
CDMTCS
Research
Report
Series

Finite-State Complexity and
Randomness

Cristian S. Calude1, Kai Salomaa2,
Tania K. Roblot1

1
University of Auckland, NZ

2
Queen’s University, Ontario, Canada

CDMTCS-374
December 2009/revised June 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

Finite-State Complexity and Randomness

Cristian S. Calude1, Kai Salomaa2, Tania K. Roblot1

1Department of Computer Science
University of Auckland, New Zealand

2School of Computing
Queen’s University, Kingston, Ontario, Canada

May 31, 2010

Abstract

In this paper we develop a version of Algorithmic Information Theory (AIT) by
replacing Turing machines with finite transducers; the complexity induced is called
finite-state complexity. In spite of the fact that the Universality Theorem (true for
Turing machines) is false for finite transducers, the Invariance Theorem holds true
for finite-state complexity. We construct a class of finite-state complexities based on
various enumerations of the set of finite transducers. In contrast with descriptional
complexities (plain, prefix-free) from AIT, finite-state complexity is computable and
there is no a priori upper bound for the number of states used for minimal descriptions
of arbitrary strings. Explicit examples of finite-state incompressible strings are given
as well as upper and lower bounds for finite-state complexity of arbitrary strings and
for strings of particular types. Various open problems are discussed throughout the
paper.

1 Introduction

Algorithmic Information Theory [7, 5] uses various measures of descriptional complexity
to define and study various classes of “algorithmically random” finite strings or infinite
sequences. The theory, based on the existence of a universal Turing machine (of various
types), is very elegant and has produced many important results, as one can see from the
latest monographs on the subject [17, 11].

The incomputability of all descriptional complexities was an obstacle towards more
“down-to-earth” applications of AIT (e.g. for practical compression).

One possibility to avoid incomputability is to restrict the resources available to the univer-
sal Turing machine and the result is resource-bounded descriptional complexity [4]. Various
models which have been studied in this area did not produce significant understanding of
deterministic randomness (i.e. chaoticity and software-generated randomness).

Another approach is to restrict the computational power of the machines used. For
example, the size of the smallest context-free grammar, or straight-line program, generating
the singleton language {x} is a measure of the descriptional complexity of x. This model has
been investigated since the 70’s which recently received much attention [8, 10, 16, 15, 19]
(also because of connections with Lempel-Ziv encodings [15, 19]). Further restricting the
computational power, from context-free grammars to finite automata (DFA), one obtains
automatic complexity [24]. Since a DFA recognising the singleton language {x} needs always
|x| + 1 states, the automatic complexity of a string x is defined as the smallest number of
states of a DFA that accepts x and does not accept any other string of length |x|. A similar
descriptional complexity measure for languages was considered in [23].

Computations with finite transducers are used in [13] for the definition of finite-state
dimension of infinite sequences. The NFA-complexity of a string [8] can be defined in terms
of finite transducers that are called in [8] “NFAs with advice”; the main problem with this
approach is that NFAs used for compression can always be assumed to have only one state.

In this paper we define the finite-state complexity of a string x in terms of an enumeration
of finite transducers and input strings used by transducers which output x.

The main obstacle in developing a version of AIT based on finite transducers is the
non-existence of a universal finite transducer (Theorem 9). To overcome this negative result
we show that the set of finite transducers can be enumerated by a computable (even a
regular) set (Theorem 2, Theorem 6), and, based on it, we prove the Invariance Theorem
(Theorem 13) for finite-state complexity. Finally, we show that finite-state complexity
is computable and we present an algorithm for computing it. The complexity of testing
whether the finite-state complexity of a string x is less or equal to n is NP; it is open
whether this decision problem is NP-complete.

Our notation is standard [3, 5]. If X is a finite set then X∗ is the set of all strings
(words) over X with ε denoting the empty string. The length of x ∈ X∗ is denoted by |x|.
A prefix-free set S ⊂ X∗ is a set with the property that for all strings p, q ∈ X∗, if p, pq ∈ S
then p = pq. By H we denote the prefix-complexity.

The paper is organised in the following way. In the next section we present the basic facts
about finite transducers. In section 3 we present examples of useful enumerations of finite
transducers, a regular set and a sequence of computable sets of binary strings S enumerating
all finite transducers. In section 4 we define and study the finite-state complexity of a
(binary) string with respect to an arbitrary enumeration S. A string x is represented by a
pair (T S

σ , p) where T S
σ is the σ’s finite transducer enumerated in S and p is a binary string

with T S
σ (p) = x. Pairs representing strings are enumerated themselves by a computable

(even regular, in some cases) set and the finite-state complexity of a string x is defined by
the “length” of the smallest pair (in that enumeration) representing x. The remainder part
of the paper uses the regular enumeration S0. In section 5 we establish some basic upper
and lower bounds for finite-state complexity of arbitrary strings, as well as, for strings of

2

particular types. In section 6 we show that finite-state complexity is a rich complexity
measure also with respect to the number of states of the transducers, in the sense that—in
sharp contrast with AIT, where the number of states of a universal Turing machine can be
fixed—there is no a priori upper bound for the number of states used for minimal descriptions
of arbitrary strings. In section 7 we discuss finite-state incompressibility and in section 8
we present an algorithm for computing finite-state complexity; we give examples of finite-
state incompressible strings. In section 9 we use lower bounds developed for grammar-based
compression to obtain non-trivial bounds for finite-state complexity of explicitly constructed
strings. Various open problems are discussed throughout the paper. We conclude the paper
with a short summary of results.

2 Finite transducers

A generalised finite transducer [3] is a tuple

T = (X, Y, Q, q0, QF , E), (1)

where X is the input alphabet, Y the output alphabet, Q is the finite set of states, q0 ∈ Q
is the start state, QF ⊆ Q is the set of accepting states and

E ⊆ Q × X∗ × Y ∗ × Q

is the finite set of transitions. If e = (q1, u, v, q2) ∈ E, q1, q2 ∈ Q, u ∈ X∗, v ∈ Y ∗

is a transition from q1 to q2, we say that the input (respectively, output) label of e is u
(respectively, v). Also, when the states are understood from the context we say that the
transition e is labeled by u/v.

A transducer T realises the transduction τT ⊆ X∗ × Y ∗ that consists of all pairs of
strings (x, y), x ∈ X∗, y ∈ Y ∗, such that the start state q0 is connected to an accepting state
qf ∈ QF by a sequence of transitions e1, . . . , ek and x (respectively, y) is the concatenation
of input labels (respectively, output labels) of e1, . . . , ek. For a more formal definition of the
transduction realised by T we refer the reader to [3]. It is well-known that finite transducers
realise exactly the rational relations:

Lemma 1 ([3], Corollary 6.2) Any rational relation can be realised by a transducer where
the transitions are a subset of Q × (X ∪ {ε}) × (Y ∪ {ε}) × Q.

A generalised transducer T is said to be functional if τT is a partial function X∗ → Y ∗.
If T is functional, we denote by T (x) the string produced by T when it receives x as input
(T (x) may be undefined).

Unless otherwise mentioned, we always consider a binary input and output alphabet
X = Y = {0, 1} and denote a transducer simply as a four-tuple T = (Q, q0, QF , E).

3

For our finite-state complexity model we use a restricted type of functional transducers
where the corresponding transduction can be computed deterministically. A transducer T is
said to be a deterministic sequential transducer [3] if it has no transitions with input label
ε and for any q ∈ Q and i ∈ {0, 1} there exists a unique q′ ∈ Q and v ∈ {0, 1}∗ such that
(q, i, v, q′) is a transition of T . The set of transitions of a deterministic sequential transducer
is represented by a function

∆ : Q × {0, 1} → Q × {0, 1}∗. (2)

As we use mainly deterministic sequential transducers, we drop the adjectives, i.e., in the
following by a transducer we mean a deterministic sequential transducer.

When using the general model (1) we refer to them as generalised transducers.
For a transducer all states are considered to be final. Hence a transducer can be given

by a triple (Q, q0,∆) where ∆ is as in (2). In details, the function T : {0, 1}∗ → {0, 1}∗
computed by the transducer (Q, q0,∆) is defined by T (ε) = ε, T (xa) = T (x) ·µ(δ̂(q0, x), a),
where δ(q, x) = π1(∆(q, x)), µ(q, x) = π2(∆(q, x)), q ∈ Q, x ∈ {0, 1}∗, a ∈ {0, 1}.1 Here
δ̂ : Q × {0, 1}∗ → Q is defined by δ̂(q,ε) = q, δ̂(q, xa) = δ(δ̂(q, x), a), q ∈ Q, x ∈ {0, 1}∗.

3 Regular enumerations of transducers

We use binary strings to encode transducers and prove that the set of all legal encodings of
transducers is a regular language. We encode a transducer by listing for each state q and
input symbol i ∈ {0, 1} the output and target state corresponding to the pair (q, i), that
is,∆(q, i). Thus, the encoding of a transducer is a list of (encodings of) states and output
strings. Furthermore, to minimise the length of the encoding in the list we omit states
that correspond to self-loops. We verify that every string in the regular language of legal
encodings corresponds to a unique transducer and, conversely, every transducer has a legal
encoding.

By bin(i) we denote the binary representation of i ≥ 1. Note that for all i ≥ 1, bin(i)
always begins with a 1; bin(1) = 1, bin(2) = 10, bin(3) = 11, . . .; by string(i) we denote the
binary string obtained by removing the leading 1 from bin(i), i.e. bin(i) = 1 · string(i). If
Log(i) = %log2(i)&, then |string(i)| = Log(i), i ≥ 1.

For v = v1 · · · vm, vi ∈ {0, 1}, i = 1, . . . , m, we use the following functions producing self-
delimiting versions of their inputs (see [5]): v† = v10v20 · · · vm−10vm1 and v$ = (1v)†, where
is the negation morphism given by 0 = 1, 1 = 0. It is seen that |v†| = 2|v|, and |v$| = 2|v|+2.

In the next table we will present the encodings of the first binary strings:

1Sometimes we use · to denote the concatenation of strings; π1 and π2 are the first two projections on
Q × {0, 1}∗.

4

n bin(n) bin(n)† string(n) string(n)! |bin(n)†| = |string(n)!|
1 1 11 ε 00 2
2 10 1001 0 0110 4
3 11 1011 1 0100 4
4 100 100001 00 011110 6
5 101 100011 01 011100 6
6 110 101001 10 010110 6
7 111 101011 11 010100 6
8 1000 10000001 000 01111110 8

Table 1: S0 encoding

Consider a transducer T with the set of states Q = {1, . . . , n}. The transition function
∆ of T (as in (2)) is encoded by a binary string

σ = bin(i1)
‡ · string(i′1)

! · bin(i2)
‡ · string(i′2)

! · · ·bin(i2n)‡ · string(i′2n)!, (3)

where ∆(j, k) = (î2j−1+k, string(i′2j−1+k)), it, i′t ≥ 1, t = 1, . . . , 2n, j = 1, . . . , n, k ∈ {0, 1},
and m̂ denotes the smallest positive integer congruent to m modulo n.2 In (3), bin(it)‡ = ε
if the corresponding transition of ∆ is a self-loop, i.e. π1(∆(j, k)) = j; otherwise, bin(it)‡ =
bin(it)†.

The transducer T encoded by σ is called T S
σ . Here S refers to the particular set of

encodings based on (3) used in the proof of the below theorem and throughout the whole
paper.

Theorem 2 The set of all transducers can be enumerated by a regular language. More
precisely, we can construct a regular set S0 such that: a) for every σ ∈ S0, T S0

σ is a transducer,
b) for every transducer T on can compute a code σ ∈ S0 such that T = T S0

σ .

Proof. We consider the languages X = {bin(n)† : n ≥ 1} = {11, 1001, 1011, . . .}, Y =
{string(n)! : n ≥ 1} = {00, 0110, 0100, . . .} and the define the language

S0 = (((X ∪ {ε})Y)2)∗. (4)

The languages X and Y are regular, hence S0 is regular by (4).
The claim a) follows from (3). For b) we note that in view of the construction it is clear

that every string σ ∈ S0 has a unique factorisation of the form σ = x1 · y1 · · ·x2n · y2n, for
appropriate strings x1, . . . , x2n ∈ X ∪ {ε} and y1, . . . , y2n ∈ Y . So, from σ we uniquely get
the length n and the codes xs · ys, for s = 1, 2, . . . , 2n. Every xs can be uniquely written in
the form xs = bin(ts)† and every ys can be uniquely written in the form ys = string(rs)!.

2In (3) we use it instead of ît in order to guarantee that the set of legal encodings of all transducers is
regular, cf. Theorem 2.

5

Next we compute the unique transition encoded by xs ·ys according to (3). We denote by
m mod n the smallest positive integer congruent to m modulo n. First assume that xs != ε.
There are two possibilities depending on s being odd or even. If s = 2i+1, for 0 ≤ i ≤ n, then
∆(s, 0) = (ts mod n, string(rs)); if s = 2i, for 1 ≤ i ≤ n, then ∆ (s, 1) = (ts mod n, string(rs)).
The decoding process is unique and shows that the transducer obtained from σ is T S0

σ = T .
Secondly, if xs = ε, then ∆ (s, 0) = (s, string(rs)) for an odd s, and ∆ (s, 1) = (s, string(rs))
for an even s.

Given a string σ ∈ S0, an explicit encoding of the transition function of T S0
σ can be

computed in quadratic time.
The simplest transducer T has one state and produces always the empty string:

Example 3 Let ∆: {1} × {0, 1} → {1} × {0, 1}∗ be defined by ∆(1, 0) = ∆(1, 1) = (1, ε).
Its code is σ = bin(1)‡ · ε" · bin(1)‡ · ε" = 0000.

Example 4 A few more simple examples follow.

transducer code code length
∆1(1, 0) = (1, ε),∆1(1, 1) = (1, 0) σ = bin(1)‡ · ε" · bin(1)‡ · 0" = 000110 6
∆2(1, 0) = (1, 0),∆2(1, 1) = (1, ε) σ = bin(1)‡ · 0" · bin(1)‡ · ε" = 011000 6

∆3(1, 0) =∆ 3(1, 1) = (1, 0) σ = bin(1)‡ · 0" · bin(1)‡ · 0" = 01100110 8
∆4(1, 0) =∆ 4(1, 1) = (1, 1) σ = bin(1)‡ · 1" · bin(1)‡ · 1" = 01000100 8

Table 2: Transducers S0 encodings

Example 5 The identity transducer T is given by ∆(1, 0) = (1, 0),∆(1, 1) = (1, 1). Its code
is σ = bin(1)‡ · 0" · bin(1)‡ · 1" = ε · 0" · ε · 1" = 01100100.

The encoding used in Theorem 2 is regular but not too compact as the pair (i, string(j))
is coded by bin(i)† · string(j)" a string of length 2(Log(i)+Log(j))+4. By using the encoding

x§ = 0|string(|x|+1)| · 1 · string(|x| + 1) · x (5)

we obtain a more compact one. Indeed, instead of Table 1 use the encoding in Table 3,
where

string§(n) = 0|string(| string(n)|+1)| · 1 · string(| string(n)| + 1) · string(n),

bin#(n) = 1|string(| string(n)|+1)| · 0 · string(| string(n)| + 1) · string(n),

and the pair (i, string(j)) is coded by bin#(i + 1) · string§(j + 1), a string of length 2 ·
Log(Log(i + 1) + 1) + Log(i + 1) + 2 · Log(Log(j + 1) + 1) + Log(j + 1) + 2, which is smaller
almost everywhere than 2(Log(i) + Log(j)) + 4.

By iterating the formula (5) we can indefinitely improve almost everywhere the encoding
of the pairs (i, string(j)) obtaining more and more efficient variants of Theorem 2.

6

n bin(n) bin#(n) string(n) string§(n) length
1 1 0 ε 001εε = 1 1
2 10 1010 0 0100 4
3 11 1011 1 0101 4
4 100 10000 00 01100 5
5 101 10001 01 01101 5
6 110 10010 10 01110 5
7 111 10011 11 01111 5
8 1000 11011000 000 00100000 8

Table 3: S1 encoding

Theorem 6 We can construct a sequence of computable sets (Sn)n≥1 such that: a) for every
σ ∈ Sn, T Sn

σ is a transducer, b) for every transducer T on can compute a code σ ∈ Sn such
that T = T Sn

σ , c) the difference in length between the encodings of the pair (i, string(j))
according to Sn and Sn+1 tends to ∞ with n.

4 Finite-state complexity

Transducers are used to ‘define’ or ‘represent’ strings in the following way. First we fix a
computable set S as in Theorem 2 or Theorem 6. The, we say that a pair (T S

σ , p), σ ∈ S, p ∈
{0, 1}∗, defines the string x provided T S

σ (p) = x; the pair (T S
σ , p) is called a description of

x. As the pair (T S
σ , p) is uniquely represented by the pair (σ, p) we define the size of the

description (T S
σ , p) of x by

||(T S
σ , p)|| = |σ| + |p|.

Based on the above, we define the finite-state complexity (with respect to the enumeration
S) of a string x ∈ {0, 1}∗ by the formula:

CS(x) = inf
σ∈S, p∈{0,1}∗

{
| σ | + | p | : T S

σ (p) = x
}

.

Comment 7 In the encoding S0 a string v occurring as the output of a transition in T S0

‘contributes’ roughly 2 · |v| to the size of an encoding ||(T S0, p)||. With the encoding S1 the
contribution is |v| + Log(Log(|v|) + 2.

How “objective” is the above definition? First, finite-state complexity depends on the
enumeration S; if S and S ′ are encodings then CS′ = f(CS(x)), for some computable function
f .

Secondly, finite-state complexity is defined as an analogue of the complexity used in AIT,
whose objectivity is given by the Invariance Theorem, which in turn relies essentially on the
Universality Theorem [5]. Using the existence of a universal (prefix-free) Turing machine

7

one can obtain a complexity which is optimal up to an additive constant (the constant
“encapsulates” the size of this universal machine). For this reason the complexity does not
need to explicitly include the size of the universal machine. In sharp contrast, the finite-
state complexity has to count the size of the transducer as part of the encoding length,3 but
can be more lax in working with the pair (σ, p). The reason is that there is no “universal”
transducer.

Thirdly, our proposal does not define just one finite-state complexity, but a class of
“finite-state complexities” (depending on the underlying enumeration of transducers). At
this stage we do not have a reasonable “invariance” result relating every pair of complexities
in this class. In the theory of left-computable ε–randomness [6], the difference between
two prefix complexities induced by different ε–universal prefix-free Turing machines can be
arbitrarily large. In the same way here it is possible to construct two enumerations S1, S2

satisfying Theorem 2 such that the difference between CS1 and CS1 is arbitrarily large.

Below we establish, slightly more generally, that no finite generalised transducer can
simulate a transducer on a given input—not an unexpected result.

We start with the following lemma that follows from the observation that a functional
generalised transducer cannot have a loop where all transitions have input label ε.

Lemma 8 For any functional generalised transducer T there exists a constant MT such that
every prefix of an accepting computation of T that consumes input x ∈ {0, 1}+ produces an
output of length at most MT · |x|.

The pair (σ, w) can be uniquely encoded into the string σ†w.

Theorem 9 There is no functional generalised transducer U such that for all σ ∈ S0 and
w ∈ {0, 1}∗, U(σ†w) = T S0

σ (w).

Proof. For the sake of contradiction assume that U exists and without loss of generality
we assume that the transitions of U are in the normal form of Lemma 1. Let MU be the
corresponding constant given by Lemma 8.

Let σi ∈ S0, i ≥ 1, be the encoding of the single-state transducer where the two self-loops
are labeled by 0/0i and 1/ε, i.e. ∆(1, 0) = (1, 0i),∆(1, 1) = (1, ε).

Define the function g : IN → IN by setting

g(i) = |σ†
i | · MU + 1, i ≥ 1.

Let Di be an accepting computation of U that corresponds to the input σi
† · 0g(i), i ≥ 1.

Let qi be the state of U that occurs in the computation Di immediately after consuming the
prefix σi

† of the input. Since U is in the normal form of Lemma 1, qi is defined.

3One can use this approach also in AIT [20].

8

Choose j < k such that qj = qk. We consider the computation D of U on input σ†
j · 0g(k)

that reads the prefix σ†
j as Dj and the suffix 0g(k) as Dk. Since qj = qk this is a valid

computation of U ending in an accepting state.
On prefix σ†

k the computation Dk produces an output of length at most MU · |σ†
k| and,

hence, on the suffix 0g(k) the computation Dk (and D) outputs 0z where

z ≥ k · g(k) − |σ†
k| · MU > (k − 1) · g(k).

The last inequality follows from the definition of the function g. Hence the output produced
by the computation D is longer than j · g(k) = |T S0

σj
(0g(k))| and U does not simulate T S0

σj

correctly.

Comment 10 The hypothetical generalised transducer in Theorem 9 receives the input
transducer encoded using the standard regular enumeration S0 (as in 4); the regularity of
S0 eliminates the possibility that the negative result is artificially derived from the complex
enumeration of transducers. However, the proof does not use any properties of this particular
encoding and, in fact, the result holds for any encoding of the input transducers.

Conjecture 11 No two-way finite transducer can simulate an arbitrary transducer Tσ when
it receives σ as part of the input, i.e. there does not exist a universal two-way finite transducer
in the sense of Theorem 9.

Obviously Tσ(w) can be computed from input σ†w by a two-way transducer that can use a
logarithmic amount of read/write memory, or by a read-only multi-head finite transducer
with two two-way heads and one one-way head.

A weak form of universality can be proven for transducers:

Proposition 12 For every strings x, y ∈ {0, 1}∗ there exist infinitely many transducers Tσ

such that Tσ(x) = y.

Proof. Given x, y with x = x1x2 · · ·xn of length n we construct the transducer∆
having n + 1 states acting as follows: ∆ (i, xi) = (n + 1, ε), 1 ≤ i ≤ n, ∆(1, x1) = (2, y),
∆(j, xj) = (j + 1, ε), 2 ≤ j ≤ n, ∆ (n + 1, 0) = ∆(n + 1, 1) = (n + 1, ε).

Let TDGSM denote the set of all transducers. By a computable encoding of all transducers
we mean a pair S = (DS, fS) where DS ⊆ {0, 1}∗ is a decidable set and fS : DS → TDGSM

is a computable onto mapping that associates to each σ ∈ DS a transducer T S
σ . Theorem 2

or Theorem 6 give examples of computable encodings of all transducers.

For the rest of the paper, unless explicitly stated, we fix a computable encoding of all
transducers S and we write Tσ and C instead of T S

σ and CS.

9

In spite of the negative result stated in Theorem 9 the Invariance Theorem from AIT is
true for C. To this aim we define the complexity associated with a transducer Tσ by

CTσ(x) = inf
p∈{0,1}∗

{
| p | : Tσ(p) = x

}
.

Theorem 13 For every σ0 ∈ S we have C(x) ≤ CTσ0
(x) + |σ0|, for all x ∈ {0, 1}∗.

Proof. Using the definitions of C and CTσ0
we have:

C(x) = inf
σ∈S, p∈{0,1}∗

{
‖(Tσ, p)‖ : Tσ(p) = x

}

= inf
σ∈S, p∈{0,1}∗

{
|σ|+|p|: Tσ(p) = x

}

≤ |σ0|+ inf
p∈{0,1}∗

{
|p| : Tσ0(p) = x

}

= CTσ0
(x) + |σ0|.

Corollary 14 If Tσ0(x) = x, then C(x) ≤ |x|+ |σ0|, for all x ∈ {0, 1}∗. In particular, using
Example 5 we deduce that C(x) ≤ |x| + 8, for all x ∈ {0, 1}∗.

Comment 15 In view of Corollary 14, in the definitions of finite-state complexity we can
replace inf by min.

In contrast with the incomputability results of AIT, by Corollary 14 and the fact that
the output of a transducer corresponding to a given input is easily determined, we get:

Corollary 16 The complexity C is computable.

Obviously, the problem of deciding whether C(x) ≤ m for given x ∈ {0, 1}∗, m ∈ IN is
in NP. It may be difficult to establish an NP-hardness result since even the NP-hardness of
grammar-based compression remains open in the binary case [2, 15]. The relationship of our
model with grammar-based compression will be discussed in section 9.

Open problem 17 Is it NP-hard to compute finite-state complexity of a given string?

5 Finite-state compression: an example

The complexity C measure the “recourses” necessary to decode a given encoding of a string.
It is natural to ask how powerful are finite-state transducers to compress strings? The
following example—in which we use the encoding S0—illustrates the power of transducer-
based compression.

10

1 111 1000 1001 1010 1011 1110

10 11

100

101

110

1/1 0/0 0/05 0/010 0/018 0/025 0/050

1/ε

0/ε 1/ε

1/ε

0/ε

0/ε
1/ε

0/ε
1/ε

0/ε

0/ε

1/ε

1/ε

1/ε

1/ε

1/ε

1/ε

Figure 1: The transducer T1 for Example 18.

Example 18 Define the sequence of strings

wm = 01021031 · . . . · 0m−110m1, m ≥ 1.

Using the transducer T1 of Figure 1 we produce an encoding of w100, where |w100| = 5150.

With the encodings of the states indicated in the Figure 1, T1 is encoded by a string
σ1 ∈ S0 of length 352. Each number 1 ≤ i ≤ 100 can be represented as a sum of, on average,
3.18 numbers from the multi-set {1, 5, 10, 18, 25, 50} [22]. Thus, when we represent w100 in
the form T1(p100), we need on average at most 6·3.18 symbols in p100 to output each substring
0i, 1 ≤ i ≤ 100. (This is only a very rough estimate since it assumes that for each element
in the sum representing i we need to make a cycle of length six through the start state, and
this is of course not true when the sum representing i has some element occurring more than
once.) Additionally we need to produce the 100 symbols “1”, which means that the length
of p100 can be chosen to be at most 2008. Our estimate gives that

||(T S0
σ1

, p100)|| = |σ1| + |p100| = 2360,

11

which is a very rough upper bound for CS0(w100).

Comment 19 It is easy to see that, using the same transducer, CS1(w100) ≤ 2381.

The above estimation could obviously be improved using more detailed information
from the computation of the average from [22]. Furthermore, [22] does not claim that
{1, 5, 10, 18, 25, 50} would, on average, be the most efficient way to represent numbers from
1 to 100 as the sum of the least number of summands.4 These types of constructions can
be seen to hint that computing the value of finite-state complexity may have connections to
so called postage stamp problems considered in number theory, with some of their variants
known to be computationally hard [14, 21].

For the remanding part of the paper we will use the encoding S0.

6 Quantitative estimates

Here we establish basic upper and lower bounds for finite-state complexity of arbitrary
strings, as well as, for strings of particular types.

Theorem 20 For n ≥ 1 we have: C(0n) ∈ Θ(
√

n).

Proof. It is sufficient to establish that

2 · %
√

n& ≤ C(0n) ≤ 4 · %
√

n& + c, (6)

where c is a constant.
For the upper bound we note that 0n can be represented by a pair (T, p) where T is a

single state transducer having two self-loops labeled, respectively, 0/0!
√

n# and 1/0, and p
can be chosen as a string 0!

√
n#+y1z, where 0 ≤ y ≤ 1, 0 ≤ z ≤ %

√
n&. By our encoding

conventions the size of (T, p) is at most 4 · %
√

n& + c where c is a small constant.
To establish the lower bound, consider an arbitrary pair (T ′, p′) representing 0n. If v is the

longest output of any transition of T ′, then |v| · |p′| ≥ n. On the other hand, according to our
encoding conventions ||(T ′, p′)||≥ 2 · |v|+ |p′|. These inequalities imply ||(T ′, p′)||≥ 2 ·%

√
n&.

Using a more detailed analysis, the upper and lower bounds of (6) could be moved
closer to each other. Because the precise multiplicative constants depend on the particular
encoding chosen for the pairs (T,σ) and the language S, it may not be very important to
try to improve the values of the multiplicative constants.

The argument used to establish the lower bound in (6) gives directly the following:

4In [22] it is established that 18 is the optimal value to add to an existing system of {1, 5, 10, 25, 50}.

12

Corollary 21 For any x ∈ {0, 1}∗, C(x) ≥ 2 · #
√

|x|$.

The bounds (6) imply that the inequality H(xx) ≤ H(x)+O(1) familiar for program-size
complexity does not hold for finite-state complexity:

Corollary 22 There is no constant c such that for all strings x ∈ {0, 1}∗, C(xx) ≤ C(x)+c.

The mapping 0n &→ 02·n is computed by a transducer of small size. Hence we deduce:

Corollary 23 For a given transducer T there is no constant c such that for all strings
x ∈ {0, 1}∗, C(T (x)) ≤ C(x) + c.

In Corollary 23 we require only that c is independent of x, that is, the value c could depend
on the transducer T . As in Theorem 20 we get estimations for the finite-state complexity of
powers of a string.

Proposition 24 For u ∈ {0, 1}∗ and n (|u|,

C(un) ≤ 2 · (#
√

n$ + 1) · |u| + 2
√

n + c, (7)

where c is a constant independent of u and n.

Proof. Let T be the single state transducer with two self-loops labeled, respectively, by
0/u"

√
n$ and 1/u. The string un has a description (T, 0"

√
n$+y1z), where 0 ≤ y ≤ 1, 0 ≤ z ≤

#
√

n$. By our encoding conventions

||(T, 0"
√

n$1z)||≤ 2 · (#
√

n$ + 1) · |u| + 2
√

n + c,

where c is a constant.

The upper bound (7) is useful only when n is larger than |u|2 because using a single state
transducer with self-loop 0/u we get an upper bound C(un) ≤ 2 · |u|+n+ c, with c constant.

Corollary 25 We have: C(0n1n) ∈ Θ(
√

n).

Proof. The lower bound follows from Corollary 21. The string 0n1n has description

(T, 0%
√

n&−1+y11z10z21%
√

n&−1+y2),

where 0 ≤ y1, y2 ≤ 1, 1 ≤ z1, z2 ≤ *
√

n+ and T is the transducer given in Figure 2.
Note that from the construction used in Theorem 20, the transducer in Figure 2 begins

by outputting strings 0%
√

n&−1 (instead of 0"
√

n$). This is done in order to guarantee that z1

can be chosen to be at least 1 also when n is a perfect square.
Thus, C(0n1n) ≤ 8 · *

√
n+ + c, where c is a constant.

13

1 2 3

0/0!
√

n#−1

1/0

1/0

0/1

0/1

1/1!
√

n#−1

Figure 2: Transducer T in the proof of Corollary 25.

From Corollary 25 we note that the finite-state complexity of 0n1n is within a constant
factor of the automatic complexity, as defined in [24], of the same string. This can be viewed
merely as a coincidence since the two descriptional complexity measures are essentially
different and have, in general, very different upper and lower bounds.

The following result gives an upper bound for finite-state complexity of the catenation
of two strings.

Proposition 26 For any ω > 0 there exists d(ω) > 0 such that for all x, y ∈ {0, 1}∗,

C(xy) ≤ (1 + ω) · (4C(x) + C(y)) + d(ω).

Here the value d(ω) depends only on ω, i.e., it is constant with respect to x, y.

Proof. Let (T, u) and (R, v) be minimal descriptions of x and y, respectively. Let
u = u1 · · ·um, ui ∈ {0, 1}, i = 1, . . . , m and recall that u† = u10u20 · · ·um−10um1.

Denote the sets of states of T and R, respectively, as QT and QR, and let
Q′

T = {q′ | q ∈ QT}.

We construct a transducer W with set of states QT ∪ Q′
T ∪ QR as follows.

(i) For each transition of T from state p to state q labeled by i/w (i ∈ {0, 1}, w ∈ {0, 1}∗),
W has a transition from q to p′ labeled by i/w and a transition labeled 0/ε from p′ to
p.

(ii) Each state p′ ∈ Q′
T has a transition labeled 1/ε to the starting state of R.

(iii) The transitions originating from states of QR are defined in W in the same way as in
R.

Now |u†| = 2 · |u| and
W (u†v) = T (u)R(v) = xy.

It remains to verify that the size of the encoding of W is, roughly, at most four times the
size of T plus the size of R.

First assume that

14

(*) the states of W could have the same length encodings as the encodings used for states
in T and R.

We note that the part of W simulating the computation of T has simply doubled the
number of states and for the new states of Q′

T the outgoing transitions have edge labels of
minimal length (0/ε and 1/ε). An additional increase in the length of the encoding occurs
because each self-loop of T is replaced in W by two transitions that are not self-loops. It is
easy to establish, using induction on the number of states of T , that if all states of T are
reachable from the start state and T has t non-self-loop transitions, the number of self-loops
in T is at most t + 2.

Thus, by the above observations with the assumption (*), C(xy) could be upper bounded
by 4C(x) + C(y) + d where d is a constant. Naturally, in reality the encodings of states
of W need one or two additional bits added to the encodings of the corresponding states
in T and R. The proportional increase of the state encoding length caused by the two
additional bits for the states of QT ∪ Q′

T , (respectively, states of QR) is upper bounded by
2 · ("log(|QT |)#)−1 (respectively, 2 · ("log(|QR|)#)−1). Thus, the proportional increase of the
encoding length becomes smaller than any positive ω when max{|QT |, |QR|} is greater than
a suitably chosen threshold M(ω). On the other hand, the encoding of W contains at most
2 · (2|QT |+ |QR|) ≤ 6 ·max{|QT |, |QR|} occurrences of substrings encoding the states. This
means that by choosing d(ω) = 12 · M(ω) the statement of the lemma holds also for small
values of |QT | and |QR|.

It is known that deterministic transducers are closed under composition [3], that is, for
transducers Tδ and Tγ there exists σ ∈ S such that Tσ(x) = Tδ(Tγ(x)), for all x ∈ {0, 1}∗.
Using the construction from ([3] Proposition 2.5, page 101, (translated into our notation))
we give an upper bound for |σ| as a function of |δ| and |γ|.

Let Tδ = (Q, q0,∆) and Tγ = (P, p0,Γ), where ∆ is a function Q × {0, 1} → Q × {0, 1}∗
and Γ is a function P × {0, 1} → P × {0, 1}∗. The transition function ∆ is extended in the
natural way as a function ∆̂ : Q × {0, 1}∗ → Q × {0, 1}∗.

The composition of Tγ and Tδ is computed by a transducer

Ξ ((q, p) , i) =
((

π1

(
∆̂ (q,π 2 (Γ(p, i)))

)
, π1 (Γ(p, i))

)
, π2

(
∆̂ (q,π 2 (Γ(p, i)))

))
.

The number of states of Tσ is upper bounded by |δ| · |γ|.5 An individual output of Tσ

consists of the output produced by Tδ when it reads an output produced by one transition of
Tγ (via the extended function ∆̂). Thus, the length of the output produced by an individual
transition of Tσ can be upper bounded by |δ| · |γ|. These observations imply that

|σ| = O(|δ|2 · |γ|2).
5Strictly speaking, this could be multiplied by (log log |δ|)·(log log |γ|)

log |δ|·log |γ| to give a better estimate.

15

The above estimate was obtained simply by combining the worst-case upper bound for the
size of the encoding of the states of Tσ and the worst-case length of individual outputs of
the transducers Tδ and Tγ. The worst-case examples for these two bounds are naturally very
different, as the latter corresponds to a situation where the encoding of individual outputs
‘contributes’ a large part of the strings δ and γ. The overall upper bound could be somewhat
improved using a more detailed analysis.

7 Number of states

From Theorem 20 we know that transducers used in minimal descriptions may need to
output arbitrarily long strings in a single transition, and hence there is no upper bound for
the size of encodings of such transducers. Next we establish that finite-state complexity is
a rich complexity measure also with respect to the number of states of the transducers, in
the sense that there is no a priori upper bound for the number of states used for minimal
descriptions of arbitrary strings. This is in contrast to AIT where the number of states of a
universal Turing machine can be fixed.

Theorem 27 For any n ∈ IN there exists a string xn ∈ {0, 1}∗ such that whenever C(xn) =
||(Tσ, p)|| the transducer Tσ has more than n states.

Proof. Consider an arbitrary but fixed n ∈ IN. We define 2n + 1 strings of length 2n + 3,

ui = 10i12n+2−i, i = 1, . . . , 2n + 1.

Choose
m = 32n2 + 68n + 29 (8)

and define
xn = um2

1 um2

2 · · ·um2

2n+1.

Let (Tσ, p) be an arbitrary encoding of xn where the transducer encoded by σ has at
most n states. We claim that

||(Tσ, p)|| >
m2

2
. (9)

The set of transitions of Tσ can be written as a disjoint union θ1 ∪ θ2 ∪ θ3, where

• θ1 consists of the transitions where the output contains a unique ui, 1 ≤ i ≤ 2n + 1,
as a substring, that is, for any j $= i, uj is not a substring of the output;

• θ2 consists of the transitions where for distinct 1 ≤ i < j ≤ 2n+1, the output contains
both ui and uj as a substring;

• θ3 consists of transitions where the output does not contain any of the ui’s as a sub-
string, i = 1, . . . , 2n + 1.

16

Note that if a transition α ∈ θ3 is used in the computation Tσ(p), the output produced
by α cannot completely overlap any of the occurrences of ui’s, i = 1, . . . , 2n + 1. Hence

each transition of θ3 that is used in the computation Tσ(p) has length at most 4n + 4.
(10)

Since Tσ has at most n states, and consequently at most 2n transitions, it follows by the
pigeon-hole principle that there exists 1 ≤ k ≤ 2n + 1 such that uk is not a substring of
any transition of θ1. We consider how the computation of Tσ on p outputs the substring
um2

k of xn. Let z1, . . . , zr be the minimal sequence of outputs that “covers” um2

k . Here z1

(respectively, zr) is the output of a transition that overlaps with a prefix (respectively, a
suffix) of um2

k .
Define

Ξi = {1 ≤ j ≤ r | zj is output by a transition of θi}, i = 1, 2, 3.

By the choice of k we know thatΞ 1 = ∅. For j ∈ Ξ2, we know that the transition outputting
zj can be applied only once in the computation of Tσ on p because for i < j all occurrences
of ui as substrings of xn occur before all occurrences of uj. Thus, for j ∈ Ξ2, the use of this
transition contributes at least 2 · |zj | to the length of the encoding ||(Tσ, p)||.

Finally, by (10), for any j ∈ Ξ3 we have |zj| ≤ 4n + 4 < 2|uk|. Such transitions may
naturally be applied multiple times, however, the use of each transition outputting zj , j ∈ Ξ3,
contributes at least one symbol to p.

Thus, we get the following estimate:

||(Tσ, p)||≥
∑

j∈Ξ2

2 · |zj| + |Ξ3| >
|um2

k |
2|uk|

=
m2

2
.

To complete the proof it is sufficient to show that C(xn) < m2

2
. The string xn can

be represented by the pair (T0, p0) where T0 is the 2n-state transducer from Figure 3 and
p0 = (0m1)2n−10m1m.

1 2 2n−1 2n

0/um
1

1/ε

0/um
2

. . .

0/um
2n−1

1/ε

0/um
2n

1/um
2n+1

Figure 3: The transducer T0 from the proof of Theorem 27.

Each state of T0 can be encoded by a string of length at most %log2(2n)&, so we get the
following upper bound for the length of a string σ0 ∈ S encoding T0:

|σ0| ≤ (8n2 + 16n + 6)m + (4n − 2)%log2(2n)& + 8n.

17

Noting that |p0| = (2n + 1)m + 2n − 1 we observe that

||(Tσ0, p0)|| = 2|σ0| + |p0| = (8n2 + 18n + 7) · m + f(n),

and by using (8) we verify that the term f(n) is less than m. Using again (8) we get
C(xn) ≤ ||(Tσ0 , p0)|| < m2

2
, which completes the proof.

Theorem 27 establishes that there is no upper bound on the number of states of trans-
ducers used in minimal descriptions.

Open problem 28 It is open whether for every n ∈ IN there exists a string xn such that a
minimal description of xn uses a transducer with exactly n states.

Comment 29 Intuitively, the following property would probably seem natural or desirable.
If u is a prefix of v, then C(u) ≤ C(v) + c where c is a constant independent of u and v.
However, the below example, based on a construction similar to the one used in Theorem 27,
seems to contradict this property.

For m ≥ 1, define
um = 0m2

1m2
0m2−1, vm = 0m2

1m2
0m2

.

Now vm has a description (T, 0m1m0m) where T is the single-state transducer with two self-
loops labeled by 0/0m and 1/1m. Thus, C(vm) ≤ 7 ·m+ c where c is a constant independent
of m.

We do not know how to construct a description for um, m ≥ 1, having size 7 ·m + O(1).

Open problem 30 Obtain a reasonable upper bound for C(u) in terms of C(v) when u is
a prefix of v.

As in the case of incompressibility in AIT we define a string x to be finite-state i–
compressible (i ≥ 1) if C(x) ≤ |x| − i. A string x is finite-state i–incompressible if C(x) >
|x|− i; if i = 1, then the string is called finite-state incompressible.

Fact 31 There exist finite-state incompressible strings of any length.

Proof. We note that the set {x | |x| = n, C(x) ≤ |x|− i} has at most 2n−i+1 − 1 elements.

8 An algorithm for computing finite-state complexity

A “brute-force” algorithm computing finite-state complexity is presented as pseudocode in
Algorithm 8.1.

18

Algorithm 8.1: FiniteStateComplexity(String x)

procedure FSComplexity(String x)
upperBd ← upperBound(x)
for each string enumeration ρ such that |ρ| ≤ upperBd

do
{
if correctEncoding(ρ) and obtainsX(Tσ, p, x)

then return (|ρ|)

procedure upperBound(String x)
upBd ← |x| + 8
return (upBd)

procedure correctEncoding(String ρ)
if ρ has correct pattern

then






σ ← prefix of ρ
p ← rest of ρ
comment: find and assign each bin(i) and ui to their array

for each bin(i) ∈ σ and ui ∈ σ (i.e in Tσ)

do
{

bins ← bin(i)
outs ← ui

if |bins| = |outs| and |bins| is even and |bins| > 0
then return (true)

return (false)

procedure obtainsX(Array bins, Array outs, String p, String x)
for each bin(i) ∈ bins

do






if i = 0 or i ≥ |bins|
2

then return (false)
trans ← i (where trans is the transition array)

output ← ε
k ← 0
for each character pi ∈ p

do






if pi = ‘0’

then
{

t ← element of trans at k
output ← output + element of outs at k

else
{

t ← element of trans at k + 1
output ← output + element of outs at k + 1

k ← 2 × (t − 1)
if output = x

then return (true)
return (false)

The general idea of the algorithm is that given a binary input string x, it enumerates

19

all possible strings ρ, where ρ is intended to be of the form σ† · p. Thus we must check,
for every enumerated ρ, whether it is of the form σ† · p. If so, then we extract from ρ the
pair (Tσ, p) and test whether Tσ(p) = x. If we do obtain x from the extracted pair, then we
can calculate the complexity, CS

σ (x) = 2|σ| + |p|, and terminate the algorithm. In all other
cases, we reject the current ρ and enumerate the next string ρ.

We now discuss each procedure of the algorithm separately.

The enumeration procedure of binary strings is done in lexicographical order, for every
length, starting from the description of the smallest transducer, which outputs ε on all inputs.

The FSDComplexity procedure is the core of the algorithm. It takes a string x as input
and manages both the enumeration and the other processes. Its role is to find the shortest
string ρ which is the correct encoding of a pair (Tσ, p) that computes x. As the enumeration
is in lexicographic order, the length of the first such pair is the complexity of the string.

The CorrectEncoding procedure first checks whether the enumerated ρ (passed as input
to this procedure) is of the form σ† ·p. In the affirmative, it decodes ρ into σ† and p and then
checks whether these components have the correct form and extracts Tσ from σ†. Finally, if
still in the affirmative, this procedure extracts the transition and the output functions from
Tσ and checks whether the size of their ranges are equal and even. If all of these conditions
hold, the enumerated ρ is a correct encoding, i.e. ρ = σ† · p where σ ∈ S. Otherwise, the
procedure rejects the current ρ, returning to the FSDComplexity procedure to enumerate
the next possible ρ.

The final procedure, ObtainsX, is only called if we have a potential pair (Tσ, p). It
uses the extracted functions (passed as inputs to the procedure along with our original
input string x and p) to simulate the computation of the transducer Tσ on the input p
and stores the output. When the simulation is complete, ObtainsX compares the obtained
output with x; if they are identical, then we have found a minimal description (Tσ, p) for
x and its length is calculated in the main procedure FSDComplexity, completing the process.

It is clear that since we enumerate through all possible binary strings, starting from the
description of the smallest σ in S, every possible pair will eventually be enumerated exactly
once. If any one of the steps in the ‘decoding’ fails, the algorithm rejects the considered ρ
and enumerates the next string in lexicographic order. Thus, for every input string x, the
algorithm finds a minimal description, computes the finite-state complexity of x, and halts.

We illustrate the Algorithm 8.1 in Table 4. Note that if x is in the table then x is
omitted as C(x) = C(x).

Clearly, a minimal description (Tσ, p) of a string x need not be unique because we can
simply interchange the input symbols 0 and 1 in the transitions of Tσ and in p.

Open problem 32 Describe the set of all strings having more than two different minimal
descriptions.

20

x C(x) (σ, p) x C(x) (σ, p)
ε 4 (0000,ε) 00000 11 (000110,11111)
0 7 (000110,1) 00001 13 (01000110,11110)
00 8 (000110,11) 00010 13 (01000110,11101)
01 9 (00011100,1) 00011 13 (01000110,11100)
000 9 (000110,111) 00100 13 (01000110,11011)
001 11 (01000110,110) 00101 13 (01000110,11010)
010 11 (01000110,101) 00110 13 (01000110,11001)
011 11 (01000110,100) 00111 13 (01000110,11000)
0000 10 (000110,1111) 01000 13 (01000110,10111)
0001 12 (01000110,1110) 01001 13 (01000110,10110)
0010 12 (01000110,1101) 01010 13 (01000110,10101)
0011 12 (01000110,1100) 01011 13 (01000110,10100)
0100 12 (01000110,1011) 01100 13 (01000110,10011)
0101 10 (00011100,11) 01101 13 (01000110,10010)
0110 12 (01000110,1001) 01110 13 (01000110,10001)
0111 12 (01000110,1000) 01111 13 (01010110,10000)

Table 4: Finite-state complexity of all strings in lexicographic order from ε to 01111.

9 Grammar-based compression and lower bounds for
finite-state complexity

A grammar G, or straight-line program [10, 16, 19], used as an encoding of a string has a
unique production for each nonterminal and the grammar is acyclic. That is, there is an
ordering of the nonterminals X1, . . . , Xm such that the productions are of the form

X1 → α1, . . . , Xm → αm

where αi contains only nonterminals from {Xi+1, . . . , Xm} and terminal symbols. The size
of the grammar G, size(G), is defined to be

∑m
i=1 |αi|. In cases where the grammars are

restricted to be in Chomsky normal form sometimes the size of the grammar is considered
to be simply the number of nonterminals [19].

Grammar-based compression of a string x may result in exponential savings compared
to the length of x: the grammar Xi → Xi+1Xi+1, i = 1, . . . , m − 1, Xm → aa generates the
string a2m

. Also, it is known that the smallest grammar for a string of length n has size
Ω(log n) [15].

Comparing the above to Corollary 21, we note that the grammar-based complexity, or
the size of the smallest grammar generating a given string, may be exponentially smaller
than the finite-state complexity of the string. Conversely, any string x can be generated by
a grammar with a binary encoding of size O(C(x)).

21

Lemma 33 There exists a constant d ≥ 1 such that for any x ∈ {0, 1}∗, {x} is generated
by a grammar Gx where

size(Gx) ≤ d · C(x).

Proof. The construction outlined in [8] for simulating an “NFA with advice” by a grammar
is similar. For the sake of completeness we include here a construction.

Assume x is encoded as a transducer-string pair (Tσ, p), where p = p1 · · · pn, pi ∈
{0, 1}. The initial nonterminal of the grammar Gx has a production with right side
(p1, si1)(p2, si2) · · · (pn, sin) where sij is the state of Tσ reached by the transducer after con-
suming the input string p1 · · · pj−1, 1 ≤ j ≤ n. After this the rules for nonterminals (pi, s)
simply simulate the output produced by Tσ in state s on input pi.

Let Q be the set of states of Tσ and, as usual, denote the set of transitions by ∆:
Q× {0, 1} → Q× {0, 1}∗. The size of Gx, that is the sum of the lengths of right sides of the
productions of Gx, is

size(Gx) = |p| +
∑

q∈Q,i∈{0,1}

|π2(q, i)|.

The size of a grammar counts simply the number of occurrences of nonterminals in the
productions. However, Lemma 33 holds also if we use the length of a binary description of
Gx as size(Gx). Note that in the construction the nonterminals of Gx are pairs consisting of
a binary bit and a state of Tσ.

Using Lemma 33 and known results on grammar-based compression we get lower bounds
for finite-state complexity of explicitly constructed strings. We already know that there exist
finite-state incompressible strings of any length, however, the proof of Lemma 31 relies on
counting arguments and does not give a construction of incompressible strings.

We recall the following notions. A binary de Bruijn string of order r ≥ 1 is a string w of
length 2r + r − 1 over alphabet {0, 1} such that any string of length r occurs as a substring
of w (exactly once). It is well known that de Bruijn strings of any order exist, and have an
explicit construction [9, 26].

Proposition 34 There is a constant d such that for any r ≥ 1 there exist strings w of length
2r + r − 1 with an explicit construction such that

C(w) ≥ d · |w|
log(|w|)

.

Proof. It is known that any grammar generating a de Bruijn string of order r has size Ω(2r

r)
[1]. Grammars generating a singleton language are called string chains in [1], see also [12].
The claim follows by Lemma 33.

We do not have an explicit construction of provably incompressible strings.

Conjecture 35 de Bruijn strings are finite-state incompressible.

22

It is known that computing the exact grammar-based complexity of a given string is
NP-complete [25] and recent work has focused on approximating the size of the smallest
grammar [2, 8, 16, 19]. However, it remains open whether the problem of finding the exact
minimal grammar is NP-hard when the terminal alphabet is restricted to be binary [2, 15].
Since finite-state complexity is a special case of grammar-based complexity and we employ
a binary alphabet it may not be easy to get an NP-hardness result for computing C(x).

10 Summary

In this paper we have developed a variant of AIT based on finite transducers. The finite-state
complexity, central to the new theory, is computable and satisfies a strong form of Invariance
Theorem. In contrast with descriptional complexities (plain, prefix-free) from AIT, there is
no a priori upper bound for the number of states used for minimal descriptions of arbitrary
strings. Explicit examples of finite-state incompressible strings have been given as well as
upper and lower bounds for finite-state complexity of arbitrary strings and for strings of
particular types.

Some open questions have been discussed throughout the paper. There are many possible
continuations. Here are a few possibilities we are working on: a) further study finite-state
random strings (in articular, check whether these strings are Borel normal [5], b) use finite-
state complexity to define and study finite-state random sequences and compare results with
the class of Borel normal sequences, c) classify infinite sequences according to various natural
finite-state reducibility relations (e.g. the sequence x is finite-state reducible to the sequence
y if there is a finite transducer transforming x into y).

Acknowledgments

C. Calude was supported by FRDF Grant of the UoA. Part of this research was done during
the visit of K. Salomaa to CDMTCS in 2009. K. Salomaa was supported by an NSERC
Research Grant.

References

[1] I. Althöfer. Tight lower bounds on the length of word chains, Inform. Proc. Lett. 34
(1990) 275–276.

[2] J. Arpe and R. Reischuk. On the complexity of optimal grammar-based compression,
Proc. of the Data Compression Conference, DCC’06, 2006, 173–186.

[3] J. Berstel. Transductions and Context-free Languages, Teubner, 1979.

[4] H. Buhrman and L. Fortnow. Resource-bounded Kolmogorov complexity revisited, Pro-
ceedings STACS’97, LNCS 1200, Springer-Verlag, 1997, 105–116.

23

[5] C. S. Calude. Information and Randomness—An Algorithmic Perspective, 2nd ed.,
Springer, Berlin, 2002.

[6] C. S. Calude, N. J. Hay, F. C. Stephan. Representation of Left-Computable ε–Random
Reals, CDMTCS Research Report 365, 2009, 11 pp.

[7] G. Chaitin. Algorithmic Information Theory, Cambridge University Press, 1987.

[8] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai
and A. Shelat. Approximating the smallest grammar: Kolmogorov complexity in natural
models, Proceedings of STOC’02, ACM Press, 2002, 792–801.

[9] N. de Bruijn. A combinatorial problem, Proc. Kon. Nederl. Akad. Wetensch. 49 (1946),
758–764.

[10] A. Diwan. A new combinatorial complexity measure for languages. Technical Report,
Computer Science Group, TaTa Institute, Bombay, 1986.

[11] R. Downey, D. Hirschfeldt. Algorithmic Randomness and Complexity, Springer, Heidel-
berg, 2010 (forthcoming)

[12] M. Domaratzki, G. Pighizzini and J. Shallit. Simulating finite automata with context-
free grammars, Inform. Proc. Lett. 84 (2002), 339–344.

[13] D. Doty and P. Moser. Feasible depth, arXiv:cs/0701123v3, April 2007.

[14] R. K. Guy. Unsolved Problems in Number Theory, 3rd ed., Springer, Berlin, 2004.

[15] E. Lehman. Approximation Algorithms for Grammar-based Compression, PhD thesis,
MIT, 2002.

[16] E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression,
SODA’02, SIAM Press, 2002, 205–212.

[17] A. Nies. Computability and Randomness, Clarendon Press, Oxford, 2009.

[18] S. Porrot, M. Dauchet, B. Durand and N. Vereshchagin. Deterministic rational trans-
ducers and random sequences, FoSSaCS’98, LNCS 1378, Springer, 1998, 258–272.

[19] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression, Theoret. Comput. Sci. 302, 2002, 211–222.

[20] M. Sipser. Introduction to the Theory of Computation, PWS 1997.

[21] J. Shallit. The computational complexity of the local postage stamp problem, SIGACT
News 33 (2002), 90–94.

[22] J. Shallit. What this country needs is an 18 cent piece, Mathematical Intelligencer 25,
2003, 20–23.

24

[23] J. Shallit and Y. Breitbart. Automacity I: Properties of a measure of descriptional
complexity. J. Comput. System Sci. 53 (1996), 10–25.

[24] J. Shallit and M.-W. Wang. Automatic complexity of strings, J. Automata, Languages
and Combinatorics 6, 2001, 537–554.

[25] J. Storer. NP-completeness results concerning data compression, Technical Report 234,
Dept. of Electrical Engineering and Computer Science, Princeton University, 1977.

[26] J.H. van Lint and R.M. Wilson. A Course in Combinatorics, Cambridge University
Press 1993.

[27] S. Yu. Regular languages, in: G. Rozenberg, A. Salomaa (eds.). Handbook of Formal
Languages, vol. I, Springer, Berlin, 1997, 41–110.

25

