latest JAXM specification (1.1.2) requires
all participating clients to run on the same servlet or J2EE container (in our case,
Tomcat). This does not help the situation as we require a message queue, which
accepts SOAP Messages from an external source (ESP) and then forwards it
onto a Java Client.

JMS (Java Messaging Service)

JMS is a strategic technology for J2EE. JMS will work in concert with other
technologies to provide reliable, asynchronous communication between
components in a distributed computing environment.

http://java.sun.com/products/ims/

JMS was developed by Sun working in close cooperation with leading enterprise-
messaging vendors including IBM, Hewlett-Packard and Sonic Software.

JMS is a part of the J2EE platform since the release of version 1.3. The J2EE
platform now has a reference implementation of the JMS standard. In addition
there are a number of commercial as well as open-source implementations.

One such opensource implementation is JORAM (Java Open Reliable
Asynchronous Messaging) by the ObjectWeb consortium.

JORAM incorporates a 100% pure Java implementation of IMS (Java Message Service
API released by Sun Microsystems, Inc.). It provides access to a MOM (Message
Oriented Middleware), built on top of the ScalAgent agents (http://www.scalagent.com)
based distributed platform. JORAM is a free, open source initiative.

http://joram.objectweb.org/index.html

JMS clients and the Message Queue communicate using a JMS specific
protocol, which is unknown to VB. So we need a mechanism to get the message
from VB and push it onto the JMS queue for a Java client to retrieve the
message at a later time. This could be done by a web service running on AXIS.

There exists a reliable connection between the JORAM Message Queue and
AXIS and between the Message Queue and the Java Client. The JMS
specification calls for this reliability and if the JORAM implementation adheres
strictly to this specification, which it claims, we should have no problems there.

So the system at present operates in the following manner:

VB sends a message wrapped in a SOAP Package to AXIS

AXIS unwraps the message and pushes it onto the message queue (The
service utilises the JORAM API for this).

AXIS informs VB of the success or failure of this operation.

A Java client at a later time can connect to the queue to receive the
message.

In this manner messaging can be reliably carried out between VB and Java.

I have managed to successfully send and receive Text Messages. In theory, one
should also be able to send and receive objects (or in this case, Address Info with
updated address information). However, | have been unsuccessful in my
attempts at passing Addressinfo objects. After much investigation, | am unable to
track down the problem. At first, it appeared to be a case of WSDL files
generated by AXIS being unacceptable to the MSSOAP Toolkit.

System Overview

/ Java Client
JMS Message

i

JORAM Message Queue JNDI Name Server
VB Client \
Apache
Message
AXIS

41

Screenshots

A few screenshots of some of the pilot implementations for demonstrating
interoperability and messaging

Interoperability

Java Test Client

JavaTestClient

Company No. 103436 Address No. |2 Request Size |3 | Time |921

Companyho: 108436
Addressho; 2

Mame: Scuderia Ferrari Spa
Street: La Rascasse

City: MonteCarlo

State: Monaco

Country: France

AlowDeliveries: true
AcceptanceFrom: 338346900000
AcceptanceTo: 338346900000
MotificationEmail: jteferrar.it
MotfificationFax: 1234567349
MatificationPhaone: 9876E54321
CpenlDays:

Sunday - false

FreferredDeliveryTime: 3383346900000
ruckDeparureTime: 3383465900000

Send Request | | |Send Muktiple Fuaquests| | | Send Fake Requests | | Loop Test

42

Able to send single and multiple requests.

Multiple requests in the implementation were for the same company-
address information. So the round trip time may not be an accurate
estimate if the database is caching recently served information.

Able to send a number of fake requests (Fake Requests are replied to with
a response hard-coded response in the web service with no database

querying involved). This was to gauge the impact of having to access the
database.

VB Test Client

_loix

Company No. 108436
Address No. |2

ComparyMo = 108436 -
Addrezshlo =2

Mame = Scuderia Ferran Spéd

ztreet = La Fazcasse

city = La Rascasse

State = Monaco

Country = France

zipocode = 90210

allowdeliveries = Tue

acceptancefrom = 21,/09/1980 1:15:00 p.m.
acceptanceto = 21,/09/1980 1:15:00 p.m.
natificationemail = jHEferrari. it

notificationfas = 987EH4321
notificationphone = 987654321 LI

Direct Connection

Single Request

Wieb Service Connection

The VB Test Client is the VB6 equivalent of the Java Test Client which
can access the service through both its web service interface and COM
interface. This feature immensely helped during debugging (For instance,
if there was a problem with the web server or the web service interface,
the web service mode of retrieving information would fail, but the COM
path would still be open.)

Additionally the code for this VB6 version was much simpler than the Java
version. This is because the SOAP Toolkit works mostly off the WSDL file
whereas AXIS prefers it hard -coded or through a config file.

Messaging

MessageSender

i

Send Text Message Send Object Message

Success

The Message Sender sends asynchronous message calls. The application

has provision for sending both text messages and object (structured XML)
messages.

The TextField displays the status of the last sent message, i.e whether the
message was successfully put on the Message Queue or not.

Queue Browser

Queue Browser =

1D ID:#0.01031¢11m1
wae: aull
r.dyade.aaa joram Texdessane@sfeas?

Text Queue: 1 Messages. Object Queue: 0 Messages

The Queue Browser provides a snapshot of the messages currently in the

queue. The upper TextArea lists the text messages in queue and the
lower lists the object messages.

The utility uses the JORAM implementation of the JMS API.

Message Receiver

Message Receiver ©

1 Text Messages Received

ID-#0.01031c11mi
A Message from VB

Ohject Msqg

The Message Receiver is the Java Client Application which is the ultimate
destination for all messages.

Note:
All the applications listed in this section have provision to send and receive object
message calls. But this is not possible at the present moment due to the problem

described in the Messaging section of this report.

Conclusion

The work done in Semester One concentrated on the theoretical aspects of
interoperability and web services in particular. Building on this, the work done in
Semester Two dealt in evaluating the application of web services in solving a
‘real world’ problem. A pilot implementation revealed a number of interesting
caveats. | would like to again list the goals set for a good interoperability solution
at the start of this project and comment on the success of the web services
solution in meeting those goals.

Solution should work across hardware and software platforms:

Web services were shown to successfully work across software platforms (and in
theory across hardware platforms due to their character based nature). Previous
attempts at achieving interoperability have mostly been systems which passed
binary information making it difficult to migrate software to platforms other than
the one on which they were developed.

Good performance across a Wide Area Network:

Measurement of round -trip times (time spent between issuing a request to a web
service and receiving a response) seemed to indicate that the bottleneck was in
database access. Communication between the client and web service was
instantaneous, although it must be noted here that both ran on the test machine
and there was no external network to negotiate. Admittedly, web services are a
verbose form of communication and further steps will have to be taken to reduce
the sizes of requests and responses when on a low bandwidth network. In such
cases, one alternative could be to compress the messages. But this will have to
be at the cost of clarity and/or processing time.

Minimal development effort:

The development effort hasn’t all been smooth sailing. Although SOAP and
WSDL are strict standards, the MSSOAP Toolkit and the AXIS Toolkit implement
certain features differently (while still remaining within the bounds of the
standard). This does present some challenges to start with, but shouldn’t trouble
the experienced developer. Overall | do believe that the web services solution
offers good value for the time spent.

I have worked throughout the year evaluating the potential of web services as an
interoperability technology. As long as character based information is being
exchanged, web services should serve as a good and easy-to-implement

solution.

a7

References

Books

1. AXIS- Next Generation Java SOAP
Romin Irani, S. Jeelani Basha
May 2002, Wrox Press Ltd.
ISBN 1-861007-15-9

2. Building Web Services with Java™ - Making Sense of XML, SOAP, WSDL and
UDDI
Steve Graham, Simeon Simenov, Toufic Boubez, Doug Davis, Glen Daniels,
Y uichi Nakamura, Ryo Neyama
March 2002, SAM S Publishing
ISBN 0-672-32181-5

Other Resources

3. TheJava™ Tutorial

A complete and definitive guide to the Java programming language.
4. Apache AX1S Documentation

Documentation for the Apache AXIS SOAP Server.
5. MSSOAP Toolkit 3.0 Documentation

Documentation for the SOAP Toolkit.

Appendices

The Appendix includes code | have used to establish the findings made. It
includes VB code, java code, WSDL and WSML files.
The code successfully ran on the following machine and software configuration.

Machine Configuration:

CPU Pentium PI1II 600 MHz
RAM 192 MB
Operating System Windows XP Professional SP1

Software Configuration:

Java side:

JDK version 14.1 01
JRE version 141 01
AXIS version 1.1
JORAM version 35.0
Tomcat version 4127
VB Side:

Visual Basic version 6.0
SOAP Toolkit version 3.0
Internet Information 51
Server version (IIS)

The appendix has been sub-divided into the following sections:

Section One: VB6 Client and a VB6 Service
Section Two: Java Client and a Java Service

Section Three: Java Service and VB Client
Section Four: VB6 Client and Java Service

49

Section One: VB6 Client &€=> VB6 Service

Client: (MathsHelperClient.vbs)

Option Explicit

/I Creating a SOAP Tool kit 3.0 Client which encapsul ates all web service
/I behavi ours and al so formats a SOAP nessage to send to the service
Di m soapCli ent 3
set soapclient3 = CreateObj ect (" MSSOAP. SoapCl i ent 30")
On Error Resune Next
//Calling the mssoapinit method on the Mat hsHel per service defined in
/| Mat hsHel per. wsdl file
Call SoapC i ent 3. nssoapi ni t (" Mat hsHel per.wsdl ", "Mt hsHel per"
" Mat hsHel per SoapPort ")
if err <> 0 then
wscript.echo "initialization failed " + err.description
end if

/linvoking the add nethod with the int paraneters valued 2 & 3
wscri pt.echo Soapdient3.add(2, 3)

[lprint the SOAP fault nessage if a fault has occurred
if err <> 0 then
wscri pt.echo err.description

wscri pt.echo "faul tcode=" + SoapClient3.faultcode
wscri pt.echo "faul tstring=" + SoapClient3.faultstring
wscript.echo "faul tactor=" + SoapClient3.faultactor
wscri pt.echo "detail =" + SoapClient 3. det ai

end if

Server: (MathsHelper.cls)

/1A sinple function which returns the addition of two integers

Public Function add(ByVal int_1 As Long, ByVal int_2 As Long) As Long
add = int_1 + int_2

End Function

WSDL: (MathsHelper.wsdl created by WSDLGen3.exe)

<?xm version="1.0" encodi ng=' UTF-8" ?>
<l -- Cenerated 05/28/03 by Mcrosoft SOAP Tool kit WSDL Fil e Generat or
Version 3.00.1325.0 -->
<definitions

nanme="' Mat hsHel per

t ar get Namespace="' http: //amal t hea. or g/ Mat hsHel per/ wsdl /'

xm ns: wsdl ns=' http://amal t hea. or g/ Mat hsHel per/ wsdl /"'

xm ns:typens='http://anmal t hea. or g/ Mat hsHel per/type/

xm ns: soap=' http://schemas. xm soap. or g/ wsdl / soap/

xm ns: xsd=' http://ww. w3. or g/ 2001/ XM_Schema

xm ns: stk="http://schemas. m crosoft.con soap-tool kit/wsdl -
ext ensi on'

xm ns: di me=' http://schemas. xm soap. or g/ ws/ 2002/ 04/ di me/ wsdl /"'
xm ns: ref="http://schemas. xm soap. or g/ ws/ 2002/ 04/ r ef er ence/ "'
xm ns: content="http://schemas. xnm soap. or g/ ws/ 2002/ 04/ cont ent -

type/'
xm ns: wsdl =" http://schemas. xm soap. or g/ wsdl /
xm ns=" http://schemas. xm soap. org/ wsdl /' >
<types>

<schema

t ar get Namespace="' htt p: // amal t hea. or g/ Mat hsHel per/type/
xm ns="http://ww. w3. or g/ 2001/ XM_Scherma
xm ns: SOAP-
ENC=' http://schemas. xnl soap. or g/ soap/ encodi ng/"'
xm ns: wsdl =" http://schemas. xm soap. or g/ wsdl /*
el ement For mDef aul t =" qual i fi ed' >

<i mport
nanmespace=' http://schemas. xm soap. or g/ soap/ encodi ng/"' />
<i mport
nanmespace=' http://schenmas. xm soap. org/ wsdl /' />
<i nport
nanmespace=' http://schemas. xm soap. or g/ ws/ 2002/ 04/ r ef erence/ ' [>
<i mport
nanespace=' http://schemas. xnl soap. or g/ ws/ 2002/ 04/ content -type/"' />
</ schema>
</types>

<message nane=' Mat hsHel per. add' >
<part nane='int_1' type='xsd:int'/>
<part nanme='int_2' type='xsd:int'/>
</ message>

<message nanme=' Mat hsHel per. addResponse' >
<part name='Result' type='xsd:int'/>
</ message>

<port Type nanme=' Mat hsHel per SoapPort"' >

<operation name='add' paranmeterOder="int_1 int_2'>

<i nput nessage=' wsdl ns: Mat hsHel per. add' / >

<out put nessage=' wsdl ns: Mat hsHel per. addResponse' / >
</ operation>

</ port Type>

<bi ndi ng nanme=' Mat hsHel per SoapBi ndi ng'
type=' wsdl ns: Mat hsHel per SoapPort' >

<st k: bi ndi ng preferredEncodi ng=' UTF-8' />
<soap: bi ndi ng styl e="rpc
transport="http://schemas. xnl soap. or g/ soap/ http' />

<operati on name='add' >
<soap: oper ati on
soapAction=' http://amalt hea. or g/ Mat hsHel per/ acti on/ Mat hsHel per. add' / >
<i nput >

5l

<soap: body
use=' encoded'

namespace=' http://amal t hea. or g/ Mat hsHel per/ message/

encodi ngStyl e=' http://schenmas. xm soap. or g/ soap/ encodi ng/"'
parts="int_1 int_2'/>
</i nput >
<out put >
<soap: body
use=' encoded’

nanmespace=' http://amal t hea. or g/ Mat hsHel per/ nessage/"'
encodi ngStyl e=' http://schemas. xm soap. or g/ soap/ encodi ng/"'
parts='Result'/>
</ out put >
</ operati on>

</ bi ndi ng>
<servi ce name=' Mat hsHel per' >
<port name=' Mat hsHel per SoapPort'
bi ndi ng=' wsdl ns: Mat hsHel per SoapBi ndi ng' >
<soap: addr ess

| ocation="http://I| ocal host: 8000/ Mat hsHel per/ VB/ Ser ver / Mat hsHel per . WSDL'

/>
</ port>
</ service>

</ definitions>

WSML (MathsHelper.wsml created by WSDLGen3.exe)

<?xm version="1.0" encodi ng=" UTF-8" 2>

<l-- Cenerated 05/28/03 by Mcrosoft SOAP Tool kit WSDL Fil e Gener at or
Version 3.00.1325.0 -->

<servi cemappi ng name=' Mat hsHel per'

xm ns: di me=' http://schemas. xm soap. or g/ ws/ 2002/ 04/ di ne/ wsdl /' >

<servi ce nane=' Mat hsHel per' >

</ servi ce>
</ servi cemappi ng>

SOAP Request:

POST / Mat hsHel per/ VB/ Server/ Mat hsHel per. WSDL HTTP/ 1. 1

SOAPAction: "http://amalthea. org/ Mat hsHel per/ acti on/ Mat hsHel per. add"
Cont ent- Type: text/xm; charset="UTF-8"

User - Agent: SOAP Tool kit 3.0

Host: 127.0.0.1

Cont ent- Lengt h: 537

Connection: Keep-Alive

Cache- Control : no-cache

Pragma: no-cache

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>

52

<SOAP- ENV: Envel ope xm ns: SOAPSDK1="htt p: //ww. w3. or g/ 2001/ XM_Schema"
xm ns: SOAPSDK2="ht t p: / / ww. wW3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAPSDK3="htt p: // schemas. xm soap. or g/ soap/ encodi ng/" xml ns: SOAP-
ENV="htt p: // schemas. xnl soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: add
xm ns: SOAPSDK4="htt p: // amal t hea. or g/ Mat hsHel per/ nessage/ " >
<int_1>2</int_1>
<int_2>3</int_2>
</ SOAPSDK4: add>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

SOAP Response

HTTP/ 1.1 100 Conti nue
Server: Mcrosoft-11S/5.1
Dat e: Wed, 28 May 2003 22:11:30 GV

HTTP/ 1.1 200 OK

Server: Mcrosoft-11S/5.1

Dat e: Wed, 28 May 2003 22:11:30 GV
Cont ent- Type: text/xm; charset="UTF-8"
Cont ent- Lengt h: 539

Expires: -1;

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<SQAP- ENV: Envel ope xm ns: SOAPSDK1="htt p: //wwv. w3. or g/ 2001/ XM_Schem"
xm ns: SOAPSDK2="ht t p: / / www. W3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAPSDK3="htt p: // schemas. xm soap. or g/ soap/ encodi ng/" xmnl ns: SOAP-
ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: addResponse
xm ns: SOAPSDK4="htt p: // amal t hea. or g/ Mat hsHel per/ nessage/ " >
<Resul t >5</ Resul t >
</ SOAPSDK4: addResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Secti

on Two: Java Client €= Java Service

Client: (MathsHelperClient.java)

/] Mat h
i nport
i npor t
i mport
i mport
i mport
i mport
public
publ
tr
"http:

"http:

"http:

QName(

I nt ege

}

sHel perClient.java

java. net . URL;

or g. apache. axi s. cli ent. Servi ce;
or g. apache. axi s.client. Call;

or g. apache. axi s. encodi ng. XM_Type;
j avax. xm . r pc. Par anet er Mode;

j avax. xm . nanespace. QNane;

cl ass Mat hsHel perCli ent {

ic static void main(String [] args){
y{
/1 Endpoi nt for the VB Wbservice
[**String endpoi nt URL =
/'l ocal host: 8002/ Mat hsHel per/ VB/ Ser ver/ Mat hsHel per. WSDL" ; **/
/| Endpoi nt for Java Webservice
String endpoi ntURL =
/Il ocal host : 8001/ axi s/ servi ces/ Mat hsHel per";
/I Met hod name
String addMet hodName = "add";
/| SOAPActi on uri
String uriProperty =
/| amal t hea. or g/ Mat hsHel per/ acti on/ Mat hsHel per. add";
Servi ce service = new Service();
/11 nvoki ng the Addition nethod of the MathsHel per Web Service
Call call = (Call) service.createCall();
/'l Set the endpoi nt URL
cal | . set Tar get Endpoi nt Addr ess(new j ava. net . URL(endpoi nt URL)) ;
//setting the SOAPActi on header in the request
cal | . set UseSOAPActi on(true);
cal | . set SOAPAct i onURI (uri Property);
/set the methodNane to invoke - add
cal | . set Oper ati onName(new
"http://anal t hea. or g/ Mat hsHel per/ message/ ", addMet hodNane)) ;
//Seting the Paraneters to be passed as to the Wb Service
cal | . addPar aneter ("int_1", XM_Type. XSD_I| NT, Par anet er Mode. I N) ;
cal | . addPar aneter ("i nt_2", XM_Type. XSD_I NT, Par anet er Mode. I N) ;
call.setReturnType(XM.Type. XSD_I NT) ;
Integer resultl = (Integer) call.invoke(new Object[] {new
r(1l), new Integer(2)});
/[/Print out the result
Systemout.println("Addition: " + resultl.intValue());

cat ch(Exception e){

}

Systemerr.println(e.toString());

Service: (MathsHelper.java)

public cl ass Mt hsHel per{
/'l construct or
publ i c Mat hsHel per (){

}

[/ returns the addition of two nunbers
public int add(int a, int b){
return a+b;

}
}

WSDL (creted by Java2WSDL)

<?xm version="1.0" encodi ng="UTF- 8" ?>

<wsdl : definitions target Namespace="Mat hsHel per"

xm ns="http://schemas. xm soap. or g/ wsdl /"

xm ns: apachesoap="http://xm . apache. or g/ xnl - soap"

xm ns: i npl =" Mat hsHel per” xm ns:i ntf="Mt hsHel per"

xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"

xm ns: wsdl soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schem" >

<wsdl : mressage nane="addRequest" >
<wsdl : part nane="in0" type="xsd:int"/>
<wsdl : part name="inl" type="xsd:int"/>
</ wsdl : nessage>

<wsdl : message nanme="addResponse" >
<wsdl : part name="addReturn" type="xsd:int"/>
</wsdl : message>

<wsdl : port Type nanme=" Mat hsHel per 1" >
<wsdl : operati on name="add" paranmeterOrder="in0 inl">
<wsdl : i nput nessage="inpl: addRequest" nane="addRequest"/>
<wsdl : out put message="i npl : addResponse" nanme="addResponse"/>
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="Mat hsHel per SoapBi ndi ng"
type="i npl : Mat hsHel per 1" >

<wsdl soap: bi ndi ng styl e="rpc"
transport="http://schemas. xm soap. or g/ soap/ http"/>
<wsdl : operati on nane="add">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="addRequest ">
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="Mat hsHel per" use="encoded"/ >
</wsdl : i nput >

<wsdl : out put name="addResponse" >
<wsdl : servi ce nane="Mat hsHel per Servi ce" >
<wsdl : port bi ndi ng="i npl : Mat hsHel per SoapBi ndi ng"
name="Mat hsHel per" >
<wsdl soap: addr ess
| ocation="http://| ocal host: 8001/ axi s/ servi ces/ Mat hsHel per"/ >
</ wsdl : port>
</ wsdl : servi ce>

</ wsdl : definitions>

SOAP Request

POST /axi s/ servi ces/ Mat hsHel per HTTP/ 1.0

Cont ent- Type: text/xm; charset=utf-8

Accept: application/soap+xm , application/dinme, multipart/rel ated,
text/*

User - Agent: Axi s/ 1. 1RC2

Host: 127.0.0.1

Cache- Control : no-cache

Pragma: no-cache

SOAPAction: "http://amalthea. org/ Mat hsHel per/ acti on/ Mat hsHel per. add"
Cont ent- Lengt h: 489

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="http://schems. xm soap. or g/ soap/ envel ope/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" >
<soapenv: Body>
<nsl: add
soapenv: encodi ngStyl e="http://schemas. xml soap. or g/ soap/ encodi ng/ "
xm ns: nsl1="http://anmal t hea. or g/ Mat hsHel per/ message/ " >
<int_1 xsi:type="xsd:int">1</int_1>
<int_2 xsi:type="xsd:int">2</int_2>
</ ns1: add>
</ soapenv: Body>
</ soapenv: Envel ope>

SOAP Response

HTTP/ 1.1 200 CK

Content- Type: text/xm ; charset=utf-8
Date: Wed, 28 May 2003 22:21:24 GMI
Server: Apache Coyote/ 1.0

Connection: close

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="htt p://schemas. xnl soap. or g/ soap/ envel ope/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance" >

<soapenv: Body>

<nsl: addResponse
soapenv: encodi ngStyl e="htt p: // schemas. xrml soap. or g/ soap/ encodi ng/ "
xm ns: nsl="http://anmal t hea. or g/ Mat hsHel per/ message/ " >
<addReturn xsi:type="xsd: i nt">3</addRet urn>
</ nsl: addResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

S7

Section Three: Java Client €—> VB6 Service

Client (MathsHelperClient.java)
Sanme as Mat hsHel perClient.java from Section Two

Service (MathsHelper.cls)
Sane as Mat hsHel per.cls from Secti on One

WSDL (MathsHelper.wsdl)
Sane as Mat hsHel per.wsdl from Section One

SOAP Request

POST / Mat hsHel per/ VB/ Server/ Mat hsHel per. WSDL HTTP/ 1. 0

Cont ent- Type: text/xm; charset=utf-8

Accept: application/soap+xm , application/dinme, nmultipart/rel ated,
text/*

User - Agent: Axi s/ 1. 1RC2

Host: 127.0.0.1

Cache- Control : no-cache

Pragma: no-cache

SOAPAction: "http://amalthea. or g/ Mat hsHel per/acti on/ Mat hsHel per. add"
Cont ent- Lengt h: 489

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<soapenv: Body>
<ns1l: add
soapenv: encodi ngStyl e="htt p: // schemas. xrml soap. or g/ soap/ encodi ng/ "
xm ns: ns1l="http://amal t hea. or g/ Mat hsHel per/ message/ " >
<int_1 xsi:type="xsd:int">1</int_1>
<int_2 xsi:type="xsd:int">2</int_2>
</nsl: add>
</ soapenv: Body>
</ soapenv: Envel ope>

SOAP Response

HTTP/ 1.1 200 CK

Server: Mcrosoft-11S/5.1

Date: Wed, 28 May 2003 22:11:30 GMI
Cont ent- Type: text/xm; charset="UTF-8"
Cont ent- Lengt h: 539

Expires: -1,

<?xm version="1.0" encodi ng="UTF- 8" standal one="no" ?>

<SOAP- ENV: Envel ope xm ns: SOAPSDK1="htt p://ww. w3. or g/ 2001/ XM_Schema"
xm ns: SOAPSDK2="ht t p: / / www. W3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: SOAPSDK3="htt p: // schemas. xm soap. or g/ soap/ encodi ng/" xml ns: SOAP-
ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body SOAP-
ENV: encodi ngStyl e="htt p: //schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: addResponse
xm ns: SOAPSDK4="htt p://amal t hea. or g/ Mat hsHel per/ message/ " >
<Resul t >5</ Resul t >
</ SOAPSDK4: addResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

59

Section Four: VB6 Client €= Java Service

Client (MathsHelperClient.vbs)
Sane as Mat hsHel perClient.vbs from Section One

Service (MathsHelper.java)
Sane as Mat hsHel per.java from Section Two

WSDL (MathsHelper.wsdl)

Same as MathsHelper.wsdl from Section One except the following
<wsdl : servi ce nanme="Mat hsHel per Servi ce">

should be replaced by
<wsdl : servi ce name="Mat hsHel per" >

SOAP Request

POST /axi s/ servi ces/ Mat hsHel per HTTP/ 1.1
SOAPAct i on:

Cont ent- Type: text/xml; charset="UTF-8"
User - Agent: SOAP Tool kit 3.0

Host: 127.0.0.1

Cont ent- Lengt h: 500

Connection: Keep-Alive

Cache- Control : no-cache

Pragma: no-cache

<?xm version="1.0" encodi ng="UTF- 8" standal one="no" ?>
<SQAP- ENV: Envel ope xm ns: SOAPSDK1="htt p: // www. W3. or g/ 2001/ XM_Schem"
xm ns: SOAPSDK2="ht t p: / / www. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAPSDK3="htt p: // schemas. xm soap. or g/ soap/ encodi ng/" xmnl ns: SOAP-
ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body SOAP-
ENV: encodi ngSt yl e="htt p: // schemas. xnml soap. or g/ soap/ encodi ng/ " >
<SOAPSDK4: add xm ns: SOAPSDK4=" Mat hsHel per " >
<i n0>2</i n0>
<i n1>3</inl>
</ SOAPSDK4: add>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

SOAP Response

HTTP/ 1.1 200 OK

Content- Type: text/xm ; charset=utf-8
Tr ansf er - Encodi ng: chunked

Dat e: Wed, 28 May 2003 22: 33:48 GMVI
Server: Apache Coyote/ 1.0

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/"

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance" >
<soapenv: Body>
<nsl: addResponse
soapenv: encodi ngStyl e="htt p: // schemas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: ns1=" Mat hsHel per" >
<addRet urn xsi:type="xsd:int">5</addRet ur n>
</ nsl: addResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

61

	BTech 450DT Project Report
	Table of Contents
	Introduction
	Web Services
	AXIS: Apache's SOAP Solution
	MSSOAP Toolkit 3.0
	Interoperability

	Mid Semester Conclusions
	Pilot Implementation
	Messaging
	Screenshots
	Conclusion
	References
	Appendices

