
Multimedia Data Access and Storage

Mang Tak Rayson Chan
490.490DT Project In Information Technology

Supervisors:
Reinhard Klette, James Harper

CITR Tamaki
The University of Auckland

Tamaki Campus
Private Bag 92019

Glen Innes, Auckland
New Zealand

27th October 2000

Contents

1 Acknowledgement 3

2 Introduction 4
2.1 Project Aim . 4

3 System Analysis and Design 5
3.1 Requirements . 5
3.2 Use Cases . 6
3.3 Design . 7

4 Specifications 9
4.1 General . 9

4.1.1 Media . 9
4.1.2 Recommended Formats for Preview 10
4.1.3 Collection Hierarchy 12

4.2 Backend . 12
4.2.1 Database Design . 13
4.2.2 Search Query . 14
4.2.3 Special Datatypes and Storage 15

4.3 Core System . 16
4.3.1 Storing Object . 16
4.3.2 User Management . 16
4.3.3 Data Consistency . 18
4.3.4 Robustness . 19

4.4 User Interface . 20
4.4.1 Presenting Media Object 20
4.4.2 Unsupported Media Types 20
4.4.3 Timely Response and Interactivity 20
4.4.4 Consistency . 21

5 Implementation 22
5.1 Components . 22
5.2 Backend . 23

5.2.1 PostgreSQL DBMS . 23

1

CONTENTS 2

5.3 Core System . 25
5.3.1 Apache Web Server 25
5.3.2 ImageMagick Image Manipulation Package 26
5.3.3 Perl Interpreter . 27

5.4 User Interface . 30
5.4.1 HTML and CSS . 31
5.4.2 JavaScript . 31
5.4.3 Java . 32

6 Technology 34
6.1 Hypertext Markup Language (HTML) 34

6.1.1 Cascading Style Sheets (CSS) 34
6.2 Hypertext Transfer Protocol (HTTP) 35

6.2.1 Dynamic Query . 35
6.2.2 Requesting Multimedia Data 35

6.3 Common Gateway Interface (CGI) 36
6.3.1 Alternatives . 36

6.4 Structure Query Language (SQL) 36
6.5 Java and JDBC . 37

6.5.1 Java . 37
6.5.2 JDBC . 38

7 Conclusion 39
7.1 Current Status . 39
7.2 Urgent Improvements . 40
7.3 Lower Priority Improvements 40

A Database Schema 43

B IANA Assigned MIME Types 46

C Source Code 47

Chapter 1

Acknowledgement

I would like to thank Reinhard Klette for inspiring the idea of building this
system.

James Harper for helping to install the components and spending time
on solving some tricky problems with the system, especially when getting
some components compiled on the Digital Unix box this system have to
implemented on.

Also I would like to thank Vincent Chung for giving advice on running
a web server, security and web application.

Finally I would like to thank my good friend Yuk-Fai Cheng for his
advice on Java applet and JDBC. Also countless hours on debugging the
Java applet.

Rayson Chan
24/10/2000

3

Chapter 2

Introduction

2.1 Project Aim

As more multimedia items are available a systems must be implemented to
keep track of, locate and extract these multimedia items efficiently. The
main concern of this project is to produce a core system for building upon
more advance storage structure and searching techniques.

One problem this system need to address is the portability issue, where
different system architectures will be accessing this system, such as PC and
Mac just to name a few. To make sure this system is available for as many
platforms as possible the system is to be implemented using the web inter-
face, and made accessible across an intranet.

Because of the multimedia nature of the objects this system will be deal-
ing with, the system must recognise the differences between specific type of
media or format (frequently known in this document as the datatype). Since
the system will also need to let the user preview an item while searching
before downloading the full size item, the system must also change accord-
ingly for a particular datatype when embedding the preview in the HTML
page which will be displayed to the end user.

4

Chapter 3

System Analysis and Design

To aid the design phase and help understand the overall system an Object-
Oriented Analysis and evaluation was used throughout the entire duration
of the project. The analysis was proved to be extremely useful for identify-
ing flaws in the intermediate designs, producing an integral system and help
understanding the problem domain more clearly. This is especially impor-
tant on a system of this scale. The OOA design for this problem domain
also make it possible for reusing of the results in future implementations [4,
Pp 11–12].

3.1 Requirements

The requirement for this system is a multimedia search engine and naviga-
tion system. However, full-scale hypermedia system like Hyperwave1 would
be unnecessary and outside the scope of this project. In fact, time and
resources available for the project made that impossible. Full-scale hy-
permedia frequently employ acyclic graph structure and automatic link-
ing/unlinking. These features require sophisticated management system
which will require a great deal of development effort.

Keyword search and hierarchical browse was navigation styles available
in the core system. A media object management system was implemented
for adding and updating the media objects in the system. A user database
will also required for the authentication and logging of users on the system.
The user database can be expanded to provide additional services such as
setting the permission values on a particular object.

The system should be easy to use. As all transactions happen over the
web a balance between amount text and graphics must be maintained, to
leverage aesthetic and performance.

1http://www.hyperwave.com

5

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN 6

Normal User

BackendC
�

ore System

S
�

earch

Media Maintenace

Administrator

Update Password/Profile

A
�

dd/Remove User

Media Maintenance

Browse

Basic Search Advance Search

<<extends>> <<extends>>

Add

Remove

Update

Add

Remove

Update

<<extends>>

<<extends>>

<<extends>>

A
�

dd

Remove

Update

<<extends>>

<<extends>>

<<extends>>

G
�

et

Legend

Normal User

Media Maintenace

Actor

Use Case

Figure 3.1: Use Cases of the system.

3.2 Use Cases

To best illustrate the interaction between different parts of the system a use
cases diagram [15, Section 3 Part 6] is shown in Figure 3.1. A stick figure
is an actor. Actors are different parties of the system. An ellipse represents
use case. They are the interactions or events between actors.

Some of the interactions such as search are comprise of a number of sub-
interactions, indicate by an arrow line labeled “<<extends>>”. Also, search
and browse are both part of the navigation styles available in the core system.

Important divisions of this multimedia search and management system
are:

• User Interface

• Core System

• Backend

The diagram shown the core system is a key part of the entire system.
It handles all the requests from user and it is also be the only interface

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN 7

between users/administrator and the backend, since users are not allowed
to deal directly with the database. The core system will also produce the
graphical user interface needed for the end system. This is done to shield the
user from the internals of the system, such as SQL queries to the database.
In order to protect the system, the interface also defines specific tasks which
can be accomplished by the user.

The backend of the system is for storing all information. There are only
a limited number of basic functions on the backend, namely get, add, delete
and update. The core system must have knowledge of the backend to used
those functions.

3.3 Design

The system takes the client-server approach with thin client, which means
the client-side processing is very limited. This is the path taken for most web
applications, as it is simple yet robust, and could provide much more control
over presentation and processing. With the use of Java applet, “smarter”
thick client could take away some trivial processing off the server.

Figure 3.2 shows division of functions within a typical client-server
application [17][Pp 654–657]. The three major components are:

Input/Output Component Formats and presents data in output devices.
Uses presentation logic to manage the graphical user interface and data
formatting.

Input Output

I/O Processing Logic

Business Logic

Data Management Logic

Data Manipulation Logic

Input/Output Component

1.

2.

3.

4
�

.

5.

Presentation logic:
GUI formatting

I/O processing logic:
I/O validation and
error checking

Business logic

Data management logic

Data manipulation logic:
storage and retrieval

Processing Component

Storage Component

Figure 3.2: Client-Server application components. [17]

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN 8

Processing Component Application code that performs data validation,
error checking, and so on.

• I/O processing logic manages data entry validation and basic er-
ror checking.

• Business logic is applied through the code that represents the
business rules. Business rules is a description of a policy, proce-
dure, or principle within a specific business environment.

• Data management logic determines what data are needed for each
transaction.

Storage Component uses data manipulation logic to deal with the actual
data storage and retrieval from the physical storage devices.

The division within the system can roughly map to the outline in Figure
3.2. With the thin client approach much of the processing and logic are
concentrated at the core system. Some of the Input/Output Component
are also implemented in the core system.

The backend of the system roughly corresponds to the Storage Compo-
nent in Figure 3.2.

Chapter 4

Specifications

4.1 General

4.1.1 Media

Because this application will require to display and process a large amount
of multimedia data of various formats, and the user requirement leave the
new media type implementation open for future expansion. The number of
media categories this application can handle at the moment shall limited to
only one:

• Image

It is possible to modify the system to support more datatypes. Core sys-
tem must be modified to support new media types. Other media categories
we had in mind and could expand support into for the future are:

• Text

• Video

• Sound

• Application

• Model

Although there is only one supported media category is at moment, more
multimedia support can be added in the future. In fact, both the back-end
design and the web interface front-end are capable to accommodating more
variety of media formats. The system is also able to store unknown types
with only basic object details.

To be consistent with the media type representation on the Internet the
system uses MIME [7] (Check Appendix for current IANA registered MIME

9

CHAPTER 4. SPECIFICATIONS 10

Media Image
Text
Video
Sound
A

�
pplication

Model

Bold Categories are
implemented in the
prototype system

Figure 4.1: Media Hierarchy.

types). All object are associated with a MIME datatype. This scheme
simplifies the uploading and displaying of media item on browser. Media
categories in database also follow the Top-Level Media Types in MIME.
Some media types in MIME are not supported, Composite types such as
Multipart and Message are not supported.

For the purpose of keeping track of recognised datatypes in the system
there is a datatype database to store all recognised types and formats and
their MIME type. This database also have other purposes such as recalling
the HTML tags for displaying a particular type of object on the user web
browser. More specific uses of the information in this datatype database in
the context of UI can be found in section 4.4.1, page 20 and for backend in
section 4.2, page 12.

The system currently does not have common formats for storing full-size
media object under a particular media category. It is up to the browser
to present the media or save it. The amount of time and processing power
needed to turn all full-size objects and previews into common formats far
outweighs the advantages. It also takes time to evaluate which format is
appropriate in each media category, taking into account all the factors such
as storage requirement, cost, possibility of converting it from other formats.
For example, in a case where all the images are stored in the system as
Photo CD format. If a user attempt to upload a large image in non-Photo
CD format, the system will have to convert it. This task is subject to the
availability of conversion program, and a trade off between processing power
and limited level of convenience. The value of the system can greatly reduced
if only limited number of formats are supported.

4.1.2 Recommended Formats for Preview

Although the system is able to handle any datatypes, some datatypes are
discuss here to ensure usability within most web browsers. This is mainly
applies to Preview Object and not Full-Size Object. See 4.3.1 for more in-
formation about Preview Object and Full-Size Object.

There are many format and rendering techniques in digital images. Keep-
ing that the capabilities of a browser in mind, we decided that only the most
common formats should be used. For raster images, the system should sup-
port JPEG which is lossy but is suitable for pictures and is able to achieve

CHAPTER 4. SPECIFICATIONS 11

high compression rate without obvious defects that is detectable to human
eye. The format is chosen based on the fact that it is flexible in terms of
compression rate, file size and the trade off in image quality.

Lossy JPEG encoding alone may not be enough to satisfy all image
requirements. Many images in the final application will likely to require
lossless images. For this there are currently two formats that are by far the
most common, GIF and PNG [2]. Both are able to handle alpha layer and are
popular formats. However there is one shortcoming with PNG. Although
it is a more advance format than GIF this format is not well supported,
probably due to the complexity. Most image editors or viewers do not have
all the functionality of PNG built-in. Hopefully this issue will be resolved
in near future.

Even though there are plans to support panoramic images in the applica-
tion (e.g. Quicktime VR) we encountered certain problems. First, these are
often not open standards and therefore methods for producing such images
may not be accessible cheaply and effectively (for example, special encoding
software). Second, because this is likely to be a propriety format the pos-
sibility of extending or integrating the format may not be possible. Third,
because of the failure to integrating or extending the software the end user
may be bounded to install a special program or plug-in for viewing this
format. For these reasons we decided to leave this option open for further
investigation.

The current system is have limited support for text documents. The idea
of searching is to look at only specific fields in the database and not inside
the actual document. There are other systems that is available which mainly
with structured text document, providing browsing and full text search on
a text document. For example, the Greenstone system1 is able to convert
a variety of document format, such as plain text, postscript and pdf into
it’s own internal format, provide structure and searching facility on that
document. Other capabilities including automatic relinking is also in that
system. The current system currently do not allow searching within the
Full-Size Object, this is also open to future investigation.

The intended application was to incorporate 3D objects and scenes. The
3D support under media category Model was not able to complete in time.
The original intention was to convert the full-size object into a VRML[3]
preview, because it is the best supported 3D format on browsers. However,
other issues also appears as to how to convert other formats to VRML. Also,
the searching process may also be a problem because the end user may have
to invoke the VRML plugin for the browser to see each search result. User
have a choice of providing an alternative preview when adding a new full-
size object to the system, or have the system generate an preview if possible.
This design feature of custom preview is not only limited to 3D objects but

1http://www.nzdl.org

CHAPTER 4. SPECIFICATIONS 12

is available to all media types.

4.1.3 Collection Hierarchy

The collection hierarchy is how objects in the system are grouped when
presented to the user, the physical storage of objects in the system takes a
different approach. We will discuss the backend in greater detail in section
4.2.3. Because of this reason collection hierarchy is only significant when
the user is navigating or managing media objects.

The collection hierarchy in use right now is only two levels: Collection
and Grouping. This is implemented for prototype and the limit should be
eliminated in the future versions to allow more flexibility over the collection
hierarchy. It should follow the tree structure collection but should avoid the
acyclic graph structure. That is because acyclic graph structure can add
a great deal of complexity to the final system and require the system to
take over many more tasks, for example, the system will have to maintain
referential integrity such as in the Hyperwave and Hyper-G systems [9].
Example would be when an intermediate collection is delete the system is
required to automatic relinking of all referencing links, not only the children
of the deleted collection. In addition to that, if acyclic graph is indeed used
the search engine will have to modify to handle recursive search.

Because of the design of the backend, the use of tree structure must be
reinforced by the core system when user is creating new collection structures.
Otherwise the linking of collections could go out of control and becomes an
acyclic graph, which is undesirable.

4.2 Backend

The backend of this system is responsible for persistent storage of all infor-
mation. This includes the following sets of information:

User Information Information required to authenticate user, user per-
sonal information for making contact, and any user management at-
tributes.

Permission Information This is the permission information for an object.
On the final product this will be a matrix between all objects and all
user domains.

Datatype & Presentation Information We recognise the difference be-
tween different media types. The method for presenting each type
could be different, particularly between different media categories (e.g.
sound and image). It is important to mark each multimedia object
with a type and the tag for presenting such type.

CHAPTER 4. SPECIFICATIONS 13

Participation and Relationship:

One Zero to Many
Many Zero or One

Left - to - Right

Media_id INT
Created DATE
User_id INT
Type INT
Description MEMO
Grouping TEXT(128)
Keywords TEXT(1024)
Notes MEMO
Thumbnail OBJECT
Thumbnail_type INT
Collection_id INT
Size INT
Location TEXT(8)

Media

Collection_id INT
Use_imagemap BOOL
Collection_name TEXT(128)
Imagemap OBJECT
Imagemap_type INT
Message MEMO
Created DATE

Collection

Width INT
Height INT

Image

User_id INT
Username TEXT(20)
First_name TEXT(50)
Last_name TEXT(50)
Password TEXT(25)
Phone TEXT(30)
Extension TEXT(9)
Email TEXT(50)
Office TEXT(15)
Notes TEXT(250)
Created DATE

Person

Collection INT
Shape OBJECT
Link TEXT(512)

Imagemap_linkChangelog_id INT
User_id INT
Event_type INT
Message TEXT(50)
Time DATE

Changelog

Type_id INT
Class TEXT(12)
Type TEXT(64)
Format TEXT(500)

Datatype
Gs

Figure 4.2: Entity-Relationship Diagram using Crow’s Foot.

Structural Information This is for keeping the logical structure of the
multimedia content in the system. The navigation and display of
proper information will depend on the Structural Information.

Object Details The attributes on each object, the creation time, key-
words, caption, dimension (in case of image) or run length (in case
of video). Some of these fields are also searchable.

Object Data The full-size data and the preview of an object. Since the
full-size data may be big some considerations must be made on per-
formance issues.

The backend would be implemented using a combination of file-system
and database. That harness both the capabilities of a database and the
efficiency of the file-system. Although the data maybe separated consistency
of data is still remains a priority.

4.2.1 Database Design

The Entity-Relationship diagram Figure 4.2 is the layout of the database
and is drawn using the Crow’s Foot methodology [17, Pp 258–263]. Here is
a detailed explanation of the diagram:

Media Represents a single basic Media Object (also refer to as an object),
the basic object has all the attributes common to any media type or

CHAPTER 4. SPECIFICATIONS 14

format. Other Specific types of media, such as video, sound or image,
should inherit this basic class. The Thumbnail and Thumbnail fields
are for storing the preview and it’s corresponding datatype. Note that
all type information are referring to the Datatype table. The field
Location is the file name which the full-size object is stored under.

Image Is the only class extending the base Media class. It has two fields
in addition to all the fields appeared in Media.

Person Contains all the personal and system information required to iden-
tify a user. Personal information is for contacting the user.

Changelog When an object is updated records are new entries are added
in this class. When presenting details for an object this modification
records should also shown.

Collection A object has the Collection id field for referring to a collec-
tion. This class also has an option to use an Imagemap. The Imagemap
is directly saved in the database as binary data in the Imagemap field,
and it’s type information in the Imagemap type field.

Imagemap link This is useful when the imagemap is active for a collection.
When user enabled the imagemap and begin editing the imagemap all
link area information are stored here.

Datatype Datatype is the class for describing the MIME type of a piece of
data, whether it is a media object, preview or imagemap. It also has
the formatting and tag information for properly displaying it in the
web browser. User is required to create a new type and provide these
information if the system encounter a format foreign to it.

Please note that this database structure is only designed for the prototype
system. In the final product the database structure should probably be
different.

4.2.2 Search Query

At the moment searching is not handled by the core system. The role of core
system is to take user request, then process it into requests the backend can
understand, and expect the backend to response with data the core system
can understand. Therefore, the backend also taken the task of searching for
the right object.

A number of searching techniques were proposed. Some of them are:

Basic Boolean Search Search using AND, OR and NOT with nesting brack-
ets. Searchable fields are restricted to only Description, Grouping
and Keywords in the class Media.

CHAPTER 4. SPECIFICATIONS 15

Advance Search Closely resemble Basic Boolean Search but provide more
user controls in HTML forms and instruction on how to use these
forms. User will also have control over the output and can restrict the
search domain to certain fields or collections.

Similarity Search This is only a proposed searching technique and should
be used on only images. It’s purpose is to find other pictures with
similar features or colour to a particular image.

4.2.3 Special Datatypes and Storage

The system is unique in a way it has to deal with a number of interesting
datatypes, which are normally binary and require special attention from the
backend system. That is also the reason that motivated us into believing
that database alone for storing and retrieving data is not enough. We used
both file-system and database for storing data.

Performance and efficiency are both equally important factors when the
decision was made. Database is very fast at finding a target, and is a
good choice for querying and saving structured information. File-system on
another hand is good for retrieving large files and unlike a database, it adds
very little overhead, in terms of processing and space efficiency. But file-
systems are generally unsearchable unless a specific target is known. The
conclusion lead us into using the file-system for keeping reasonably large
file. Therefore file-system becomes the best choice for saving full-size object,
without the added overhead in a database. A preview however, has different
requirements. A preview is regularly access in a search or when the user is
navigating the structure. This calls for speed and searchability over space
efficiency, and the preview is best kept in the database as binary data. Also,
a typical preview is smaller than the full-size object it represents. Therefore
the overhand in space should be insignificant.

When a user need to access a full-size object extra steps must be made
to locate and extract the data. For information on locating the full-size
object (Location field in the Media class) the core system must do a search
on the database. This is a trade off between using less space and spending
more processing time finding the object. This will justify especially when
the object may reach upwards of a few megabytes, perhaps tens or hundreds
of megabytes, saving the binary data in database will introduce significant
amount of overhead.

The Collection Hierarchy navigation structure appeared on page 12 is
also store alongside with the object details and the preview.

CHAPTER 4. SPECIFICATIONS 16

4.3 Core System

4.3.1 Storing Object

When storing a media object the system keep an object in 2 parts: a full-
size object and a preview object. That is done to speed up the display of
previews during search. It is possible to keep only one object in the system
and create all previews on the fly but the additional processing time and
performance penalty would not justify.

As mentioned in the last section, the system is able to create new or save
custom preview. When the user choose to create a preview in the system
the system should generate a preview through some utilities on the server
side from the full-size image given, which user must submit when adding
an new object. If the system is not able to generate a preview it will leave
the preview blank. In which case the user will be able to submit a custom
preview after the object is properly added to the system. The user can
also completely bypass the automatic preview generation and submit an
alternative preview.

In addition to normal object a collection can also accept an image. Each
collection has an imagemap and an imagemap preview field for storing the
background image for the collection imagemap. Note that this 2 fields only
accept image and not other datatypes.

There is also the datatype associated with any object (Preview, Full-Size
or Imagemap) in the system. When saving the full-size object and during
the creation of a preview object, the system finds out about the object’s
datatype and save that property. This property is used when displaying the
object.

There is a way to create new media format (or datatype) in the system.
The user must provide the proper MIME type and category for a new format.
Also the proper HTML tags for presenting the object in an HTML page is
required from the user to properly enable the display of this datatype.

4.3.2 User Management

There are many tasks in user management. Although in the core system
the administrator can define many normal users the prototype system do
not make many distinctions between normal users except to present their
personal information. Since the environments where this system deployed
are multiuser environments the user management scheme should expand to
include permission and access on objects and collections. There should also
be more than 2 classes of users (currently normal user and administrator),
where individual user has adjustable privilege assigned by administrator.
The current User Management scheme only make distinction between a nor-
mal user and administrator. The prototype system allows administrator to:

CHAPTER 4. SPECIFICATIONS 17

Object 1 Object 2 Object 3
Domain 1 Read Read Read/Write
Domain 2 - Read -
Domain 3 Read/Write Read/Write Read

Table 4.1: Example of a Control Matrix.

• Add User Account

• Remove User Account

• Update User Details/Password

• Update Administrator Details/Password

And functions for normal user are:

• Update User Details

• Update User Password

Proposed permissions, attributes and functions are:

Object Attributes Media Objects and collections in the system should
employ an access control mechanism similar to a control matrix [18].
Since the Collection/Object and Owner is one-to-one relationship,
where as Collection/Object and Domain is many-to-many these two
different sets of information should implemented in separate data struc-
ture (e.g. two database tables).

• Owner (a Domain) of a Collection/Object

Domain-Collection/Object Attributes This is the control matrix, a re-
lationship between a specific object and domain.

• Permission to Read Collection Information & Imagemap Preview

• Permission to Read Object Information, Preview & full-size Ob-
ject

• Permission to Write Collection Information & Imagemap Preview

• Permission to Write Object Information, Preview & full-size Ob-
ject

Domain Attributes This is a group of users. Individual user can belong
to many domains.

• Permission to Create New Collection

CHAPTER 4. SPECIFICATIONS 18

• Permission to Create New Object

• Permission to Update Domain-Collection/Object Attributes

• View Database Only (Designed for public access, override any
Permission set).

• Domain members (or users).

Domain Functions Any members of a domain can update attributes in
the control matrix if provided they had the right to do so as indicated
in Domain Attributes. The domain attributes are however off-bounds
to user, only the administrator can modify any Domain Attributes.

• Add New Collection/Object

• Update Domain-Collection/Object Attributes

User Functions These are functions or routines a user can carry out.

• Update User Details

• Update User Password

User Attributes These are attributes associated with a user.

• Permission to Update User Details

• Permission to Update User Password

Administrator Functions The administrator will need the following rou-
tines for user management tasks. There are no attributes associated
with administrator.

• Add new User

• Update User Details

• Update User Password

• Update Administrator Details/Password

• Update any Domain-Collection/Object Attributes

• Update any Domain Attributes

• Update any User Attributes

4.3.3 Data Consistency

Data consistency is a cooperation between the core system and the backend.
It’s main purpose is to keep the data in consistent state. Data usually
become inconsistent if a transaction, consist of many queries, failed before it
is fully completed. This is especially important when the system is access by
many users and inconsistent state can occur. An example of such situation
can illustrate the idea:

CHAPTER 4. SPECIFICATIONS 19

Two users are trying to update the details for a particular media
object at almost the same time (hence two concurrent transac-
tions). The normal approach to take at this point is to lock all
the rows in any tables that will involve updating. After the first
transaction has ended the second transaction would begin.

The system should be able to lock table so that data is only written to
by one transaction at any instance. There is however one problem in this
example. The changes made by the first transaction will be overwritten
by the second transaction. This is a problem we are aware of but there is
little we can do to help. HTTP is inheritly stateless and in order to keep the
system simple little effort is made to keep track of individual user and active
connections. It is still possible to notify the second user in the example of
the changes made by the first user using methods such as putting session ID
in the URL or cookies, and notify the server of the session in the updating
request. However we will leave this problem at the moment and implement
that feature only when there is a demand for it.

4.3.4 Robustness

Core system is the only interface between the user and the system. It is also
responsible for many tasks and the system is only as strong as this point,
therefore robustness is an issue on any multiuser system. Web applications
are particular sensitive to robustness issues, especially when almost all users
are on remote machines, and a single mistake can potentially cripple the
hosting computer. Both security and stability and part of the problem.
The following events test a system tolerance to mistakes [8]:

1. User unknowingly entered an incorrect or harmful input into the sys-
tem.

2. Unwelcomed users may gained access to the system and manipulating
the data in the system, or vandalise the system making it unusable for
legitimate users.

3. Bugs in the coding cause the system to fail.

For 1 and 2 there are several known problems with web-based system. One
is the input to the system must be check or filter when necessary. This was
implemented on the prototype system. Another is denial-of-service attack
the remote user can initiate on the system. The system uses the HTML
form-based upload [12], and a continuous stream of data can consume all
the available memory on the host system. This should be avoid using a limit
on the size of data the user can upload.

We also did exhaustive tests on existing scripts to reduce the number of
possible bugs, and tried to eliminate as many as possible in the prototype

CHAPTER 4. SPECIFICATIONS 20

system. The number of bugs in the current system should reduced. However
most tests must be made to identify any hidden flaws in the system.

4.4 User Interface

4.4.1 Presenting Media Object

Presenting the preview and full-size object to the user also posed some chal-
lenges, mainly due to ways different media types are shown on an HTML
page (for example, tag for Image, and <OBJECT> for embedded object).
Because all objects has an associated MIME-type it is possible to present
the media object in appropriate construct inside a HTML page. The tag
information is also store in the datatype database.

The user can also download the full-size object from the browser inter-
face. The action taken to whether save, present the object internally in
browser or through plug-in will be an decision made by the browser and
the user. Normally a web browser would attempt to display a multimedia
object through a plug-in where possible, only offer user a choice to save the
file when it is unable to display the object internally or with any installed
plugin.

4.4.2 Unsupported Media Types

Certain media types may be unsupported on the user web browser. For
example, 3D and panoramic images. It is up to the User Interface to decide
whether to download a plug-in or save the object. Modern browsers normally
have automatic support for downloading plugins.

4.4.3 Timely Response and Interactivity

There is also a need for the system to give quicker response, preferably
immediately. There is bounded to be a pause when loading a new page.
This is also involved the backend operation.

One possibility of having almost immediately response is to embed JavaScript
in the HTML page. We experimented with JavaScript, and it is very use-
ful in tasks such as highlighting of fields the actual field input checking still
have to be done on the server side because it requires processing not possible
in JavaScript. Other HTML page elements can also be manipulated using
JavaScript[14], such as layers.

Another solution besides JavaScript to provide interactivity is to use
Java applets. We also did an actual implementation of Java applet on
the system and it is indeed capable of a lot more than JavaScript. It can
accomplish tasks such as accessing and manipulating the database, directly

CHAPTER 4. SPECIFICATIONS 21

bypassing the core system. However there are certain concerns such as
security holes it may open and behavior across different browsers.

These problems with Java and JavaScript will discuss in more depth in
Chapter 5.

4.4.4 Consistency

Consistency is also an important part of a hypermedia system. The problem
of getting lost in the hypermedia space comes in when the site consist of more
than a few pages. Even though many parts of the certain system follows
the tree structure with a common parent consistent links and visual clues
makes it easier to navigate and understand the structure sooner.

Chapter 5

Implementation

The prototype system implements some of the design features of the system
described in Chapter 3. Not of the features were implemented as a fully
implemented system would require much more time and resource.

5.1 Components

We chosen these software components when implementing the system:

Backend The backend consists of a database and the file-system. File-
system is not named here because there are no specific requirements
on file-system.

• PostgreSQL1 7.0.2, Object-Relational Database

Core System These components are responsible for capturing HTTP re-
quests from the user browser and return HTML output.

• Apache2 1.3.13, web server

• ImageMagick3 5.2.3 and 5.2.4, for processing images

• Perl4 5.004 and 5.005, produces output on user browser through
CGI and web server

• Perl Module: CGI.pm5, Simple Common Gateway Interface Class,
for formatting HTML and CGI

• Perl Module: Pg.pm6, Perl5 extension for PostgreSQL
1http://www.postgresql.org
2http://www.apache.org/httpd
3http://www.wizards.dupont.com/cristy/ImageMagick.html
4http://www.perl.com
5Included in the Perl distribution.
6Included in the PostgreSQL distribution.

22

CHAPTER 5. IMPLEMENTATION 23

• Perl Module: HTTPD::UserAdmin.pm7, Management of HTTP
server user databases

• Perl Module: Image::Magick.pm8, Perl extension for calling Im-
ageMagick’s libmagick routines, for interfacing with Image Mag-
ick Graphics Manipulation package

User Interface Any Web Browser capable of displaying graphics and un-
derstands CSS Level 1 [11] (Cascading Style Sheets) and Java 1.19,
JavaScript is optional. We tested the system with:

• Microsoft Internet Explorer 5.0 and 5.5 on Windows NT/2000

• Netscape Communicator 4.7 and 4.75 on Windows, Digital Unix
and Linux

• Netscape Navigator 2.02 on MacOS 8.1

The system was implemented on Digital Unix 4.0 and Redhat Linux
6.2 platforms. Some problems were encountered when setting up the com-
ponents. When we started this project we were aware of the fact that com-
patibility would arise. These problems and other difficulties will be discuss
later.

5.2 Backend

This and next 2 sections describes the components and discusses the reasons
behind choosing a particular components. Major evaluation factors were
cost, compatibility with the design and performance.

5.2.1 PostgreSQL DBMS

PostgreSQL is an object-relational database management system (OR-DBMS)
[16]. Concepts such as class, inheritance, type and functions where added to
the traditional Relational Database Model to make easier to implement in
more variety of applications. The database was built on relational database
model (therefore object-relational) and therefore adapting the database model
from other relational database designs would be much easier then converting
a relational design to object-oriented database model.

SQL in PostgreSQL

PostgreSQL uses the most widely adopted query language standard in the
database world, SQL. The SQL was standardised by ISO and ANSI com-

7http://search.cpan.org, search for HTTPD
8Included in the ImageMagick distribution.
9http://java.sun.com

CHAPTER 5. IMPLEMENTATION 24

mittees and formally known as SQL/92 in the ratified standard ISO/IEC
9075:1992. A detailed description of SQL/92 was given in [5].

Large Object

Large Object is a binary object in PostgreSQL. Other databases usually call
it a BLOB (Binary Large Object). 8192 bytes is the maximum size a normal
field can be. A large object is an independent object in the database that can
accept value beyond the length of 8192 bytes. The user can create a large
object in the database and reference it in a table. When the user no longer
needs a large object the object unlinked (or removed) from the database and
all references to object cleared. A large object does not necessary correspond
to a table and sometimes this can be a problem. Especially when there are
large number of large objects the system have to keep track of. There are
SQL functions the user can execute to remove orphaned large object, which
eases the lost objects problem somewhat.

There are specific functions when working with large objects. It mimics
the file system using import (like copy) an unlink (like delete).

Evaluation

PostgreSQL was chosen because of it’s support for the object-oriented design
of the system, especially the class Media and it’s subclasses appeared in fig-
ure 4.2 on page 13. Another reason is because the database is open-source
and is available at no cost. Another important factor is it uses standard
SQL (with some extensions), the impact involve when switching database
will be will lower.

PostgreSQL does have some problems. One of those would be some
non-standard SQL constructs it contains. Because of it extra functionality
a number of non-SQL/92 standard query constructs were added. These
constructs may cause problems should the system switch to a new DBMS.

Alternatives

Other databases were also considered. Interbase10 and mySQL11 were other
available choices, we did not consider commercial databases because of the
potential cost. The two other candidates was either open-source or cost
very little and can provide higher performance than PostgreSQL, but both
lacking the object-orientedness in PostgreSQL, so we favor PostgreSQL.

10http://www.interbase.org
11http://www.mysql.com

CHAPTER 5. IMPLEMENTATION 25

5.3 Core System

5.3.1 Apache Web Server

Apache is one of the most popular web servers being used on the Internet12.
In the widely deployed user base the server is well tested, security holes and
bugs are minimised.

Apache also have support for module loading, called Dynamic Shared
Object (DSO) Support. This function allows apache to “learn” new abilities
without recompiling the entire server. New modules are compiled and on
server startup, and can be loaded at the administrator discretion. The base
distribution of Apache contains some default modules, and more modules
are available on the Internet13.

Mod include

A number of modules was particularly important in the prototype system,
one of those being mod include. It is for parsing server-side includes, which
is a dynamic HTML page generates on the fly. This is very useful for creating
standard format page with common title bar and links, providing consistency
within a website.

Mod perl

Another module that gained some attention was mod perl. Although we did
not used the modules in the prototype system previous tests done with the
module was impressive. Perl scripts that was used to generate CGI output
was greatly improve in terms of speed. It precompiles a Perl script and keep
it in memory. When there is a request for that script the compiled script is
immediately run, unlike in CGI, which have to load the Perl interpreter to
compile and run the script.

Mod auth

The mod auth was also used in the prototype system. It was used to provide
Basic HTTP authentication[6] for the system. It can also used to provide a
more secure Digest authentication but support on typical web browser was
not available at the time.

Mod auth pgsql

Last module we consider using was mod auth pgsql. It can used add a useful
feature to the user authentication scheme by looking up the username and
password inside the database. With mod auth username and password are

12http://www.netcraft.com
13http://modules.apache.org

CHAPTER 5. IMPLEMENTATION 26

saved in a text file on the file-system, and may cause some consistency
problem between user information stored in the database and those in the
text file.

Implementation Issues

With the four modules mentioned only mod include and mod auth was used
in the prototype system. The other modules were not used because certain
problems they caused which require more time invest into solving the prob-
lems.

One problem with mod perl is that the programs are cached and some-
times the caching problem produces inconsistent output between different
HTTP requests. With mod perl the server have a tendency to repeat the
output of the previous request, regardless of request user or any user submit-
ted parameters. This problem caused some privacy concern on a multiuser
system, since there more than one user using the system. The outputs to a
number of web browsers can get mixed up.

Another problem is the mod auth pgsql module. It is a good idea to keep
user authentication information and user person information together in the
database but it requires extra Perl packages installed on the system and
a number of Perl scripts require modification to write user authentication
information directly to the database. This was not done within the limited
amount of time.

The basic server is able to generate dynamic HTML page using the CGI
interface. This is very simple interface for generating HTML pages. Detailed
description of how it works and alternatives please refer to section 6.3 on
page 36.

5.3.2 ImageMagick Image Manipulation Package

ImageMagick is one of it’s kind. At the time of writing, we were not aware of
any other image manipulation packages that works on command line or has
Perl interface like ImageMagick does. It is a sophisticated program capable
of complicated complex image processing and has many graphics filters. It
has support for a large (50+) number of image formats, including some video
formats.

Purpose

The main reason this is used in the system is to provide a consistent Preview
Image format everyone can understand. Although the full-size object stored
in the system do not have a unify format, the preview, on the other hand,
must be stored in the limited number of formats a web browser can display.
A conversion program is necessary to convert these the full-size objects into
JPEG preview image, typically seen on the Internet. The program also does

CHAPTER 5. IMPLEMENTATION 27

retouching on the image to make an image more aesthetically pleasing. For
example, framing the image and add text to the image. There is however
some time penalty on the process, but it is a small price to pay for an
otherwise impossible task of producing preview images.

Problems

The package does have it’s drawback. One of those is it’s reliant on external
image support. The operating system must contain the shared library during
compile, for example, the JPEG library, before it can read or write JPEG
images. Another problem is the lacking of plug-in structure. The program
requires recompile whenever a new image format is needed.

Implementation

We implemented this only on the Linux platform to produce previews for
image objects. The compilation failed on Digital Unix and requires more
investigation into the problem.

5.3.3 Perl Interpreter

Perl was a major part of the system, almost all of the dynamic content was
generated using Perl scripts. The output of a Perl script is very simple. The
input from the user side sent through the CGI interface, and script would
pick it up from the CGI interface and begin processing. The content of a
HTML page, prefix by the HTTP header, is printed to the standard output
of the script. The standard output from the script is captured by the CGI
interface on the web server. CGI will be describe in more details on page
36.

Features

There are many reasons why we choose to use Perl. One of which is the
ability to manipulating text strings with ease. Perl has built in regular
expression matching and string manipulation much like the Unix utilities
awk and sed. This is very important because web forms processing mostly
deals with text string and pattern matching. Much of the functions were
simplified by the pattern matching facilities.

The powerful yet simple to use pattern matching facility can be demon-
strate with one example. In the system, script regularly need to check users
input for mistakes, dangerous characters or input length. To check a user in-
put string userInput contains only whitespace and alphabetical characters,
length fewer than 20 characters we could do this in Perl:

$userInput =~ /^[\w\s]{0,20}$/

CHAPTER 5. IMPLEMENTATION 28

Perl also have a different sense of types. In which a numeric value can
convert to a string, or vice versa, without the extra step of explicitly con-
verting it. The concept of true and false is also quite different in Perl. Perl
does not officially have a boolean ’true’ and ’false’ yet. When an expression
or a variable is empty or null string, it is false. If it has content then it’s
true. Sometimes this simplifies the process of evaluating user input.

Portability of Perl is also a factor in the final decision. The Perl inter-
preter is available across multiple platforms, including Windows, Mac and
many variant of Unix.

Because Perl is already widely use, there are numerous packages for
extending the capabilities of Perl. Some of which was used in building the
prototype system and we shall discuss each modules (also refer as ’packages’)
in details.

CGI.pm

The CGI.pm module is for managing HTTP or HTML tasks. A non-
exhaustive number of tasks are listed below:

• Capturing CGI input

• URL Encoding and Decoding

• Formatting most (if not all) available HTML elements up to version
4.01, with parameters for each element.

• Manage HTTP Upload

These are features of CGI.pm that was used in the prototype system.
The CGI.pm also automatically accomplish the mundane task of decoding
and returning query string (See Common Gateway Interface (CGI) on
page 36).

There are also a number of built-in safety features in CGI.pm. One of
those is the ability to restrict size of a POST request in HTTP, to stop
overflow in host from unterminated POST requests. The programmer can
also choose to turn off the ability to receive POST request entirely.

Pg.pm

Pg.pm is a database driver for PostgreSQL. It is able to establish connection
with the database server, execute query and extract results of a query. It
is also able to execute large object functions and Pg.pm treat large object
much like files streams in Perl. The user can append or overwrite a large
object.

The Pg.pm is a propriety driver than contains functions not compatible
with other database drivers. There is an initiative to create a common

CHAPTER 5. IMPLEMENTATION 29

interface for database access, called DBI (Database independent interface
for Perl, using the DBI.pm module). Many major databases already have
drivers using DBI, including PostgreSQL. This was not used in the prototype
system was bad timing. The DBI driver for PostgreSQL was discovered after
the system went well under way, and switching driver would require extensive
changes to code written. And DBI.pm was not installed in the prototype
system.

HTTPD::UserAdmin.pm

This is a module for managing the username:password database for the
Apache user authentication. It understands basic and digest authentication
scheme stored under text file or database. It has many regularly used user-
name:password management functions such as add user, remove user and
recall user password. It is also able to encode a password when adding a
new user, both basic or digest scheme. However for database access it re-
quires the DBI.pm modules appeared in the discussion on Pg.pm, and no
reason to store password in the PostgreSQL database when Apache cannot
use PostgreSQL to authenticate (requires Apache module mod auth pgsql).
The absent of DBI.pm one factor as to why username:password database
was not stored in PostgreSQL.

Image::Magick.pm

This Perl module make functions of ImageMagick available for Perl. All
of ImageMagick functions can be used and some of which was used in the
system:

• Resize

• Border

• Annotate – Add text to image.

• Get – For extracting image attributes, dimension of image was ob-
tained through this function.

Implementation Issues

Perl itself generally works fine. Implementation problems we have to deal
with related to Perl are often from Perl modules, and they usually have
very few problems. We were able to use all the Perl modules named except
for the Image::Magick.pm module. Problem with this module was related
to the compilation problem of it’s sister program ImageMagick, and it was
unusable on one the Digital Unix platform. The problem can be bypass by
taking out the automatic preview generation feature from the system.

CHAPTER 5. IMPLEMENTATION 30

Alternatives

Other alternatives of Perl we are aware of are PHP14, Java Server Pages
(JSP)15 and Python16. PHP and JSP are easy to use languages, the problem
is they are too dependent on the web server. Both of these only works when
the Apache web server has the proper modules installed. But the fact that
many web server today are Apache and that should not be an major issue.
Database drivers are also available for either PHP and JSP (JSP uses the
same JDBC driver in Java). JSP is also supported on other web servers.
PHP mainly is available on Apache servers.

Python is a scripting language that is also gaining some attention. It
is easier to use than Perl, more object-oriented and getting more support
drivers. A Python driver is also available in the basic PostgreSQL distri-
bution. It is also independent of the web server because it is an externally
interpreted language like Perl.

All of the three are viable alternatives to Perl. We believe the path to
choose depends upon the performance of the each system and the program-
ming style preferred. We did not have the resources to test every options so
there are no solid information on performance.

Disadvantages

The Perl language itself does have a steep learning curve. It has a weak sense
of variable typing and the syntax of different data structures can cause occa-
sional problems. Unlike PHP and JSP, which was designed from ground up
specifically for web application, Perl lacks important features and flexibility
that makes programmer job of maintaining the application easier.

One feature in JSP not present in Perl is the separation between code
and HTML. In Perl both code and HTML are mixed together in the same
file, or is very hard to split. The combining of HTML and code causes
frequent problem with debugging (both HTML and program code), made
the file excessively long, and made the job of designing a page much harder.
In JSP the program code can be kept on a different file from HTML, and
there is no code and HTML mix up.

We expect this and other features which present in other web application
languages could gradually overtake the place of Perl.

5.4 User Interface

Portable output plays a very important part in the user interface design.
HTML was used to improve portability. Other decisions made was also

14http://www.php.net
15http://www.apache.org/tomcat/
16http://www.python.org

CHAPTER 5. IMPLEMENTATION 31

Figure 5.1: Prototype system: Screen shot of the Basic Search Screen.

based on this important factor, such as the use of Cascading Style Sheets
(CSS) and Java.

5.4.1 HTML and CSS

To make sure all standard browsers can read the pages they are constructed
using only HTML 4.01, and no propriety tags (i.e. “Netscape” or “Microsoft”
tags) were used.

CSS is another area most older browser is likely to fail. We tested
Netscape 2.02 and Internet Explorer 3 which has little or no CSS support
and the result was no surprise. CSS did worked on newer browsers such
as Netscape 4.7+ and IE 4+, with some minor differences in interpretation
and formatting. It is worth noting that most browsers today still not fully
compliant with CSS level 1. Generally older browsers are likely to have some
problems reading CSS, and we urge those users to upgrade.

5.4.2 JavaScript

The concept of JavaScript was good in which to provide interactivity at
web browser and remains simple to use. JavaScript are code embedded
in the HTML page and can be interpreted by the user web browser if it
understands JavaScript. Netscape was first to include JavaScript in their
browsers. Microsoft later also supported JavaScript but started making
modifications to the original JavaScript. At this stage a HTML page wishing
to use JavaScripts often requires two sets of scripts to make sure browsers
from both manufacturers understands.

CHAPTER 5. IMPLEMENTATION 32

Figure 5.2: Prototype system: Screen shot showing Object Information.

5.4.3 Java

Java is a choice we hope could provide interactivity while maintaining com-
patibility. Although there are some minor differences between different Java
Virtual Machines on different browsers the problems were solvable in time
before this report was produced.

The ImapEditor is an applet written using Java. The user is able to edit

Figure 5.3: Prototype system: Screen shot of the Imagemap Editor
ImapEditor.

CHAPTER 5. IMPLEMENTATION 33

imagemap area polygon and link using this applet. The user can save the
link and polygon. Any previouly saved links and polygons are recall when
this applet is loading.

Chapter 6

Technology

This chapter will briefly discuss a number of technology used and implemen-
tation notes of this system in regard to the technology.

6.1 Hypertext Markup Language (HTML)

6.1.1 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) [11] is tied together with HTML and CSS
Level 1 was used extensively throughout the entire site. The main purpose
of CSS is to divide the formatting in an HTML document from it’s content.
Before the appearance of CSS, HTML content are mixed with the format-
ting. The task of updating formatting or content is often a daunting task
because the programmer have to navigate through a sea of and
other HTML tags, and often have to sort through the formatting parame-
ters in a tag to find the part of the page requiring update. This is no longer
the case with CSS. The formatting for a particular tag (e.g. <A href> for
hyperlink) can be update at a single point in an external file or the Style
Sheet section of a HTML file. Format applies globally to the entire HTML
page and the programmer no longer need to manually update the formatting
at every single part of the page.

CSS Level 2 also became an official W3C Recommendation in May 19981,
notable changes were support for downloadable fonts, element positioning
and tables. However, for many web browsers the support for CSS Level 1 is
still incomplete.

In the system CSS files are stored in the /resource directory and named
with the .css extension. We used Server Side Include to attach it’s content
to the HTML page.

1http://www.w3.org/Style/CSS/

34

CHAPTER 6. TECHNOLOGY 35

6.2 Hypertext Transfer Protocol (HTTP)

HTTP was used when the World-Wide Web began in 1990. In the HTTP/1.1
specification [1] it is describe as “an application-level protocol with the light-
ness and speed necessary for distributed, collaborative, hypermedia infor-
mation systems. . . A feature of HTTP is the typing of data representation,
allowing systems to be built independently of the data being transferred.”

6.2.1 Dynamic Query

It is possible to request dynamic content or return variables back to server
from browser (or user agent). HTTP defines dynamic retrieval of data from
the server through several methods [1, Pp 30–31]. Important methods are
(summarised from [10]):

GET Returns the data asked for by the user agent. Variables (called query
string) submitted by user are appended to the URL (See RFC 1738
for more details). The server-side script or program can lookup the
submitted variables sent from the browser in an environment vari-
able named QUERY STRING through the server CGI. Content obtained
through GET also have a potential for being cached. This request
method is also restrictive. For safety reason, the web server is de-
signed to accept only URL up to a certain length, making the GET
method much more restrictive when submitting large amount of data.

POST Tells the server to accept the data and do something with it. The
server would expect the variables submitted by the user web browser in
the HTTP request body and unlike the GET method, which uses the
URL for transmitting variable. On the web server the CGI interface
will echo the submitted data to the script or program’s standard input,
where the program/script can capture data from. Results which was
transmitted by this method cannot be cached.

6.2.2 Requesting Multimedia Data

The Content-Type attribute in the HTTP header [1] and design of HTTP
itself provides a lot of flexibility over how the actual object is served over the
network. The actual object, regardless of text or binary, is send from the
server to the browser as an individual stream. Upon receiving the stream the
recipient can interpret the data as indicated by the server in the Content-
Type header, with a MIME value of the data type and format. One example
is a HTML page and an image embedded inside that page using the
tag. The browser opens the HTML page, the server sends the page. The
browser sees the image inside the HTML page and request the image through
the URL indicated by the tag. The URL could be an actual image

CHAPTER 6. TECHNOLOGY 36

or a CGI script. The server sends the image and label the Content-Type as
image/jpeg, the browser would interpret it as an JPEG image inside the
HTML page.

6.3 Common Gateway Interface (CGI)

Initially implemented on the NCSA’s httpd web server2, and was later car-
ried into the Apache server together with the original httpd codebase3. CGI
is a simple interface between a web server and external program for generat-
ing dynamic HTML pages. The operation of CGI is simple, when the server
receives a request it either:

GET Places user submitted data in the environment variable QUERY STRING,
which a script or program can read.

POST Echoes the user submitted data to the standard input of a script or
program.

The script/program can also find out the HTTP method used through the
environment variable REQUEST METHOD in CGI, to eliminate guesswork on
how to capture the submitted data.

The script/program generate HTML output on it’s standard output.
CGI echoes this to the web server and the web server passes the entire
standard output to the user browser. Because the web server or CGI do
not add anything to the output, the script/program must generate a HTML
output with properly formed HTTP header.

6.3.1 Alternatives

The CGI is good design for legacy scripts or programs that use standard
input and output for generating dynamic content. Performance may still
suffer from folk-ing or spawning of the script/program responsible for gen-
erating the content. Other alternatives are available to replace this model
of dynamic content generation. PHP4 is one that do not require spawning
of external interpreter or program when generating content. It is a mod-
ule inside the Apache web server and it works parallel with the web server,
without the use of CGI.

6.4 Structure Query Language (SQL)

This description of SQL was extracted from [17]:
2http://hoohoo.ncsa.uiuc.edu/
3http://httpd.apache.org/ABOUT APACHE.html
4http://www.php.net

CHAPTER 6. TECHNOLOGY 37

Structure Query Language(SQL) is one of relational model’s
standard language. This language is composed of about thirty
command and is designed to work with any application that re-
quires the manipulation of data stored in a relational database.
Almost all relational software supports SQL, and many software
vendors have developed extensions to the basic SQL command
set.

Because SQL’s vocabulary is rather limited, SQL is relatively
easy to learn.

SQL is a nonprocedural language; that is, the user specifies what
must be done, but not how it is to be done. To issue SQL
commands, end users and programmers do not need to know the
data storage format nor the complex activities that take place
when any SQL command is executed.

Yet,as useful and as powerful as SQL is, it is not meant to stand
alone in the application arena. Data entry is possible but awk-
ward, as are data corrections and additions. . . interfaces are cre-
ated with the help of GUI-based software.

SQL was used in the Perl scripts in the system. Every database query,
whether it is updating, searching or adding was executed using SQL.

6.5 Java and JDBC

6.5.1 Java

Java was used to some extend when implementing the system. It was clear
at the beginning that some interactivity was not possible through the use of
HTML forms or JavaScript. The ImapEditor for easy updating and editing
of imagemap is a prime example. Java is the only solution for providing
the interactivity we required and still well supported on many web browsers
from different manufacturers.

A number of requirements in the imagemap editor is difficult to imple-
ment in HTML, if not impossible, particularly flexible drawing abilities and
database queries. The level of interactivity is also a major drawback with
HTML. User normally expect immediate response in the changes and up-
date. That is not possible in HTML because it will requires time to submit
to the server and for the browser to receive the results, and all this happens
over a network connection. Java solves this by putting the code on the user
side, making response faster and also relieving the server from a lot of extra
work.

When dealing with untrusted applets security is paramount in Java. The
restriction on untrusted applets can be tight, especially when the security

CHAPTER 6. TECHNOLOGY 38

manager in a web browser allows an untrusted applet downloaded from a
web site to do only limited number of tasks. This also made the testing
procedure more difficult that it would with normal Java application.

We used JDK 1.1 to ensure compatibility with older browsers.

6.5.2 JDBC

JDBC5 is the Java Data Access API and it used for standardising database
access. Drivers for many databases are available. Standard functions for
connecting and maintaining database connection are available, as with query
and database interpretation functions. The JDBC driver we used also have
additional functions available for working with polygons and large object
type, making the downloading and updating of picture and imagemap area
possible.
There are 4 types of JDBC drivers6:

1. JDBC-ODBC bridge provides JDBC API access via one or more ODBC
drivers. Contains native ODBC binary code that could introduce an
security exception in applet.

2. A native-API partly Java technology-enabled driver converts JDBC
calls into calls on the client API for Oracle, Sybase, Informix, DB2, or
other DBMS. This driver also requires loading of some binary code.

3. A net-protocol fully Java technology-enabled driver translates JDBC
API calls into a DBMS-independent net protocol which is then trans-
lated to a DBMS protocol by a server. In general, this is the most
flexible JDBC API alternative.

4. A native-protocol fully Java technology-enabled driver converts JDBC
technology calls into the network protocol used by DBMSs directly.

The PostgreSQL driver is a type 4 JDBC driver [13]. That made the
applet implementation possible because there is no loading of native code
which could cause a security exception.

We used JDBC 1.0, which is compatible with JDK 1.1. JDBC 2.0 is also
available but not used. JDBC 2.0 is a new standard implemented in Java
2.0.

5http://java.sun.com/products/jdbc/index.html
6http://java.sun.com/products/jdbc/driverdesc.html

Chapter 7

Conclusion

7.1 Current Status

The current prototype implemented the following functions:

Backend Mostly completed. It will accept new datatype when necessary.
New structure must be added if new User Management scheme and
Multi-level Collection Hierarchy is to be used.

• Database Design

• Database Driver

Core System Partially completed.

• Web Server

• User Authentication

• Basic User Management

– Add User
– Remove User
– Update Profile
– Update Password

• Basic Media Management

– Add Object
– Add Collection
– Object Information
– Collection Information
∗ Update Collection Information
∗ Set Collection Imagemap
∗ Update Collection Imagemap

• Two levels Collection Hierarchy

39

CHAPTER 7. CONCLUSION 40

• Basic Boolean Search

• Generate User Interface

User Interface Completed for prototype

It is very important to point out the system is not complete. The proto-
type system is mostly ready for basic search, with only two levels Collection
Hierarchy.

7.2 Urgent Improvements

The Collection Hierarchy must be changed to accept multi-levels tree struc-
ture. The current 2 levels structures in the prototype system is not sufficient
for most applications. The navigation scheme in the current User Interface
must also change accordingly to handle large amount of data and multi-levels
Collection Hierarchy. Otherwise the value of the system would be limited.
More user testing is also necessary to make the system more accessible.

7.3 Lower Priority Improvements

These are items which do not require immediate attention:

• The complete user management scheme using control matrix mech-
anism should be implemented to allow large number of users with
different privilege level.

• Introduce other media categories: Video, Model (3D), Text, etc.

• Introduce new search mechanisms: advance search, similarity search
for images, etc.

Bibliography

[1] Tim Berners-Lee, Jim Gettys, HJeffrey C. Mogul, Henrik Frystyk
Nielsen, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Internet Engineering Task Force, May 1996.

[2] Thomas Boutell and Tom Lane, editors. PNG (Portable Network
Graphics) Specification 1.0. W3C, 1.0 edition, October 1996.

[3] Rikk Carey, Gavin Bell, and Chris Marrin. ISO/IEC 14772-1:1997
Virtual Reality Modeling Language (VRML97). VRML Consortium
Incorporated, 1997.

[4] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice-
Hall, second edition, 1991.

[5] C.J. Date and Hugh Darwen. A Guide to the SQL Standard: A user’s
guide to the standard database language SQL. Addison-Wesley, 1997.

[6] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Lu-
otonen, and L. Stewart. RFC 2617: HTTP Authentication: Basic and
Digest Access Authentication. Internet Engineering Task Force, June
1999.

[7] Ned Freed and Nathaniel S. Borenstein. Multipurpose Internet Mail
Extension. Internet Engineering Task Force, November 1996.

[8] Simson Garfinkel and Gene Spafford. Web Security & Commerce.
O’Reilly & Associates, 1997.

[9] Frank Kappe. HyperWave: The Next Generation Web Solution, chapter
10: The Hyper-G Server, pages 115–133. Addison-Wesley, 1995.

[10] Ben Laurie and Peter Laurie. Apache: The Definitive Guide, chapter 4,
pages 75–77. O’Reilly & Associates, second edition, Feb 1999.

[11] H̊akon Wium Lie and Bert Bos. Cascading Style Sheets, level 1. W3C,
December 1996.

41

BIBLIOGRAPHY 42

[12] Larry Masinter and Ernesto Nebel. RFC1867: Form-based File Upload
in HTML. Internet Engineering Task Force, November 1995.

[13] Peter T. Mount. ProgreSQL Programmer’s Guide, chapter 21: JDBC
Interface, pages 184–189. Progres Global Development Group, 1999.

[14] Netscape. Client-Side JavaScript Guide, version 1.3.

[15] OMG. OMG Unified Modeling Language Specification. OMG, 1.3 edi-
tion, June 1999.

[16] PostgreSQL Development Team. PostgreSQL Tutorial.

[17] Peter Rob and Carlos Coronel. Database System: Design, Implemen-
tation, and Management. Course Technology, third edition, 1997.

[18] Abraham Silberschatz and Peter Baer Galvin. Operating System Con-
cepts. Addison-Wesley, fifth edition, 1998.

Appendix A

Database Schema

-- Create object type "lo".
create function lo_in(opaque)

returns opaque
as ’/users/studs/grad/mcha140/project/pgsql/lib/modules/lo.so’
language ’c’;

create function lo_out(opaque)
returns opaque
as ’/users/studs/grad/mcha140/project/pgsql/lib/modules/lo.so’
language ’c’;

create type lo (
internallength = 4,
externallength = variable,
input = lo_in,
output = lo_out

);

create function lo(oid)
returns lo
as ’/users/studs/grad/mcha140/project/pgsql/lib/modules/lo.so’
language ’c’;

create function lo_manage()
returns opaque
as ’/users/studs/grad/mcha140/project/pgsql/lib/modules/lo.so’
language ’c’;

-- Table "collection"

43

APPENDIX A. DATABASE SCHEMA 44

create table collection (
collection varchar(128) not null primary key,
use_imagemap bool default ’false’,
imagemap lo,
imagemap_type integer,
message varchar(4096),
created timestamp default ’now’

);

--create trigger t_imagemap before update or delete on collection for
--each row execute procedure lo_manage(imagemap);

-- Table "media"
create table media (

id serial not null primary key,
type integer not null,
created timestamp default ’now’,
creator oid, -- Updated
description text not null,
grouping varchar(128) not null,
keywords varchar(1024),
notes text,
thumbnail lo,
thumbnail_type integer,
collection oid, -- Updated
size integer,
class varchar(12),
filename char(8)

);

--create trigger t_thumbnail before update or delete on media for
--each row execute procedure lo_manage(thumbnail);

-- Table "image"
create table image (

width integer,
height integer

) inherits (media);

-- Table "person"
create table person (

username varchar(20) not null primary key,
first_name varchar(50) not null,
last_name varchar(50) not null,

APPENDIX A. DATABASE SCHEMA 45

password varchar(25),
phone varchar(30),
extension varchar(9),
email varchar(50),
office varchar(15),
notes varchar(250),
created timestamp default ’now’

);

-- Table "imagemap_link"
create table imagemap_link (

collection oid not null, -- Updated
shape polygon not null,
link varchar(512)

);

-- Table "changelog"
create table changelog (

id integer not null,
username oid, -- Updated
event_type smallint,
message varchar(50),
time timestamp default ’now’

);

-- Table "datatype"
create table datatype (

type_id serial not null primary key,
class varchar(12) not null default ’media’,
type varchar(64) not null default ’application/octet-stream’

);

-- These to get started.
insert into person (username, first_name, last_name)
values (’admin’, ’Nobody’, ’Nobody’);

insert into datatype (class, type) values (’image’, ’image/jpeg’);
insert into datatype (class, type) values (’image’, ’image/gif’);
insert into datatype (class, type) values (’image’, ’image/png’);

Appendix B

IANA Assigned MIME
Types

Latest version of the latest registered MIME types on the Internet can be
found at:
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

[Due to the size of this document, it is not included with this report.]

46

Appendix C

Source Code

The source code of all Java and Perl scripts can be found on the Internet at:
http://www.tcs.auckland.ac.nz/∼btech/btech2000/mcha140/htdocs.tar.gz

47

