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Abstract

The aim of this note is to introduce the notion of random sequences of reals and

to prove that the answer to the question in the title is negative, as anticipated by

the informal discussion of Longpr�e and Kreinovich [15].
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1 Introduction

Riemann's Hypothesis, a famous open problem of mathematics, states that all complex

roots (zeros) s = Re(s) + i Im(s) of the Riemann's zeta-function

�(s) =
1X

n=1

1

ns

(i.e., the values for which �(s) = 0) are located on the straight line Re(s) = 1=2 in

the complex plane (except for the known zeros, which are the negative even integers).

This hypothesis has appeared as Problem No. 8 in Hilbert's famous 1900 list of 23 open

problems (see Hilbert [11], Browder [1], and Karatsuba and Voronin [13]).

It has been proven that the real parts of the non-trivial zeros s of the Riemann's zeta-

function are close to 1=2, so they form a highly organized set. In fact a large proportion

of them lies on the line Re(s) = 1=2. The imaginary parts Im(s) of the same zeros s are

far from displaying any order and here is the argument.

Let us note that the zeta-function has in�nitely many, but only countably many zeros.

The non-trivial zeros lie in the stripe 0 < Re(s) < 1 and are symmetric with respect to

the real axis. Hence it is su�cient to consider the zeros with positive imaginary part.

Since they do not have an accumulation point in the complex plane, we can order them

to a sequence sk = Re(sk) + i Im(sk), k 2 IN = f0; 1; 2; : : :g, by the size of the imaginary
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part. (Zeros with the same imaginary part{if any{are ordered by their real parts and

multiple zeros are listed according to their multiplicities.)

Rademacher [9] has proven | using Riemann's Hypothesis | that the imaginary

parts of this sequence form a uniformly distributed sequence. Hlawka [12] has shown how

to prove Rademacher's result without using Riemann's Hypothesis. More exactly, the

Rademacher-Hlawka theorem states that for every real number t 6= 0, the fractional parts

fk(t) of the sequence
t

2�
� Im(sk)

are uniformly distributed in the sense that for every subinterval [a; b] � [0; 1], the portion

of points f0(t); : : : ; fN (t) that belong to this subinterval tends to b�a as N !1. In the

language of probabilities, the uniform distribution of the sequence fk(t) means that the

probability of fk(t) lying within an interval coincides with the measure of the interval.

A real x is (Borel) normal to the base b � 2 in case for every non-negative integer n �

1, each block of digits 0; 1; : : : ; b�1 of size n will occur in the limit exactly b�n of the time.

There is a close relation between the properties of uniform distribution and normality (see

Kuipers and Niederreiter [14]): The number x is normal to the base b i� the sequence

(bnx)n�0 is uniformly distributed. Normality is a weaker form of Chaitin/Martin-L�of

randomness (for various equivalent de�nitions see Chaitin [7], Martin-L�of [16], Calude

[4]): a random sequence is normal in every base, but the converse implication fails to be

true (cf. Calude [3, 4]).

2 The Problem

The above facts led the �rst author ([4], 219; see also [5]) to ask the question:

Do zeros of Riemann's zeta-function form a random sequence?

Longpr�e and Kreinovich [15] have argued that the answer is negative:

For a computable real number t, the sequence formed by merging the binary

digits of the fractional parts f0(t); f1(t); : : : is not random because the zeros

of Riemann's zeta-function can be computed algorithmically with any given

accuracy. Thus, the sequence of zeros is algorithmic and hence, it cannot be

random (cf. Calude [4], 138-139).

We agree with the above intuition and we will o�er a complete solution along the

strategy suggested by Longpr�e and Kreinovich. Before going to technicalities we would

like to make several comments.

First, one of the goals of the question was to invite researchers to de�ne the notion of

a random (in�nite) sequence of reals. This part of the question is methodological since

approaches can be quite di�erent and inequivalent. It is desirable that any de�nition

implies that any random sequence of reals is uniformly distributed.

Secondly, suppose that \we have" a de�nition of random sequence of reals. Consider

the set

Z = fIm(sk)jk � 0g

of imaginary parts of all non-trivial zeros (with positive imaginary part) of the Riemann's

zeta-function. An important point about this notation is that it does not specify how
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the sequence Im(sk) was being constructed. Therefore, in order to answer the original

question one has to specify how the imaginary parts of the zeros are being (e�ectively)

enumerated. As we have seen, the Rademacher-Hlawka theorem tells us that with respect

to a speci�c, natural enumeration, the sequence of imaginary parts of the zeros of the

Riemann's zeta-function is uniformly distributed modulo 1.

Two questions arise: a) is this sequence random?, b) is the sequence de�ned by

another enumeration of the zeros random?

Note that neither randomness nor uniform distribution are invariant with respect to

arbitrary enumerations. Thus, the true nature of the original question was to develop an

appropriate theory of randomness for sequences of reals, and, according to it, to decide

whether a sequence of imaginary parts of the zeros of Riemann's zeta-function is or not

random.

3 Random Sequences of Real Numbers

In this section we give several de�nitions of random sequences of real numbers which

lead to a possible way to make formal and precise the ideas of Longpr�e and Kreinovich

[15]. We prove the useful fact that a sequence of real numbers which contains a non-

random real is non-random itself. Furthermore, we show that each random sequence of

real numbers is uniformly distributed.

We start by recalling the de�nition of a Chaitin/Martin-L�of random sequence [7, 16,

4]. Let � be a �nite alphabet and �! = fp : IN! �g be the set of all in�nite sequences

over �. For a �nite word w 2 �� we denote by w�! = fp 2 �! j p(0) : : : p(jwj � 1) = wg

the open subset of all in�nite sequences with pre�x w. Let � be the usual measure on �!,

de�ned by �(w�!) = 2�jwj, for all w 2 ��. Let � : IN! �� be the quasi-lexicographical

ordering. Finally, let h :; : i : IN2 ! IN be the bijective pairing function de�ned by

hi; ji = 1
2(i+ j)(i + j + 1) + j, and ��1 : IN! IN2 be its inverse.

A randomness test on �! is a sequence (Un)n�0 of open sets Un � �! such that

1. �(Un) � 2�n, for all n,

2. there is an r.e. set A with Un =
S
hi;ni2A �(i)�!, for all n.

A sequence p 2 �! is called non-random if there is a randomness test (Un)n�0 with

p 2
T
n�0 Un. A sequence p 2 �! is called random if it is not non-random.

Next we introduce randomness for real numbers via representations of real numbers

with respect to some natural base. Fix a base b � 2, set �b = f0; 1; : : : ; b � 1g, and

consider the representation of reals in the unit interval

�b : �
!

b ! [0; 1]; �b(�0�1 : : : �n : : :) =
1X

i=0

�i2
�(i+1)

:

The expansion to base b is unique for all reals x 2 [0; 1] except for those rationals

corresponding to sequences ending in an in�nite sequence of 0s, respectively, of (b� 1)s.

A real x is called random to base b if its fractional part has a random b-adic expansion.

This de�nition is base invariant; see Calude and J�urgensen [6] or Calude [4]. For a

di�erent proof and a base invariant characterization of random reals see Weihrauch [19],

Weihrauch, Hertling [20].

For sequences of real numbers we can proceed in the same way by \merging" the

digits of the expansions of the fractional parts of the real numbers in a computable way.
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De�nition 3.1. Let f : IN2 ! IN be a bijection and let b � 2 be an integer. A sequence

(an)n�0 of real numbers an is called f -random to base b if there exists a random sequence

q = q0q1q2 : : : 2 �!

b
such that �b(qf(0;n)qf(1;n)qf(2;n) : : :) is the fractional part of an, for

all n 2 IN.

Note that this de�nition leads to the same randomness notion for all computable bijec-

tions f .

Lemma 3.2. Let f : IN2 ! IN be an arbitrary computable bijection and b � 2 be an

arbitrary base. Then any sequence (an)n�0 of real numbers is f -random to base b i� it

is h:; :i-random to base b.

Proof. We can assume that all numbers an lie in the interval [0; 1). The bijection

f � ��1 is computable. Fix a sequence q 2 �!

b
. The sequence q = q0q1q2 : : : is random

i� the sequence p = qf���1(0)qf���1(1)qf���1(2) : : : is random (see Lemma 3.4 below).

Furthermore, qf(i;n) = phi;ni, for all i; n, hence an = �b(qf(0;n)qf(1;n)qf(2;n) : : :) i� an =

�b(ph0;niph1;niph2;ni : : :), for all n. This proves the assertion. 2

Lemma 3.2 justi�es the following de�nition.

De�nition 3.3. Let b � 2 be an integer. A sequence (an)n�0 of real numbers an is

called random to base b i� there exists a random sequence q = q0q1q2 : : : 2 �!

b
such that

an = �b(qh0;niqh1;niqh2;ni : : :).

This notion of randomness has natural properties, as Proposition 3.5 and Theorem 3.6

show. Our proofs will use the following well-known fact, see e.g. Lemma 3.4 in Book,

Lutz, Martin [2].

Lemma 3.4. Let f : IN! IN be a computable one-to-one function. If �0�1�2 : : : 2 �!

is a random sequence, then the sequence �f(0)�f(1)�f(2) : : : is random as well.

Proposition 3.5. If a sequence of reals contains a non-random real, then the sequence

itself is non-random to any base b.

Proof. Let (an)n�0 be a sequence of reals which is random to some base b � 2. We can

assume that an 2 [0; 1), for all n. There is a random sequence q 2 �!

b
such that an =

�b(qh0;niqh1;niqh2;ni : : :), for all n. But, by Lemma 3.4, the sequence qh0;niqh1;niqh2;ni : : : is

also random, for each n 2 IN. Thus, all real numbers an are random to base b, hence,

random. 2

Theorem 3.6. If a sequence of real numbers is random to some base b, then it is

uniformly distributed modulo 1.

Proof. Let the sequence (an)n�0 of reals be random to some base b � 2. We can assume

that all reals an lie in [0; 1). For each integer N � 1 and 0 � r < s � 1 put

A([r; s); N) = #fi � N � 1 j ai 2 [r; s)g=N :

We have to show limN!1A([r; s); N) = s� r, for all 0 � r < s � 1.
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For each n, let p(n) = p(n)0p(n)1p(n)2 : : : be the expansion of an in base b. We know

that the sequence q with qhj;ni = p(n)j , for all n; j, is random. Fix a number k � 1. By

Lemma 3.4 the sequence

q
(k) = p(0)0p(0)1 : : : p(0)k�1p(1)0p(1)1 : : : p(1)k�1 : : :

is random. Let us consider each block p(n)0 : : : p(n)k�1 in this sequence as one digit in the

alphabet �
bk
. In other words, consider the sequence r(k) 2 �

bk
with �

bk
(r(k)) = �b(q

(k)).

This sequence is random as well and therefore also normal, see Calude [7]. Its normality

implies that for each interval [l=bk; (l+ 1)=bk) with 0 � l < bk the asymptotic portion of

numbers an in this interval is limN!1A([l=bk; (l+1)=bk); N) = 1=bk. This immediately

implies

lim
N!1

A([l=bk;m=b
k); N) = (m� l)=bk;

for l;m 2 IN, 0 � l � m � bk. Let [r; s) be now an arbitrary interval with 0 � r < s � 1.

It contains an interval [l=bk;m=bk) with l;m 2 IN, 0 � l � m � 2k and with length at

least r � s� 2 � bk. Hence

lim inf
N!1

A([r; s); N) � r � s� 2 � bk:

In the same way one proves lim supN!1A([r; s); N) � r � s+ 2 � bk. Note that we have

proved this for arbitrary k � 1. Thus, the desired assertion limN!1A([r; s); N) = r� s

follows. 2

Finally, we note that the randomness notion for sequences of real numbers introduced

in De�nition 3.3 is also base independent (the base independence of the randomness

notion for real numbers has been proved by Calude and J�urgensen [6]; see also Calude

[4]). Even more, the randomness of real numbers as well as of sequences of real numbers

can be characterized directly over the real numbers without using representations with

respect to some base. These results | which we will not prove here | are contained

in the forthcoming paper by Weihrauch and Hertling [20] (for real numbers see also

Weihrauch [19]), in which randomness is introduced not just for spaces of sequences but

more generally for spaces which are endowed with a numbering of a base of the topology

and with a measure. Here, we formulate the result for the case of sequences of real

numbers.

Consider the space [0; 1]! of in�nite sequences of real numbers in the unit interval.

This space is endowed with the product topology of the usual topology of [0; 1] and

with the product measure �1 of the Lebesgue measure � on [0; 1], see Halmos [10]. Let

� lQ : IN ! lQ \ [0; 1) be the total numbering of the rational numbers in the unit interval

(except the number 1) de�ned by � lQ(hi; ji) =
i

j+1 . We de�ne a numbering of a base of

the topology of the unit interval by

Bhi;ji = fx 2 [0; 1] j jx � � lQ(i)j � 2�jg;

and we de�ne a numbering B1 of a base of the topology of [0; 1]! by means of a standard

numbering of all �nite words of natural numbers. De�ne � : IN� ! IN by

�(empty word) = 0;

�(n1n2 : : : nl) = p
n1

1 p
n2

2 � � � p
nl+1
l

� 1; for l � 1;
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where p1 = 2, p2 = 3, p3 = 5 : : : is the sequence of prime numbers. The function � is a

bijection. Let � : IN! IN� be the inverse function to �. We set

B
1
i

= Bn1
�Bn2

� � � � �Bnl
� [0; 1]! ;

for �(i) = n1n2 � � �nl. Using this numbering of a base of the product topology on [0; 1]1

we can de�ne randomness for in�nite sequences directly.

De�nition 3.7 (Weihrauch and Hertling [20]). A randomness test on [0; 1]! is a

sequence (Un)n�0 of open sets Un � [0; 1]! such that

1. �1(Un) � 2�n,

2. there is an r.e. set A � IN with Un =
S
hi;ni2AB1

i
, for all n.

A sequence (an)n�0 of real numbers in the unit interval is called non-random if there is

a randomness test (Un)n�0 on [0; 1]! such that (an)n�0 2
T
m�0 Um. It is called random

if it is not non-random.

Theorem 3.8 (Weihrauch and Hertling [20]). Let b � 2. A sequence (an)n�0 of

reals in the unit interval is random i� it is random to base b.

Corollary 3.9. The randomness notion introduced in De�nition 3.3 is base indepen-

dent.

\Most" sequences of real numbers are random: in a perfect analogy with the case of

reals (see [4]), with probability one every sequence of real numbers is random. Exam-

ples of random sequences of real numbers can be easily constructed from random reals;

however, we do not have a natural example, for instance, as natural as Chaitin's Omega

number [7, 8].

4 The Solution

Finally, we return to the zeros of the Riemann's zeta-function. As we have seen, by the

Rademacher-Hlawka theorem, the sequence (Im(sk))k�0 of the (positive) imaginary parts

of the non-trivial zeros of the Riemann's zeta-function is uniformly distributed modulo

1. By Theorem 3.6, this is a property shared by all random sequences. But neither

the sequence (Im(sk))k�0 nor any other sequence containing imaginary parts of zeros of

Riemann's zeta-function is random. We formulate a slightly more general result.

Lemma 4.1. Let U � lC be a connected open subset of the complex plane, f : U ! lC be

an analytic function which is computable at least on some open subset of U . If a sequence

of real numbers contains a real or imaginary part of a zero of f , then this sequence is

not random.

Proof. By Pour-El and Richards [18] (Chapter 1.2, Proposition 1), the function f is

computable on any compact subset of its domain U . By a result of Orevkov [17] each

zero of f is a computable complex number, that is, its real and imaginary parts are

computable real numbers. Any computable real number is non-random, hence, every

sequence (yn)n�0 which contains at least one real or imaginary part of a zero of f is not

random by Lemma 3.5. 2

6



Theorem 4.2. No sequence (yk)k�0 of reals which contains at least one imaginary part

of a zero of the Riemann's zeta-function is random.

Proof. For complex numbers s with Im(s) > 1 the value �(s) of the zeta-function is given

by the absolutely convergent sum
P
1
n=1 n

�s. Hence the zeta-function is computable in

the half plane fs j Im(s) > 1g. The assertion follows from Lemma 4.1 since the domain

of de�nition of the zeta-function is the connected open set lC n f1g. 2
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