BTECH450DT

Project in Information Technology

Final Report

Performance evaluation of shape simplification methods

Name: Tom, Kennant Kin Lun

Supervisor: Gisela Klette

Co-supervisor: Reinhard Klette
Table of content
Introduction………………………………………………………………………………..3

Sequential Algorithm Using Raster Scanning…………………………………………….6

Parallel Algorithm Using 2-Subcycle……………………………………………………..9

Noniterative Algorithm using Distance Transformation………………………………...12

Iterative Algorithm using Contour Generation…………………………………………..17

Images and Pictures………..…………………………………………………………….20

Qualitative evaluations and comparisons………………………………………………...23

Conclusion………………………………………………………………………………….

Reference…………………………………………………………………………………...

Introduction
The purpose of this project is to review different algorithms that produce skeletons and evaluate their results.

Those algorithms accept a digitalized picture and extract a collection of idealized thin lines that symbolize the input image. Thinning algorithms delete as many object points as possible of an input image while preserving the topology of the image. Skeletonization algorithms are special thinning algorithms resulting in a digital arc or curve.

The distance skeleton as a result of the distance transformation represents the centers of maximal disks within a certain subset of the image and it doesn’t preserve the topology of the object. Thinning algorithms are iterative and algorithms calculating the distance from every point in a specified set to the closest point of the complement of this set are non-iterative procedures.

By a local operation on an image we mean a function which defines a value for each element in the resulting image based on the value of the corresponding element and its eight neighbors in the original image. Thinning algorithms can either be sequential, i.e., the local operation of calculating a value for one point of the binary image in one iteration is using the new values of the preprocessed points in the neighborhood of the current iteration and the values of the former iteration for all following points in the neighborhood. The sequence of processing all points of the image must be well defined. Parallel algorithms define the new values of all points in the image only based on the current iteration.

This project investigates four different algorithms: three thinning algorithms and one algorithm using the distance transformation. Each of them has their own distinct feature. The sequential thinning algorithm preserves the topology of the original connected set based on the calculation of the Hilditch crossing number (definition in main part of this report).

As an example for a parallel thinning algorithm we have chosen the two sub-cycles algorithm designed by Zhang/Suen. The algorithm is using the Rutovitz crossing number in order to get 4-connected subsets of the original sets.

The multiple point algorithm (Pavlidis) is a contour following procedure which checks certain conditions to identify skeletal points and deletes all unidentified points after one iteration.

The distance transformation is executed in two raster scans and then the distance skeleton is calculated. The details of the different algorithms are discussed in the main part of this report.

These algorithms have a wide range of applications. Distance transform algorithms are useful for data compression because the image can be reconstructed from the distance skeleton. Simplified shape representations are used in many applications such as fingerprint classification and pattern recognition etc. Since skeletons that are produced by these algorithms are thin-line representation of certain elongated patterns, the skeletons require smaller amount of data to store themselves than their original patterns. Recognition algorithms are able to handle skeletons better than their original patterns, because skeletons have simpler structure, clearer topology, less contour distortions and local noises. A perfect algorithm is one that can compress data, preserve important topological and geometric properties of the pattern, eliminate distortions and noises, and perform efficiently in terms of time complexity. However, such an ideal algorithm doesn’t exist and tradeoffs are necessary. Hence, it is obvious that certain algorithms are more suitable in certain situations.

The input for the algorithms is a digital image which portraits rectangular view of the chosen object or pattern. Those digital images can be regarded as matrix and the elements of the matrix represent the grid points with integer coordinates in the Euclidean plane. Let P be the set of grid points of the given image, then,

[image: image1.wmf](

)

{

}

n

j

m

i

j

i

P

<

£

<

£

=

1

,

1

|

,

Where (i, j) denotes the coordinate of the grid point p, and m, n specify the number of grid points in x-direction and y-direction in the 2-dimensional Euclidean space respectively. It is assumed that the grid points are uniformly distributed with grid constant, i.e., the distance between any two adjacent grid points which are a horizontal or a vertical neighbor to each other, is the same throughout the plane. The inverse of the grid constant defines the grid resolution of the picture, which is the number of grid points per unit length.

In this report we only use binary images that means the value f(i, j) of a grid point with coordinates (i, j) can only be either 0 or 1, i.e. white or black pixels accordingly. In other words we use

[image: image2.wmf]0

)

,

(

=

j

i

f

, for pixels that belong to the background,

[image: image3.wmf]1

)

,

(

=

j

i

f

, for pixels that belong to the object.

The algorithms in this report use local operations in a
[image: image4.wmf]3

3

´

 neighborhood. Elements of the neighborhood can be numbered in the following way for instance:

[image: image5]
The points n1, n2,…,n8 are 8-neighbours of p and they are 8-adjacent to p, pixel locations n1, n3, n5, n7 are 4-neighbours of p and they are 4-adjacent to p. The neighborhood Nα(p) of an pixel location p includes p and its α-adjacent pixel locations (α=4 or α=8).

For practical reasons numbers are taken modulo eight, so that, e.g., neighbor nine is the same point as neighbor one.

Based on above neighborhood relations we define connectedness as usual: Two points p and q of an image I are connected with respect to a subset M of I and a neighborhood relation Nα(p), if the following sequence of points exists,

[image: image6.wmf]q

p

p

p

p

p

p

p

n

n

n

=

=

-

-

,

,

,...,

,

,

1

2

2

1

0

where pi is an α-neighbor of pi-1, for
[image: image7.wmf]n

i

£

£

1

, and all elements on this sequence are either in M or all elements are in the complement of M. A subset M is called α–connected iff M is not empty and all elements in M are pairwise α–connected with respect to M. We use 8-connectedness for the object and 4-connectedness for the background as below. Notice that the set of black points are considered to be connected and the set of white points are not.

[image: image8]
Sequential Algorithm Using Raster Scanning
Per iteration the Hilditch algorithm determines contour points (at least one 4-neighbor is 0) for deletion (transfer from object point to background point) based on the specified conditions below in a raster scanning sequence from top to bottom and left to right.

After each raster scan the identified object points are transferred into background points. The algorithm stops when no contour point fulfills the criteria.

A point is removed if it satisfies all of the following conditions:

1. It belongs to the pattern, i.e., the pixel value of point p equals to one.

[image: image9.wmf]1

)

(

1

=

p

f

2. It is located on the boundary, i.e., at least one of its 4-neighbors belongs to the background or has been removed from the pattern (a point on the pattern, is going to be considered to be a point on the background at the end of the iteration).

[image: image10.wmf]7

5

3

1

2

)

(

a

a

a

a

p

f

+

+

+

=

(where
[image: image11.wmf]0

=

i

a

 if
[image: image12.wmf]1

)

(

=

i

n

f

 and
[image: image13.wmf]1

=

i

a

 otherwise)

[image: image14.wmf]1

)

(

2

³

p

f

3. It is not the end of a thin line, i.e. at least two of its 8-neighbors don’t belong to the background nor have been removed from the pattern.

[image: image15.wmf]å

=

-

=

8

1

3

)

1

(

)

(

i

i

a

p

f

(
[image: image16.wmf]i

a

 defined as above)

[image: image17.wmf]2

)

(

3

³

p

f

4. It is not an isolated point, i.e. at least one of its 8-neighbors belongs to the pattern.

[image: image18.wmf]å

=

=

8

1

4

)

(

i

i

b

p

f

(where
[image: image19.wmf]1

=

i

b

 if
[image: image20.wmf]1

)

(

=

i

n

f

 and
[image: image21.wmf]0

=

i

b

otherwise)

[image: image22.wmf]1

)

(

4

³

p

f

5. Its removal does not alter connectivity of the pattern. The number of connected components existed in its 8-neighbor is determined by using Hilditch’s crossing number. A point on the pattern and its 8-neighbors, consist of one connected component before its removal. Therefore, to preserve connectivity, the crossing number shall equal to one. The crossing number is calculated by summing the number of 4-neighbors that belongs to the background and has either one of their next two 8-neighbors in anti-clockwise that belongs to the pattern or has been removed.

[image: image23.wmf]å

=

=

=

4

1

5

)

(

)

(

i

i

H

c

p

X

p

f

(where
[image: image24.wmf]1

=

i

c

 if
[image: image25.wmf]0

)

(

1

2

=

-

i

n

f

 and either
[image: image26.wmf]0

)

(

2

>

i

n

f

 or
[image: image27.wmf]0

)

(

1

2

>

+

i

n

f

,

[image: image28.wmf]0

=

i

c

 otherwise)

[image: image29.wmf]1

)

(

5

=

p

f

The following diagram shows examples of different pixel configurations and their crossing numbers:

[image: image30]

XH(p) = 0
XH(p) = 4

These are the two extreme cases where on the left, it has the minimum crossing number of zero and on the right, it has the maximum crossing number of four. It is interesting to see that both examples have four black pixels. The example on the left has its four adjacent neighbors, i.e., its 4-neighbors to be black pixels and the example on the right has its four diagonal neighbors, i.e., n2, n4, n6 and n8 of the 8-neighbors to be black pixels. Thus, it’s not the number of pixels, but the location of the pixels that determines the crossing number.

[image: image31]

XH(p) = 1
XH(p) = 2

[image: image32]

XH(p) = 3
XH(p) = 0

The two examples on the top and the example on the bottom left demonstrate the possible 8-neighbors configurations for having the crossing number of one, two and three. The example on the lower right shows a special case where there is an isolated pixel, i.e., all of its 8-neighbors is white. The algorithm is not expected to encounter this, because condition 4 has checked that. The crossing number here is zero, because when circulating around the 8-neighbors, there is no transition between white pixel and black pixel or vice versa. The crossing number is still to be zero even if all of its 8-neighbors is black, because the same principle applies.

6. Its removal in conjunction with any one of its neighbors that has been removed does not alter connectivity of the pattern. Since the pixels are examined in the predefined raster sequence, i.e., n1, n2, n3, n4 and n5 has been examined before point p, and the crossing number can only be affected if any one of the 4-neighbors has been removed, only n3 and n5 are tested here. If n3 and/or n5 have been removed, their values are temporarily modified to the value of the background and the crossing number is calculated again. The valid crossing number remains to be one. This condition avoids excessive erosion of a line that has two pixels in thickness.

[image: image33]
The diagram above explains why it is only necessary to check n3 and n5. The blue points and the red points represent pixels that have and have not been examined previously in the same iteration respectively, under forward raster scanning. The points with a circle are the four adjacent neighbors that can change the cross number if any one of them has been removed and is temporarily deleted. Hence, the two blue points with a circle are n3 and n5.

Unlike many other algorithms that delete marked pixels at the end of the iteration, this algorithm avoids this by having a counter that keeps track on the number of iteration that has been applied to the image. Deleted points or points that have been removed from the pattern in the current iteration are marked with a negative integer that denotes the number of iteration in which the points have been removed. The point is considered to belong to the background if it has a negative integer is less than the negative value of the counter and the point had been removed from the pattern in the current iteration if it has a negative integer that equals to the negative value of the counter.

Parallel Algorithm Using 2-Subcycle

The algorithm by Zhang and Suen, removes identified contour points from the pattern except those points that belong the skeleton. Each iteration consists of two subiterations (they are also called the subcycles). The first subiteration determinates contour points that are located on the south-east boundary and the north-west corners. The second subiteration determinates contour points that are located on the north-west boundary and the south-east corners. Two subiterations are necessary here to preserve the connectivity of the original pattern on its skeletons because identified points are transferred in parallel. The thinning process terminates when no contour point is identified for deletion by both sub-iterations.

In the first subiteration, each point in the image is examined and it is deleted from the pattern if it satisfies all of the following conditions:

1. It belongs to the pattern, i.e., the pixel value of point p equals to one.

[image: image34.wmf]1

)

(

1

=

p

f

2. It is a contour point but not an isolated point or the end of a thin line, i.e., the number of 8-neighbors that belong to the pattern, is greater than or equals to two, and less than or equals to six.

[image: image35.wmf]å

=

=

8

1

2

)

(

i

i

n

p

f

[image: image36.wmf]6

)

(

2

2

£

£

p

f

3. It has the number of white pixel located before a black pixel for its 8-neighbors being equal to one and the 8-neighbors are ordered in this sequence; n3, n2, n1, n8, n7, n6, n5 and n4, which is equivalent to Rutovitz’s crossing number. It is calculated by counting the number of transitions from a point on the pattern to a point on the background and vice versa when circulating its 8-neighbors in anti-clockwise. Hence, it can only be an even integer, because transition must come in pairs, i.e., if there is a transition between two points, there must be another transition associated with it. The valid crossing number here is two.

[image: image37.wmf]å

=

+

+

=

=

8

1

1

3

)

(

)

(

i

i

i

R

n

n

p

X

p

f

[image: image38.wmf]2

)

(

3

=

p

f

The following diagram shows examples of different pixel configurations and their crossing numbers.

[image: image39]

XR(p) = 0
XR(p) = 8

These are the two extreme cases where on the left, it has the minimum crossing number of zero and on the right, it has the maximum crossing number of eight. The example on the left has all its 8-neighbors to be black pixels and the example on the right has its four diagonal neighbors, i.e., n2, n4, n6 and n8 of the 8-neighbors to be black pixels. The algorithm is not expected to encounter the example on the left, because condition 2 only allows contour points to continue.

[image: image40]

XR(p) = 2
XR(p) = 4
XR(p) = 6

The three examples demonstrate the possible 8-neighbors configurations for having the crossing number of two, four and six. Rutovitz’s crossing number remains the same if the white pixels and the black pixels change to each other. However, for Hilditch’s crossing number, it is definitely not the case.

4. Any one of the three adjacent neighbors, i.e., n1, n3 and n7 of the 8-neighbors belongs to the background.

[image: image41.wmf]7

3

1

4

)

(

n

n

n

p

f

´

´

=

[image: image42.wmf]0

)

(

4

=

p

f

5. Any one of the three adjacent neighbors, i.e., n1, n7 and n5 of the 8-neighbors belongs to the background.

[image: image43.wmf]5

7

1

5

)

(

n

n

n

p

f

´

´

=

[image: image44.wmf]0

)

(

5

=

p

f

The second subiteration has the same conditions as the first subiteration, except for condition 4 and 5, which are replaced by their 180o rotations. The condition 4 and 5 for the second subiteration are as follows.

4'. Any one of the three adjacent neighbors, i.e., n5, n7 and n3 of the 8-neighbors belongs to the background.

[image: image45.wmf]3

7

5

4

)

(

n

n

n

p

f

´

´

=

[image: image46.wmf]0

)

(

4

=

p

f

5'. Any one of the three adjacent neighbors, i.e., n5, n3 and n1 of the 8-neighbors belongs to the background.

[image: image47.wmf]1

3

5

5

)

(

n

n

n

p

f

´

´

=

[image: image48.wmf]0

)

(

5

=

p

f

The diagram below explains why the first subiteration deletes east-south boundary point or a north-west corner point, and the second subiteration deletes north-west boundary point or a south-east corner point by mapping the points under consideration in condition 4 and 5, and their locations on the diagram for both subiteration.

	
	
	North
	
	

	
	n4
	n3
	n2
	

	West
	n5
	p
	n1
	East

	
	n6
	n7
	n8
	

	
	
	South
	
	

The parallel algorithm stores the coordinates of all the points that satisfy all of the conditions above and those points are transferred into background points at the end of each subiteration.

Noniterative Algorithm using Distance Transformation

The previous algorithms extract skeletons by repetitively deleting contour points per iteration or subiteration. In contrast with them, the algorithm calculates the distance transformation and based on the transformed image a distance skeleton is defined as a special subset of the original set. Per pixel location p an integer is calculated that represents the distance of point p with f(p) = 1 to its closest point q with f(q) = 0 in the background. There are several options for selecting a suitable metric in digital image processing.

Three different distance metrics are used in this project, namely the Euclidean distance, the D4 distance and D8 distance. For pixels p1(x1, y1), p2(x2, y2) and p3(x3, y3), D is a distance function or metric if they have the following properties:

· Minimality. The distance between any two points are greater than or equal to zero. Only the distance between a point and itself can be zero.

[image: image49.wmf]0

)

,

(

2

1

³

p

p

D

[image: image50.wmf]0

)

,

(

(

2

1

=

p

p

D

 iff
[image: image51.wmf])

2

1

p

p

=

· Symmetry. The distance between p1 and p2 is equal to the distance between p2 and p1.

[image: image52.wmf])

,

(

)

,

(

1

2

2

1

p

p

D

p

p

D

=

· Triangular inequality. The distance between p1 and p3 is less than or equal to sum of the distance between p1 and p2 and the distance between p2 and p3.

[image: image53.wmf])

,

(

)

,

(

)

,

(

3

2

2

1

3

1

p

p

D

p

p

D

p

p

D

+

£

The Euclidean distance between two pixels is calculated by computing the straight line distance. This metric is the most accurate one out of the three metrics, because it is the only metric that gives the true distance for a diagonal move in a Euclidean plane. The Euclidean distance is given by:

[image: image54.wmf](

)

(

)

2

1

2

2

1

2

y

y

x

x

D

Euclidean

-

+

-

=

The D4 distance (also known as the Manhattan distance or City Block distance) between two pixels is calculated by summing the horizontal and vertical distances. This metric assumes that in going from one pixel to the other it is only possible to travel directly along pixel grid lines and diagonal moves are not allowed. Therefore, the D4 distance is given by:

[image: image55.wmf]1

2

1

2

4

y

y

x

x

D

-

+

-

=

The figure below shows the pixels with the D8 distance less than or equal to two from the center point (x, y) which has the distance of zero, form a diamond centered at (x, y).

	
	
	2
	
	

	
	2
	1
	2
	

	2
	1
	0
	1
	2

	
	2
	1
	2
	

	
	
	2
	
	

The D8 distance (also known as the Chessboard distance) between two pixels is calculated by taking the maximum between the horizontal and vertical distances. This metric assumes that diagonal moves are the same as the horizontal moves or vertical moves which take only a unit distance for a move. Therefore, the D8 distance is given by:

[image: image56.wmf](

)

1

2

1

2

8

,

max

y

y

x

x

D

-

-

=

The figure below shows the pixels with the D8 distance less than or equal to two from the center point (x, y) which has the distance of zero, form a square centered at (x, y).

	2
	2
	2
	2
	2

	2
	1
	1
	1
	2

	2
	1
	0
	1
	2

	2
	1
	1
	1
	2

	2
	2
	2
	2
	2

Rosenfeld and Pfaltz proposed a method to calculate the distance transform based on the D4 metric for an image in only two passes. A matrices which has the same size as the input image, is used here to store the distance value for each pixel when applying the distance transformation. In both pass, the distance is calculated by using local operation, i.e., the calculation is based solely on the values of the horizontal and vertical neighbors. The first pass concerns n3 and n5 of the 8-neighbors and the second pass concerns n1 and n7 of the 8-neighbors. Since a border of white pixels is added to the image, those pixels can only have the value of zero for their distance transform and their 8-neighbors are not tested to avoid locating pixels that are out of bound.

In the first pass, forward raster scanning is used to scan through each pixel in the image and the distance between each point on the pattern and its closer north or west boundary is assigned to the matrices.

f1(p) = min (a3, a5)+ 1
if f(p) = 1

 = 0
otherwise

In the second pass, backward raster scanning is used to scan through each pixel in the image and the value in the matrices is replaced by the distance between the point and its closer south or east boundary if it is greater than the newly calculated distance.

f2(p) = min (t, a1 + 1, a7 + 1)
(where ai is the distance value of the corresponding point in the 8-neighborhood of point p)

After the distance transformation, the algorithm examines every stored value in the matrices and the skeleton of the pattern is obtained by locating the pixels that have their distances to be greater than or equal to the distances of their 4-neighbors. This can be viewed as locating the ridges of the mountain if the distance transform is viewed as vertical height.

f3(p) = 1
if a1, a3, a5, a7
[image: image57.wmf]¹

t + 1

f3(p) = 0
otherwise

The following diagram explains how this algorithm works on a rectangle using D4 as the distance metric. The algorithm consists of two components; first, the distance transformation of the rectangle and then skeletonization of the result from the distance transformation. Two passes are necessary for the distance transformation based on D4, while only one pass is necessary for skeletonization.

[image: image131.wmf]2

2

B

A

D

D

+

	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0

	0
	1
	1
	1
	1
	1
	1
	0
	
	
	
	
	
	
	
	0
	1
	1
	1
	1
	1
	1
	0

	0
	1
	1
	1
	1
	1
	1
	0
	
	
	
	
	
	
	
	0
	1
	2
	2
	2
	2
	2
	0

	0
	1
	1
	1
	1
	1
	1
	0
	
	
	
	
	
	
	
	0
	1
	2
	3
	3
	3
	3
	0

	0
	1
	1
	1
	1
	1
	1
	0
	
	
	
	
	
	
	
	0
	1
	2
	3
	4
	4
	4
	0

	0
	1
	1
	1
	1
	1
	1
	0
	
	
	
	
	
	
	
	0
	1
	2
	3
	4
	5
	5
	0

	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0

	0
	1
	0
	0
	0
	0
	1
	0
	
	
	
	
	
	
	
	0
	1
	1
	1
	1
	1
	1
	0

	0
	0
	1
	0
	0
	1
	0
	0
	
	
	
	
	
	
	
	0
	1
	2
	2
	2
	2
	1
	0

	0
	0
	0
	1
	1
	0
	0
	0
	
	
	
	
	
	
	
	0
	1
	2
	3
	3
	2
	1
	0

	0
	0
	1
	0
	0
	1
	0
	0
	
	
	
	
	
	
	
	0
	1
	2
	2
	2
	2
	1
	0

	0
	1
	0
	0
	0
	0
	1
	0
	
	
	
	
	
	
	
	0
	1
	1
	1
	1
	1
	1
	0

	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0

The distance metric in the algorithm can be changed easily from D4 to D8 by slightly adjusting the calculation of the distance. The calculation of the D4 distance concerns only the adjacent neighbors around the pixel, while the calculation of the D8 distance extends the concept behind D4 by including the diagonal neighbors in the computation. The structure of the algorithm remains the same and the two passes are still needed for calculating the distance transform for an image.

In the first pass for D8, forward raster scanning is used to scan through each pixel in the image and the distance between each point on the pattern and its nearest north-west boundary is assigned to the matrices.

f1(p) = min (a2, a3, a4, a5)+ 1
if f(p) = 1

 = 0
otherwise

In the second pass for D8, backward raster scanning is used to scan through each pixel in the image and the value in the matrices is replaced by the distance between the point and its nearest south-east boundary if it is greater than the newly calculated distance.

f2(p) = min (t, a1 + 1, a6 + 1, a7 + 1, a8 + 1)

In the skeletonization process for D8, the algorithm examines every stored value in the matrices and the skeleton of the pattern is extracted by finding the pixels that have their distances to be greater than or equal to the distances of their 8-neighbors.

f3(p) = 1
if a1, a2, a3, a4, a5, a6, a7, a8
[image: image58.wmf]¹

t + 1

f3(p) = 0
otherwise

The Euclidean distance between two different points is calculated directly with the coordinates of those two points. Unlike the implementations of the algorithm for using the metrics D4 and D8, the surrounding neighbors are irrelevant in the calculation of the distance. Since the computation of the Euclidean distance is not a local operation, memory space is allocated to store all the positions of the white pixel that has at least one of its 8-neighbors to be a black pixel. The distance between a black pixel and its nearest white pixel is computed by finding the minimum Euclidean distance between the point on the pattern and the points on the background which are the neighbors of the contours. The skeletonization process is the same as the one for D8. The Euclidean distance can be estimated by using similar idea for calculating the D4 and D8 distances except that the local operation assumed that each diagonal move takes the distance of square root of two.

Skeleton created by this algorithm can be thought of as the loci of centers of circles that touch at least two different boundaries of the pattern being considered. The following diagram illustrates the skeleton for a rectangular shape and the concept behind this algorithm.

[image: image59.png]

[image: image60]
The diagram above describes how the different distances between two points are calculated using different distance metrics in the Euclidean plane.

Iterative Algorithm using Contour Generation

A slightly different approach is used in the “Multiple points”-algorithm. In every iteration, the contours of the pattern are found by tracing the points around the boundaries and the contour points are examined against a set of criteria to decide whether it should be removed or not.

The contour following procedure determines a contour point as a starting point and then proceeds following the contour in a specified direction. A contour point is defined by an object point, which has at least one 4-neighbor with value equal to zero. A chain code is generated for each 8-connected contour of the pattern. We take into account that there are possibilities to have a connected subset of the image with an exterior contour of the object and inner contours for holes. The direction of the chain code is in clockwise order, because the contour points of the pattern are traced in a specific sequence. Like the Freeman code, the chain code specifies an 8-connected contour. It is not the chain code that is in concern here. It’s rather the concept of how it captures all the contour points in a sequential manner that is useful to this algorithm. Initially, the current point is set to be the first contour point and since it is known that the pixels are scanned in forward raster sequence, the direction of the previous step is set to be from left to right. The next contour point is obtained by cycling through the 8-neighbors of the current contour point in clockwise and the first 8-neighbor to be tested is determined by the direction of the previous step. The new contour point becomes the current point and the direction of the previous step is updated accordingly. The contour tracing procedure stores the contour points in the memory and continues until it traces back to the first contour point with the initial direction, i.e., from left to right again. Thus, the first element and the last element of the chain code are connected themselves. After the contour points have been traced, they are marked to avoid tracing the same contour twice. A pattern with an isolated point is a special case where no contour tracing is required.

The upper diagram demonstrates how the contour generation algorithm works. The circular objects denote the pixels and the sequence of how the contour points are being traced and stored in the memory is shown by the flow of the arrows. The blue circle represents the starting point of the contour being traced here and the order of how its 8-neighbors are being tested is shown the on lower left diagram. The red circle represents a contour point that is randomly chosen from the contour tracing sequence and the order of how its 8-neighbors are being tested is shown the on lower right diagram. The 8-neighbors are checked in the ascending order starting with zero.

[image: image61]

[image: image62]

 SHAPE * MERGEFORMAT
The removal of a contour point in the contour is based on whether it is also a multiple point or not. A point p is multiple if at least, one of the following three conditions holds:

1. Point p has a Hilditch’s crossing number that is greater than one.
XH(p) > 1

The concept behind the Hilditch’s crossing number has been discussed before. This condition is equivalent to point p is traversed more than once during tracing and is aimed to preserve the connectivity of the pattern by keeping intersection points.

2. Point p has none of its 8-neighbors to be an interior point. An interior point is defined by a point on the pattern, which has all of its 4-neighbors on the pattern. This condition prevents the algorithm from over erosion of thin lines and their tips that have one or two pixels in thickness.

3. Point p has at least one 4-neighbor that belongs to the contour but it is not traced immediately before or after p. This condition restricts the deletion of the joints between the interior points to the exterior points. Thus the special features of the pattern are protected.

Basically, a contour point is deleted only if it is not multiple. However, there is an additional condition which states that if a contour point does not satisfy anyone of the criteria above but it is one of the 8-neighbors of a multiple point from the last iteration, then it is excluded from the deletion and is regarded as a newly discovered multiple points. The multiple points from the current iteration are stored into the memory and passed to the next iteration. The purpose of the additional condition is to preserve the connectivity of the skeletons. Without the additional condition, the algorithm can produce unconnected skeletons.

The following example illustrates how the algorithm determines which contour points that should be deleted or kept at the end of the iteration. The black circles represent the interior points that are not tested during the iteration and light grey circles represent the contours points that have their positions stored in the memory for deletion at the end of the iteration. The green, red and blue circles denote the contour points that are also multiple points, because they satisfy one of the conditions above, i.e. condition 1, 2 and 3 respectively. The additional condition is ignored in here, because the example only deals with the pixels in the current iteration. The grey, red, green and blue circles make up the contour points of the pattern.

[image: image63]
Those contour points that are also multiple points or satisfy the additional condition, are unmarked and go through the next iteration. The remaining contour points that are not multiple points and do not satisfy the additional condition
, are deleted from the existing pattern at the end of the iteration. The thinning process terminates when no contour point is removed from the image and only multiple points are left behind in the image. Usually, the algorithm needs a number of iterations to finish the thinning process. When the operation completes, the skeleton remains.

Images and pictures
We use different kind of pictures to test the algorithms and compare the outputs against themselves. The aim of using a wide range of input images is to see how the skeletons created by the algorithms vary. We expect that each algorithm should produce results that are better than ones produced by the other algorithms under certain type of pictures. The input images we used can be divided into two main categories. One group is the synthetic images and they are artificially generated by some mathematical formulas. The other group is the natural images and they are usually the processed images from the real-life pictures.

A synthetic image is formed by the given synthetic shape or shapes. A synthetic shape can either be an ellipse or a polygon. Given the assumption that each pixel in the image represents a point on the Euclidean plane and the top left corner is considered to be the origin, the top edge and the left edge correspond to the x- and y-axis respectively. The value in the x-axis increases from left to right and the value in the y-axis increases from top to bottom.

An ellipse can be produced inside an image easily by scanning through each pixel in the image and if the position of the pixel satisfies the following Cartesian equation for an ellipse, the pixel is set to be black.

[image: image64]

[image: image65.wmf](

)

(

)

1

2

2

2

2

£

-

+

-

b

v

x

a

u

x

The coordinate (u, v) is the center position of the ellipse and it determines where the ellipse is located in the image. The offset values, a and b defines the size of the ellipse in x and y direction respectively. Since a circle is just a special case of an ellipse, it can be drawn on the image based on the same equation. If there is a value r which is equal to both a and b, then the Cartesian equation for a circle can be derived from the Cartesian equation for an ellipse, where r is the radius of the circle.

[image: image66.wmf](

)

(

)

2

2

2

r

v

y

u

x

£

-

+

-

With the formulas above, we are not limited to create only circle or ellipse, but also other more interesting shapes like lens, donut and crescent as well.

A polygon is constructed by joining its vertices together with edges and filling in the interior points of the polygon. Initially, a straight line is drawn between every vertex and its next vertex in the vector based on the equation of a straight line.

[image: image67]

[image: image68.wmf]c

mx

y

+

=

[image: image69.wmf]1

2

1

2

x

x

y

y

m

-

-

=

Given the positions of the two end points, the gradient m and the constant c of the straight line are calculated by using the formulas on the above. Then, each pixel in the image is examined and if it is located inside of the polygon, i.e. between the pixels of edges, then it is set to be a black pixel. Both simple objects like triangle, square, rectangle, pentagon and hexagon or more complex objects like a concave polygon and other interesting object can be produced by specifying their vertices. A specific order of how the vertices are inserted into the vector, i.e. visiting the vertices along the edges in either clockwise or anti-clockwise, is required for creating the polygon, because the outline of the polygon is needed before determining if a pixel is an interior point of the polygon. The following examples show how the vertices of the two polygons are added to the function. The example on the left is a concave polygon and its vertices are transversed in clockwise. The example on the right is a convex pentagon and its vertices are transversed in anti-clockwise.

[image: image70]

[image: image71]
The synthetic shapes that we use in our experiment are discussed in following section.

[image: image72]

[image: image73]

[image: image74]
Using only the ellipse formula that is mentioned before, we have designed three shapes and their layouts are shown above. The outlines of these objects are made up of curves. However, they can not always be drawn precisely on the image, because in the digital plane, only integer values are allowed to be used in the coordinates. Since the circular objects can not be exactly represented, it would be interesting to see if the skeletons produced by the algorithms fully characterize them. The first shape to be tested is a simple ellipse. If the image’s height and width are equal, it becomes a circle. The second shape is a donut which is an ellipse that has a circular hole located at its center. Here, we wanted to see how the algorithms react to objects with holes inside them. The third shape is a crescent which is created by taking the logical difference between two ellipses that share a common region but they are not equal. The crescent helps us to understand how the algorithm performs over objects that have curvature tips.

[image: image75]

[image: image76]

[image: image77]
[image: image78]
With the polygon creation function, we have come up with the four polygons above. The top two are convex polygons and the bottom two are concave polygons. The first polygon is a rectangle that has all its pixels to be black and like ellipse and circle, if the image’s width and height are equal the rectangle becomes a square. The second polygon is a triangle. Even though rectangle and triangle are both simple polygons, triangle is rather more complicated than rectangle because of its diagonal edges. If the image’s width and height are the same, we have an equilateral triangle. We would like to see how the algorithms treat objects with sharp corners from these triangles. The third and the forth polygons are the only concave polygons in the experiments. Using them, we can observe how the concave regions in a concave polygon affect its skeleton.

It is worthwhile to note that all of our synthetic shapes are symmetric, i.e. there exist at least a line that can cut the pattern in half and both sides would be the same if one side is folded to another. This line is called the line of symmetry. Some of shapes like circle and rectangle are considered to be highly symmetric, because they have two or more lines of symmetry. We would expect that if the input pattern is symmetric, its skeleton should also be symmetric as well, since symmetry is an important geometric property.

We want to test the algorithms with images from real-life as well. We are especially interested in images for different hand gestures and calligraphies, because shape simplification algorithms are very applicable in pattern recognition. Those natural images are much more complex in structure than the synthetic ones. Often, they are affected by the noise generated from their surrounding environment and undesirable features exist in them. They are usually processed manually by humans before they are used as the inputs for the algorithms. The preprocessing procedures include smoothing, normalization, removing unacceptable branches or random noises, adding desirable and deleting undesirable features to the image. If it’s a color image or a grayscale image, it has to be binarized to become a binary image.

[image: image79.jpg]

[image: image80.jpg]

[image: image81]
[image: image82.jpg]

 [image: image83.jpg]

Qualitative evaluations and comparisons

There are a few points we look for when we evaluate and compare between the outputs produced by the algorithms.

· Thinness. The skeleton is required to be consisted of thin lines. The ideal skeleton should only contain fine lines with one pixel in thickness. We expect to see that there are skeletons which are built from lines with two pixels in thickness because the conditions in the algorithm are intended to prevent lines with two pixels in thickness from being over eroded. However, skeletons that have lines with three or more pixels in thickness are considered to be undesirable.

· Position. Obviously, we don’t want the skeleton to lean towards one side of the original subset. An accurate skeleton should have their thin lines located along the centers of the line-like parts of the subset. Since the coordinate on the digital plane has an integer domain, the lines of the skeleton can only lie on the approximated centers of the original subset.

· Connectivity. It is an important feature of a pattern, because the structure of the pattern is based on its connectivity. The process done by the algorithm should not alter the connectivity of the pattern, i.e. if two points on the skeleton are connected, they should also be connected in the original subset. To ensure that there is no change in the connectivity, we check if the number of contours for the pattern doesn’t vary during the process.

The following section describes the skeletons created by the algorithms with different input images. The “output image 1”, “output image 2”, “output image 3” and “output image 4” denote the skeletons created by the sequential thinning, the parallel thinning, the distance transform (using D4) and the multiple point algorithm without the additional condition respectively.

Original Image

[image: image84.png]

Output Image 1
Output Image 2

[image: image85.png]

[image: image86.png]

Output Image 3
Output Image 4

[image: image87.png]

[image: image88.png]

Original Image

[image: image89.png]

Output Image 1
Output Image 2

[image: image90.png]

[image: image91.png]

Output Image 3
Output Image 4

[image: image92.png]

[image: image93.png]

From the results above, we can clearly see the difference between thinning algorithm and skeletonization algorithm. A single thin line characterizes the skeletons produced by the three thinning algorithms, while the skeleton produced by the distance transform algorithm is not. The reason behind this is because the logics behind them are totally different. The thinning algorithms gradually remove contour points from the boundary and only a fine line is remained in the skeletons. In contrast, the distance transform algorithm extracts the skeleton pixels by finding pixels that are locally furthest away from the boundary. Since the metric used in here is not precise in the Euclidean plane, the skeletons produced by the distance transform algorithm have branches coming out from both ends of the line and they can be disconnected from one another like the output for the ellipses. All four skeletons are constructed by thin lines (and isolated points for distance transform algorithm) in here and they all lie at the center of their original pattern. All four algorithms preserve symmetry since the two lines of symmetry in the original objects are remained in the skeletons.

Output Image 3
Output Image 4

[image: image94.png]

[image: image95.png]

It is interesting to see that the effect of having an odd and even number as one of the dimensions for the input images on the distance transform algorithm and the multiple point algorithms. The outputs above are produced from the rectangle image with the height of 151 pixels, while the previous outputs are from the rectangle image wight height of 150 pixels. By observing the outputs, we can say that if the height is an even number, those two algorithms can construct skeletons with lines that have two pixels in thickness. If the height is an odd number, those two algorithms can construct skeletons with lines that have two pixels in thickness. There is an explanation for this. For the distance transform algorithm, the line of pixels with the highest distance value can have one or two pixels in thickness. For the multiple point algorithm, it stops removing pixels from the boundary of a line when the line has one or two pixels in thickness.

Original Image

[image: image96.png]

Output Image 1
Output Image 2

[image: image97.png]

[image: image98.png]

Output Image 3
Output Image 4

[image: image99.png]

[image: image100.png]

Original Image

[image: image101.png]

Output Image 1
Output Image 2

[image: image102.png]

[image: image103.png]

Output Image 3
Output Image 4

[image: image104.png]

[image: image105.png]

The results above seem to be fairly consistent with the results we have got for ellipse and rectangle. The skeletons produced by the sequential thinning, parallel thinning and multiple point algorithm preserved the 8-connectness in the original patterns, while the skeletons produced by the multiple point algorithm are not. Like the previous results, the thickness of the lines in the skeletons produced by distance transform and multiple point algorithms are affected by choosing either an odd or an even number for the size of the image. Also, the general symmetry remained in the skeletons for the patterns. Unlike with the previous results, the parallel thinning algorithm created skeletons with lines that have two pixels in thickness, but the lines in the skeletons are generally still quite thin. Only the sequential thinning algorithm can truly generates skeletons with thin lines that have one pixel in thickness. The skeletons formed by the distance transform algorithm seem to be quite rough and they have pixels on the diagonal axis that appear undesirable in representing the original pattern. The skeletons produced by the sequential thinning, parallel thinning and multiple point algorithm all look reasonably smooth. All four algorithms constructed skeletons that clearly symbolize their original patterns since the curvatures of the original patterns are safely protected in their skeletons and the hole in the donut doesn’t lead to any difficulties for the algorithms.
Original Image

[image: image106.png]

Output Image 1
Output Image 2

[image: image107.png]

[image: image108.png]

Output Image 3
Output Image 4

[image: image109.png]

[image: image110.png]

Original Image

[image: image111.png]

Output Image 1
Output Image 2

[image: image112.png]

[image: image113.png]

Output Image 3
Output Image 4

[image: image114.png]

[image: image115.png]

Shapes which have diagonal edges and sharp corners appear to be challenging inputs for the algorithms. All the algorithms except the parallel thinning algorithm produce not fully satisfactory results for the triangle image. The skeletons created by the sequential thinning algorithm are not symmetry and they can’t characterize well their original pattern for both images. Both the distance transform and multiple point algorithm construct skeletons are not perfectly smooth for the triangle image, and the skeletons formed by the distance transform algorithm are again not fully connected. However, the skeletons created by those two algorithms for the concave polygon image are better. They are very smooth, fully connected and they preserve the symmetry of their original patterns. The skeletons constructed by the multiple point algorithm have thicker skeleton lines than the ones constructed by other algorithms for shapes with diagonal edges.
Original Image

[image: image116.png]

Output Image 1
Output Image 2

[image: image117.png]

[image: image118.png]

Output Image 3
Output Image 4

[image: image119.png]

[image: image120.png]

All four algorithms produced output images that fully symbolize the input image. The sequential thinning algorithm constructs relatively the best skeleton for this image, because it is fully connected, smooth and its lines are very thin. The parallel thinning and the multiple point algorithms form a very similar skeleton to the one that is made by the sequtenial thinning algorithm except that they have parts of the skeletons thicker. However, normally, the skeleton built by the multiple point algorithm consists of more thick lines. Finally, even though the skeleton created by the distance transform algorithm is not fully connected, it still correctly outlines the general shape of the pattern.
Original Image
[image: image121.png]

Output Image 1
Output Image 2

[image: image122.png]

[image: image123.png]

Output Image 3
Output Image 4

[image: image124.png]

[image: image125.png]

Original Image

[image: image126.png]

Output Image 1
Output Image 2

[image: image127.png]

[image: image128.png]

Output Image 3
Output Image 4

[image: image129.png]

[image: image130.png]

In hand gesture recognition, we would like the skeletons to be embedded with the status of the fingers from the hand gesture images. The distance transform algorithm appears to be not quite suitable for this purpose, because its skeletons for the hand gesture images are not connected. It would be a complex task to determine which point on its skeleton corresponds to which part of the hand. The other algorithms produced skeletons that are smooth and fully connected for the two images. The skeleton created by the sequential thinning algorithm for the first image clearly characterizes the hand gesture without any excess branches. However, the skeleton formed for the second image is lack of information about the positions of the other fingers that are not pointing outwards. It would be rather complicated to see the difference between skeletons for a hand gesture that has only one finger pointing outwards and another one that has all five touching fingers pointing outwards together, because only a line is both to represent either of them in the skeletons. The problem can be resolved if a line of white pixels is added in between the touching fingers during the preprocessing. The parallel thinning and multiple point algorithms have another problem of their own, because they can have too much extra branches in their skeletons and those additional branches can easily lead to confusion over whether they are associated to one of the fingers in the image or not. The skeleton created by the distance transform algorithm for the first image had skeleton points which are very close to the contour. They are not expected to exist in the skeleton and look like noise to the output image. Hence, the sequential thinning algorithm seems to be the best algorithm for producing skeletons for hand gesture recognition.
p

Y

p

Initially

p

p

p

p

p

p

p

p

D4 = max(DA, DB)

D8 = DA + DB

DB

DA

y1

x1

x2

X

1st Pass of Distance Transformation

n1

Distance Skeletonization

Input Image

2nd Pass of Distance Transformation

Output Image

7

6

0

2

4

1

3

5

2

1

3

5

7

4

6

0

n3

n6

n7

n4

n8

n5

p

Image height

P2

P1

DEuclidean = � EMBED Equation.3 ���

y2

p

p

n2

Distance

Transform

Image width

Origin at (0, 0)

Y

X

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

8

7

4

3

2

1

6

5

The center

y-offset

x-offset

X

Y

p2

p1

X

Y

y2 – y1

x2 – x1

v

u

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Image width

Origin at (0, 0)

X

Image height

Y

5

4

2

3

1

Image width

Origin at (0, 0)

X

Image height

Y

1

1

Image width

Origin at (0, 0)

X

Image height

Y

1

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Image width

Origin at (0, 0)

X

Image height

Y

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Image width

Origin at (0, 0)

X

Image height

Y

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Image width

Origin at (0, 0)

X

Image height

Y

Step 3:

Inverted pixel values and Scaled

Step 2:

Smoothing and Binarized

Step 1:

RGB to Gray scale values

The Preprocessed Image

The Negative Image

The Gray Image

The Original Image

PAGE
34

[image: image132.wmf]3

1

[image: image133.wmf]3

1

[image: image134.wmf]3

1

[image: image135.wmf]3

1

[image: image136.wmf]3

1

[image: image137.wmf]3

1

[image: image138.wmf]2

1

[image: image139.wmf]2

1

[image: image140.wmf]2

1

[image: image141.wmf]2

1

[image: image142.wmf]2

1

[image: image143.wmf]2

1

[image: image144.wmf]2

1

[image: image145.wmf]2

1

[image: image146.wmf]2

1

[image: image147.wmf]2

1

[image: image148.wmf]2

1

[image: image149.wmf]2

1

[image: image150.wmf]6

1

[image: image151.wmf]2

1

[image: image152.wmf]2

1

_1091223520.unknown

_1093775699.unknown

_1096572556.unknown

_1096621837.unknown

_1096792985.unknown

_1096794948.unknown

_1096792882.unknown

_1096792961.unknown

_1096792863.unknown

_1096577805.unknown

_1096577862.unknown

_1096572658.unknown

_1096359447.unknown

_1096361534.unknown

_1096568948.unknown

_1096461702.unknown

_1096360728.unknown

_1096360800.unknown

_1096359459.unknown

_1096359416.unknown

_1096359436.unknown

_1096359411.unknown

_1093032646.unknown

_1093104917.unknown

_1093520077.unknown

_1093032701.unknown

_1091223743.unknown

_1093032518.unknown

_1091230587.unknown

_1091223595.unknown

_1091223646.unknown

_1091223660.unknown

_1091223629.unknown

_1091223572.unknown

_1091212761.unknown

_1091214530.unknown

_1091217044.unknown

_1091217787.unknown

_1091219716.unknown

_1091219786.unknown

_1091218097.unknown

_1091217522.unknown

_1091215300.unknown

_1091214616.unknown

_1091214084.unknown

_1091214197.unknown

_1091214464.unknown

_1091212804.unknown

_1091214044.unknown

_1091211793.unknown

_1091212340.unknown

_1091212723.unknown

_1091212488.unknown

_1091211826.unknown

_1091211763.unknown

_1091211769.unknown

_1091211326.unknown

_1091211610.unknown

_1091195858

