Detecting (Distributed) Denial-of-Service Attacks in ADSL SOHO Network

Fourth Year BTech(Information Technology) Project

Semester I Report
Xiao fei (PHIL) Xue

Supervised by: Dr. Ulrich Guenther

Department of Computer Science

University of Auckland

Table of contents

31. Project Overview

31.1 Introduction to DDoS Attack

41.2 Proactive vs. Reactive Detection

52. Study of (Distributed) Denial-of-Service Tools

52.1 Trin00

62.2 Tribe Flood Network (TFN)

62.3 Tribe Flood Network 2000 (TFN2K)

72.4 Stacheldraht

73. Study of Attacking Method

83.1 ICMP Flood and Smurf Attack

83.2 SYN Flood

83.3 UDP Flooding

83.4 Targa3 Attack

83.5 Hybrid (mixed) Attack

94. Attack Detection System Architecture

104.1 Data Fetcher

114.2 Attack Detection Analyzer (ADA)

114.2.1 Function of Subcomponents

114.2.1.1 Traffic Statistics Database

114.2.1.2 Pre-Detector

124.2.1.3 Attack Detector

154.3 Action Handler (AH):

154.3.1 Sending Alert:

154.3.2 Turning Off Connection:

154.3.3 Event logging:

165. Experiment Proposal:

165.1 Experiment 1

165.2 Experiment 2

175.3 Experiment 3:

175.4 Experiment 4:

17Notes about these Experiments:

186. Further Research:

187. Summary of Semester I:

198. Reference:

1. Project Overview

Asynchronous Digital Subscriber Line (ADSL) Internet connection has grown rapidly in NZ in recent years, especially for small office home office (SOHO) customers, who want to utilize existing network infrastructures and to take advantages of high-speed Internet connection and share it with a small number of computers. Most of business oriented ADSL scheme charges their customers by traffic usage, which is one of the attractive feature to SOHO users comparing to leased lines, however it also makes them suffers the most from distributed denial-of-service (DDoS) attacks, which creates high volume of artificial traffic, disables services of the network and mounting up Internet bills by unwanted data. The initial motivation of this project is to provide solution on detecting DDoS attacks at the customer’s promised site, and to direct the network to take appropriate actions when attack is detected.

The ADSL router we will be using to build our simulation environment is a Nokia M1122, which is provided by Nokia New Zealand.

1.1 Introduction to DDoS Attack

DDoS attack has two phases. In the first phase, attackers hack into multiply computer systems and install attack tools, some of them will act as handlers, while others are called zombies, usually there’s no direct communication between the attacker and zombies, handlers will coordinate the whole effort, this makes backward-tracing very difficult. Before the second phase starts, handlers will have to complete the installation of zombies, i.e. to locate the zombies, gathering server information, issuing initial commands. This phase usually takes weeks or month, as attack would try to compromise as many computer systems as possible. The second phase is where attack starts, attacker sends attacking commands to handlers, the handler will command all zombies that are under its control to send disabling network traffic to the given host, since the packets are sent from thousands, or probably tens of thousands of hosts, the target host or network can be easily disabled in a short period of time.

[image: image1.png]SOHO LAN

Vi

Handlers

Local ISP

Internet

I Attacker

Figure 1. Formation of Distributed Denial of Service Attack

il

Typically with ADSL connection, the attacking packets would come down from the Internet cloud (Figure 1.), going through local ISP, get distributed to Digital Subscriber Line Access Multiplexer (DSLAM, people also call it local exchange), and eventually reach the ADSL router at the customer’s site. According to pricing scheme of most of ISPs, usage charge is calculated based on inbound (download) and outbound (upload) traffic between ADSL router and DSLAM, charges would have been already applied to the bill before attacking packets arrived on target host, therefore the feasible way of detecting those packets would be querying traffic data from the ADSL router, detect suspicious patterns and command the router to take action in event of attack.

1.2 Proactive vs. Reactive Detection

From the related work and papers that I have studied during the first semester, a large portion of the existing solutions is focused on the zombie site, e.g. scanning daemon tools. These intrusion detection techniques are usually applied in the last step of phase 1, where zombies are trying to communicate with handlers at the higher level. Traditional zombie tools use predetermined communication port, or data packets with specific strings (more details in attacking tool section), those features provide the possibility for intrusion detection system to sense the attack before it actually starts. Those detection solutions are said to be proactive. However they may not be the solution for the SOHO network with ADSL connection, where router is the only device in control. There is no way for the management station to forecast attacks before it takes place, therefore our solution are tend to be reactive, there will always be some associated trade-offs, e.g. cost of traffic from the moment of attacking starts to appropriate action is taken, calculation of trade-offs will be discussed in the last section.

2. Study of (Distributed) Denial-of-Service Tools
It is crucial for us to know the behavior of each DDoS attacking tools before we construct the detection model. The following tools are the most common ones, each of them are specialized on a specific (or a combination of) protocols, with unique features. Those attacking tools are listed in the order of release date. Since network administrator in these days are constantly monitoring DDoS specific-traffic (default com ports, known character strings etc), the trend for those attacking tools is to become more sophisticated, recent DDoS tools utilize encrypted communication between handler and agent, strong authentication method to command the agents, and agent auto updates. Those techniques allow agents and handlers to change their password and communication ports more frequently, or even sense the monitoring tools and to prevent being detected.

2.1 Trin00

Trin00 is a tool to launch UDP flooding attacks. The earlier version can be installed on both Linux and Solaris systems; it can also work under Windows from the release of WinTrin00.

The handler is usually installed on the primary name servers which normally has extremely high packet traffic and large number of TCP and UDP connections, it also uses “root-kit” to hide the presence of the programs, and its communication activities.

[image: image2.png]Attack Detection Analyzer

Attack Detector

1

Pre-Detector

Traffc Statistics
Database

Data Fetcher

Figure 5. Attack Detection Analyzer

Trin00 programs communicate with each level through default communication ports (Figure 2.). Proper password is required for attackers to take over the control of handlers, if another connection is made to the handler while someone is already authenticated, a warning is sent to the first connection with the second’s IP address. Only certain commands sent to zombies are password protected, while most of the commands and the default passwords are sent in plain text.

Detection: when Trin00 DDoS attack begins, large numbers of 4 bytes packets are coming from one source port to random destination ports on the target host.

2.2 Tribe Flood Network (TFN)

TFN works very similar to Trin00, in addition of UDP flooding, it also utilizes TCP SYN flood, ICMP flood, and smurf attack.

Each of the handlers keeps a list of IP of known zombies they can control, although no password is required to take control of handler. Handlers and zombies communicate via ICMP_ECHOREPLY packets; commands are embedded in the data portion of the ICMP packets, which makes it difficult for most of monitoring tools to detect, since normally they do not look up the data portion of ICMP packets. Each command is sent in the form of 16-bit binary number in the ID field of ICMP_ECHOREPLY, which makes it look like the response to the “ping” command.

Detection: constantly monitoring the ICMP packets traffic, looking for the pattern of a large number of ICMP packets with different source IP addresses sent to the same destination IP address.

2.3 Tribe Flood Network 2000 (TFN2K)

TFN2K is an improved version of TFN, it works under any UNIX based system (Linux, Solaris, etc.) as well as under Windows. In addition to the attacking methods that TFN uses, TFN2K also utilizes Targa3 and Hybrid (mixed) attacks.

Significant improvement has been made over its predecessor – TFN. Handlers communicate with zombies via TCP, UDP, ICMP or all three at random. Zombies of TFN2K is completely silent, i.e. Handlers repetitively sending the same commands to zombies, zombies do not acknowledge commands it receives, but rely on the probability of at least of the command will be received. All commands are encrypted using a key-based CAST-256 algorithm, encoded with Base 64 before it is sent, plus all commands are single character, it is extremely difficult to locate it in the payload of the packets.

There are also some significant features when we exam the content of the payload, UDP packet length appears in the UDP header, is three bytes longer than the actual length of the packets; TCP header length appears in TCP header, is always zero, in normal cases, it will never be zero.

Detection: since all control communications are unidirectional, all TCP, UDP, ICMP packets are randomized and encrypted, it is extremely difficult for packet filtering and other passive detection to track down those packets. However there is a weakness in what appears to be a bug of the code, regardless of the protocol in use, at the end of the TFN2K packet, there is always a sequence of 0x41 (“A”), although the number of 0x41 varies with each packets, but there will always be at least one. Examining incoming traffic for unsolicited ICMP_ECHOREPLY packets containing sequences of 0x41 in their trailing bytes would be a feasible approach. Additionally, verify that all other payload bytes are ASCII printable characters in the range of (2B, 2F-39, 0x41-0x5A, or 0x61-0x7A). Other approaches such as watching for a series of packets (possibly a mix of TCP, UDP, and ICMP) with identical payloads would also be helpful.

2.4 Stacheldraht

Stacheldraht is the second-generation attack tool, it combines the feature of Trin00 and TFN, with additional capabilities automated remote agents update. Which allow attackers to constantly change the communication port passwords and command values.

Detection: Stacheldraht is far more difficult to detect than either of the tools listed above. Since all control commands are communicated with ICMP_ECHOREPLY, it is very difficult to block it without breaking most of Internet programs that rely on ICMP; one of the approaches is to monitoring ICMP and observes the difference between normal ICMP_ECHO and ICMP_ECHOREPLY (e.g. ones being generated by “ping”).

3. Study of Attacking Method

The following attacking method is summarized from the study of attacking tools, it obvious that more and more complicated feature are utilized by modern attacking tools, but the hierarchy structure of handler-zombie, and attacking method remains the same. The nature of the attacking method determines the model of counter-measurements. Study of these methods is the next step of building our detection system.

3.1 ICMP Flood and Smurf Attack

ICMP flood and Smurf attack are both implemented in ICMP. ICMP flood brings down the victim host by sending large amount of ICMP echo request packets to the target host that It cannot respond quickly enough to alleviate the amount of traffic on the network, if packets are sent with forged IP, the target host also has to allocate huge system resources to receive and reply packets to addresses which do not exist. Smurf used the same idea, but sending echo request with broadcast IP addresses, so not only the target host but also the attached network will be affected by such large amount of ICMP traffic.
3.2 SYN Flood

SYN flood is implemented on TCP, it exploits the weakness of “TCP three-way handshake”, when a normal TCP connection starts, the source sends a SYN (synchronization) packet to the destination in order to initiate the connection, then waits for SYN ACK (synchronization acknowledged) packet from the destination, connection is established when destination receives FINACK (finishing acknowledged) from the source. SYN flood sends a huge amount of SYN packet to victim with random source address, the victim replies with a SYN ACK and add the entry to the connection queue, since the source address is incorrect or non-exist, FINSYN will never be received by the victim, so the last part of “3 way handshake” will never complete, service will be denied when connection queue of victim host is filled up.
3.3 UDP Flooding

UDP flood attack starts by sending packets to random port on the target machine, if the destination port is not open, an ICMP destination unreachable packet will be returned to the forged source IP address, if there are enough UDP packets sent to the dead ports on the target machine, it will not only bring down the host but the entire segment because of amount of traffic.
3.4 Targa3 Attack

Targa3 attacks sends uncommon IP packets to target host, e.g. packets that consists of invalid fragment, protocol, packet size, header values etc. once the TCP stack receives the invalid packet, the OS kernel had to allocate resources to handle the packet, if enough packets were received, system would crash because of exhausted resource.
3.5 Hybrid (mixed) Attack

Hybrid attack combines the feature of other attacking methods, it allows zombies to send mixed UDP, SYN and ICMP attacking packets at the same time, as this may confuse some counter-measurement analysis process, makes intrusion detection system impractical and ineffective.

4. Attack Detection System Architecture

[image: image3.png]Features

/\

Traffic Pattern Data Contents

/\

Header Payload

Figure 6. Features of traffic data sets

The detection system would be running on the management console of the SOHO network (although it can be running on any machine of the network). It consists of three main components: data fetcher, attack detection analyzer, and action handler.

Level 1: Data fetcher is the component that running as a daemon at this lowest level, it retrieves traffic data from the ADSL router in a predefined interval through either SNMP or Telnet/CLI. Data fetcher parses the raw traffic data into the required format and stores them to traffic statistics database inside of attack detection analyzer.

Level 2: Attack detection analyzer gathers datasets from traffic statistics database, and put the data into sampling process, if any suspicious patterns were matched, analyzer would command the fetcher to query traffic data in a faster rate, and perform complete attack detection analysis. If attack is detected, analyzer will direct the event handler to raise an alarm and eventually sending commands to shut off the connection.

4.1 Data Fetcher

The purpose of data fetcher is to querying data traffic sets from the ADSL router. Since each vendor implements its router interface differently, data fetcher is really a vendor specific component. As related to our project, Nokia M1122 is the model we will be using to simulate the SOHO network. Interfaces of M1122 are shown in Figure 4.

[image: image4.wmf]
SNMP is the prefered way of handling this task
. traffic data could be retrieved by issuing GET command to SNMP agent built in the router, which queries its MIBs and returns coresponding values. SNMP runs on UDP which is robust (no acknowledgement is required, it is done by upper protocols, since every GET is expecting a response), and takes less overhead. if router support the current version of SNMP (v2 or v3), data retrieving process could also be done in a secured channel.

Alternatively, data fetching can be done by establishing a telnet session to the router via Ethernet port or Command line interface(CLI) port. The CLI “show” command provides a complete list of realtime traffic statistics and router status parameters (e.g. show ip icmp – displays ICMP statistics), “show” command would be issued by fetcher according to protocols and any other traffic parameters that are required by the detection analyzer. The downside of using Telnet/CLI, is that it is relatively expensive to mentain in terms of bandwith and overheads. To keep telnet session alive, messages have to be constantly going through the link and not all of the data sets that provided by “show” command are useble to the Analyzer, a parser (e.g. Expect Script) is therefore needed to shape the result sets of “show” command to the required format. Security would be another problem of using Telnet/CLI, data are transmited in clear text, no data encryption is used on either side, however it is not a big issue when data are communicated in a closed loop (inside of SOHO network) and proper access control is set on the gate way (e.g. using fireware to block unauthorized access).

4.2 Attack Detection Analyzer (ADA)

ADA is the core component of the detection system. It consists of three sub-components: traffic statistics database, pre-detector, and attack detector. As shown on Figure 5.
[image: image5.wmf]
4.2.1 Function of Subcomponents

4.2.1.1 Traffic Statistics Database

The database stores formatted traffic data from data fetcher, data is sorted by the time of arrival to ease the process of extracting time-based features (see 4.2.2.1 determine of features).

4.2.1.2 Pre-Detector

The purpose of using pre-detection is to speed the detection process as well as saving network bandwidth and processing power. Since attack detector requires detail traffic datasets, and its computation is relatively expensive, the real time detection system cannot afford this process to be running at the same rate as data fetching. In this case, pre-detector is required to perform simple data look up, and trigger the attack detection when suspicious variations are found.

By the nature of DDoS attacks, there is always going to be a “packets boost” in a short period time. “stat-tx-payload” and “stat-rx-payload”
 of “show atm” are the two traffic parameters of CLI that best reflect the sudden increases of packets. Another reason for choosing these parameters is that the usage of ADSL connection is calculated based on them. However, DDoS attack is not the only network activity that boosts the packets, but other activities such as large file download may have the same result (see 5.1 experiment 1). Detail investigation is therefore required.

Pre-detector has two states: Normal and Attack; In the regular traffic scenario, pre-detector check stat-tx-payload and stat-rx-payload at the same rate of data fetching. It will switch to Attack state if something suspicious is detected, in this case, pre-detector commands the data fetcher to query traffic statistics data in a faster rate; it then triggers the attack detector to take over the operation, and sets itself to idle. It would switch back to Normal state if attack detector returns negative result. The rate of fetching process will be studied in experiment 2 (see 5.2).

4.2.1.3 Attack Detector

Overview

It looks for key variables of feature sets from a series of connection records in the database, put them into detection algorithm, runs through a set of test conditions, and returns results.

Feature Sets of Connections

Each set of traffic data has its unique features, features are categorized in two groups: traffic pattern and data contents. In which data contents have two sub-sets: header and payload. (Figure 6.)

[image: image6.wmf]
Traffic pattern is to view a series of connection as a whole; features are evaluated by comparing differences of connection variables. (e.g. DDoS attack symptom – “packet boosts” is a traffic pattern feature, as it is extracted from a number of connection records). The cost of detecting this feature is that at least two sets of record are required in order to make variable comparison.

This feature is often used in network monitoring and evaluation process.

Data contents are the features of a single packet or frame. Since the information that carried in the header or payload may contain attack or intrusion message, we would need to exam the content of them. The cost of using this feature is related to processing power on extracting header and payload information, which may be more expensive to compute in terms of real time detection. This feature is widely adopted in most of intrusion detection model, however it is becoming less effective as more attacking tools utilizing encrypted header and payload data (see example of TFN2K at 2.3).

As the purpose of this project is to avoid downloading unwanted attacking packets, the traffic volume is the more crucial than the actual content of attacks. In this case, data contents feature is not as useful as traffic pattern feature, in terms of reflecting current traffic status. Traffic pattern is therefore being chosen for our feature set.

Key Variables

Key variables are determined either by domain knowledge of attacking tools (methods) or by comparing a set of suspected variables in attack and normal session of connection, and evaluating ones with significant variations.

From the study of attacking tools, the following traffic statistics parameters are considered to be key variables in our detection model from the domain knowledge of attacking method. (see section 3. for analysis of attacking methods)

ICMP Flood and Smurf Attack:

These types of attacks flood target by ICMP_ECHO_REQUEST packets, therefore ICMP in-echos is the right one to look at.

UDP Flood:

This type of attack floods target with UDP datagrams, UDP in-datagrams is variable that reflects this traffic nature. Since datagrams arrive on random ports, UDP no-ports returns number of received datagrams that were discarded because the specified port was invalid.

Targa3 Attack:

Receiving large number of packets with invalid IP header information would lead to increasing number of IP reassembling and fragmentation errors, IP reasm-fails and frag-fails specify the number of datagrams that cannot be reassembled.

Key variables of TCP SYN floods are beyond the scope of our domain knowledge of attacking method. The usual attempt is to exam the head of packets, which is done with feature set of data content. In order to determine the variable in traffic feature set, experiment (second approach of key variable determination) needs to be carried out. (see 5.4 Experiment 4)

Test Condition

Most of key variables tend to show a very distinctive traffic variation in event of DDoS attack. For example, from the experiment result of North Carolina State University DDoS attacks research, ICMP in-echos boosts from 0 to 5000 packets in less than a second under Ping floods; we might not see the variation in such short period of time in our SOHO ADSL network environment, since much powerful network devices and high-speed network were employed in NCSU’s experiment, however the variation should be very intense as far as our test condition concerns.

In-echos Test

ICMP echo requests are most likely to be generated by PING command, the growth rate of in-echos is thus restricted by the number of application that using PING.

We use time series averaging technique to normalize variation of in-echos of last three successive traffic data sets, and compare it with the next averaging result, if difference among those two excesses the threshold, positive result is returned by attack detection analyzer (i.e. ICMP Floods detected)

The default value of threshold is 1000, it is calculated based on following assumptions: by the time of ICMP floods is initiated, bandwidth are fulfilled with attacking traffic; average ICMP echo packets contains 56 bytes data; average download speed of ADSL connection is 2Mb/sec;

2000000/8 /56 = 4464

Threshold is taken as the quarter of this value to increase the detection range.

In-datagrams and no-ports Test

In case of random port floods, In-datagrams has a positive relationship with no-ports, since it is likely that packets are sent to dead ports, therefore, these two variables would need to be inspected in pair. However some UDP attacks flood target host with well-know ports, in this case change of In-datagrams in time is the only key variable to monitor.

It is quite difficult to distinguish inbound attack datagrams with normal UDP traffic at this stage. Experiments will need to be carried out to determine the average UDP datagrams usage from different time of a day and compare the result with attack scenarios. (see 5.3 Experiment 3)

Reasm-fails and frag-fails Test

Reassembly and fragmentation errors are rarely encountered in normal traffic sessions. If any of these variables are involved with abrupt increases, this is for sure that the host is under attack. Simple threshold comparison can be employed to match the pattern. Threshold value is to be determined in proposed experiments.

4.3 Action Handler (AH):

The objective of Action Handler is to react when attack is detected, it has three functions: sending alert, turning off connection, and event logging.

4.3.1 Sending Alert:

When attack is detected by detection analyzer, action handler will be notified immediately. The first action of action handler is to send a warning message to alert the network administrator, in order to eliminate the possibility of being a false alarm. If the message is not acknowledged within a predetermined time interval (default: 10 seconds), further action will be performed automatically. It is to avoid that administrator missed the message, since DDoS attack builds up traffic very quickly, immediate action has to be taken.

4.3.2 Turning Off Connection:

Terminating connection is the action will be performed either by acknowledgement from the administrator, or by automate action handling. The reason to shut off the connection, rather than filtering out attack packets is because, any action other than line termination would not avoid user from being financially damaged. As I mentioned in the introduction, ISP charges users by megabyte usage which is calculated by traffic that going through the local exchange and ADSL router in the customer’s site, filtering and any other access control mechanism could prevent attacking packets from entering the SOHO network, but could not stop attacking traffic being downloaded from the local exchanger to the ADSL router, charges would still be to applied. Dropping off the connection would notify the exchanger, that the connection is no longer available, thus stops the charging counter.

This action is taken under the assumption that, the SOHO network does not running any public external service (e.g. name server, or public mail server) behind the router, since connection may be reset at any time when attack is detected, services of those servers could be terminated at any time without any acknowledgements.

4.3.3 Event logging:

The following information will be logged in a file on the management station when attack is detected: Time when attack is being detected; attacking method; acknowledgement received (Boolean); action performed (Boolean). Note that, if acknowledgements were received, but no further action is taken; it would have been a false alarm.

5. Experiment Proposal:

5.1 Experiment 1

Aim: Study the growth rate of inbound (download) packets when large download is initiated.

Purpose: from my past Internet browsing experience, the growth rate of most of file downloads increases exponentially before reaching the upper limit, this may be a distinguish feature when comparing to large download of DDoS attacking packets, which in turn appears to be a sudden increase of packets rate in a shorter time.

Method: Connect to a high-end server via ADSL connection with M1122, initiate downloads of two different types of files respectively: a large singe file (e.g. a 650MB RedHat OS image file) and a multiple of small files (simultaneously) e.g. (100x 200KB JEPG images). Log the inbound and outbound packet, by recording stat-tx-payload and stat-rx-payload result sets from issuing command “show atm” to CLI main mode. Compute the incremental differences and plot the result in a graph. Repeat the process in simulated DDoS Attack scenario and compare the results.

5.2 Experiment 2

Aim: Study the bandwidth usage of traffic data retrieval process of data fetcher. Determine the best sampling rate.

Purpose: traffic data is retrieved from the router to data fetcher in a fixed time interval; we certainly do not want this process to occupy too much network bandwidth. However, data would become meaningless to the detection algorithm if sampling period were too long. From this experiment we would calculate the total bandwidth usage of data retrieval process, test it with different set of sampling period, and hence to determine the most effective and efficient sampling rate within the acceptable range of detection algorithm.

Method: Experiment is to be performed on SNMP and Telnet/CLI (if SNMP is supported by the router). Disconnect the ADSL connection of the router and any other Ethernet connection apart from one that is carrying the telnet session (or this can be done with CLI console cable, in this case all Ethernet connection would need to be removed). Experiment begins with querying traffic data by issuing command “show eth [all]” to the CLI main mode, log the packet number of “stat-tx-payload” and “stat-rx-payload” of “show” result sets. Sampling rate are 1, 3, 5, 10, 15 and 30 seconds accordingly. Experiment is to be repeated at least three times to eliminate the uncertainty.

5.3 Experiment 3:

Aim: study the feedback parameters of the router in event of ports scanning.

Purpose: port scanning is the indication of UDP flooding, detecting this type of activity is still the unsolved problem of this project, since most of ports scanning processes do not lead to significant increases in total traffic flow, our model therefore becomes impractical and efficient. From the study of M1122 administrator manual, I noticed that “show ip udp” results sets provide a set of parameters for monitoring amount of inbound datagram (in-datagram) and packets being to the ports that are not in service (no ports). This experiment is to confirm that whether these parameters are useful for our detection analyzer.

Method: The ports scanner used in this experiment is called “nmap”. Firstly install nmap on the management console, choose UDP ports scan, set the destination address to the default Ethernet IP of M1122 (192.166.1.1), and log the changes of “in-datagram” and “no ports” parameters of “show ip udp” CLI command.

5.4 Experiment 4:

Aim: Study the proportion of inbound SYN / inbound FINACK packets under normal traffic flow, and SYN flood attack.

Purpose: As previously explained, SYN flood attack might result in un-proportional amount of inbound SYN and inbound FINACK packets. This experiment is to be carried out to prove this statement, and to find out exactly how much difference (SYN/FINACK ratio) would DDoS attack produce; this ratio is also a crucial parameter for our detection algorithm to detect SYN flood attack. It is unknown to us that which TCP statistics parameter that provided by “show” command are useful in terms of determine SYN floods. “active-opens”, “passive-opens”, “attemp-fails”, “in-segs”, “out-segs”, and “in-errs” are ones we would be interested of.

Method: Connect two PCs with M1122; install TFN2K on one of the machine, this machine will act as attacker, handler and zombie at the same time during the simulation. The other PC acts as management station, which constantly retrieves result set of “show ip tcp” CLI command from the M1122 when attacking machine starts TCP SYN floods. The result will be compared in a graph, ones with significant patterns (e.g. sudden increases) will be marked, as they require further studies.

Notes about these Experiments:

All experiments are to be carried out as soon as the router is collected from Nokia NZ during the mid-semester break.

6. Further Research:

Coding will be started during the mid-semester break, at the meanwhile; proposed experiments will be carried out. The code will be written in JAVA (native C may be required in case of need), with external SNMP packages.

More experiments are to be conducted next semester, topics such as trade-offs calculation of the detection system (e.g. how much unwanted data has already been downloaded before connection is dropped), and evaluation of effectiveness of detection system will be explored in more details. Feedback of those experiments would be used to fine-turn the detection model.

7. Summary of Semester I:

After the thorough study of the background and related papers of DDoS attacks, I now have a solid understanding of how DDoS attacks are implemented, what are the existing detection approaches, and came up with a solution for detecting DDoS attacks that is particularly to users of SOHO network with ADSL connection.

8. Reference:

[1] Joao B. D. Cabrera, Lundy Lewis, Xinzhao Qin, Wenke Lee, Ravi K. Prasanth, B.Ravichandran and Raman K. Mehra “Proactive Detection of Distributed Denial of Service Attacks using MIB Traffic Variables – A Feasibility Study” In proceedings of the 7th IFIP/IEEE International Symposium on Integrated Network Management.
[2] Joao B. D. Cabrera, B. Ravichandran and Raman K. Mehra “Statistical Traffic Modeling for Network Intrusion Detection” In proceedings of the 8th International Conference on Knowledge Discovery and Data Mining.
[3] Paul J. Criscuolo “Distributed Denial of Service Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht” CIAC-2319

[4] David Dittrich, “The DoS Project's "trinoo" distributed denial of service attack tool”, “The "Tribe Flood Network" distributed denial of service attack tool”, “The "stacheldraht" distributed denial of service attack tool”

[5]Jason Barlow and Woody Thrower, Axent Security Team “TFN2K - An Analysis,”

[6] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok “Miniing in a Data-flow Environment: Experience in Network Intrusion Detection”

[7] Wenke Lee, S. J. Stolfo, and K. W. Mok. “Ming audit data to build intrustion detection models.” In proceedings of the 4th International Conference on Knowledge Discovery and Data Mining

[8] Y. W. Chen “Study on the Prevention of SYN Flooding by Using Traffic Policing”

[9] W. R. Stevens “TCP/IP Illustrated, Vol. 1: The protocols”

Figure 2. Default Com port of Trin00

UDP:31335

UDP:27444

TCP:27665

Handlers

Zombies

Attacker

� Earlier version of M1122 firmware does not support SNMP, however I have been told that the new firmware has put in the SNMP function, but this information has not been confirmed. It is unknown to us that whether we could use SNMP in Data Fetcher until we collect the router from Nokia NZ during mid semester break.

� Stat-tx-payload = statistics of transmitted packet payloads; stat-rx-payload = statistics of received packets payloads

PAGE
13

[image: image7.png]Detection System

Alarm-¢—|

Action

Handler Drop Connection

i

Attack Detection
Analyzer

S;I:tzil;ftiiis ADSL Router
SNMP
Database Data SNMP WIB
Fetcher mmnm Agent
Telnet/CLI

Figure 3. Attack Detection System Architecture

[image: image8.png]Mains connector
Command line interfa Ethemet ports

(ETH-1, ETH2
ETH-3, ETH

Figure 4. Interfaces of Nakia M1122

