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Generic Model for Matching

Given: Left image L and right image R

One is the base image B, the other one the match image M

Matching Task

For (x , y ,B(x , y)) search corresponding pixel (x + d , y ,M(x + d , y))

Epipolar line identified by row y , and d is the disparity

Two pixels are corresponding iff
they are projections of the same point P = (X ,Y ,Z ) in the shown scene
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B = L and M = R

pqp

Wp Wq Wp

B M

Basic Idea

Start at pixel p in B, consider its neighborhood defined by a square window

Compare with neighborhoods around pixels q on the epipolar line in M

Search for best match of pixel neighborhoods
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Search Interval for B = L and M = R

Initiate search by selecting p = (x , y) in B

Search interval: max{x − dmax, 1} ≤ x + d ≤ x for q = (x + d , y) in M

In other words:
0 ≤ −d ≤ min{dmax, x − 1}

Example

Start at p = (1, y) in B

Then we can only consider d = 0 (i.e. a point P “at infinity”)

If no “reasonable” similarity of neighborhoods of p = (1, y) in B and
q = (1, y) in M then do not assign disparity 0 to p
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If Also Considering Smoothness Cost ...

Stereo matcher assigns disparity fp to pixel location p ∈ Ω

Edata(p, fp) = dissimilarity cost (error) between
local neighbourhood around p in B and
local neighbourhood around pixel in M defined by disparity fp

Esmooth(fp, fq) = dissimilarity cost (error) between disparity fp at p and
disparity fq at an adjacent location q

Goal for a stereo matcher: Minimise the total error

E (f ) =
∑
p∈Ω

Edata(p, fp) +
∑

q∈A(p)

Esmooth(fp, fq)


Will be discussed in detail in the next (i.e. the MRF) lecture
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Markov, Bayes, Gibbs, and Pixel-interaction

The Russian mathematician A. A. Markov (1856 – 1922) studied
stochastic processes where the interaction of multiple random variables
can be modeled by an undirected graph. These models are today known as
Markov random fields (MRFs).

If the underlying graph is directed and acyclic, then we have a Bayesian
network, named after the English mathematician T. Bayes (1701 – 1761).

If we only consider strictly positive random variables then an MRF is called
a Gibbs random field, named after the US-American scientist J. W. Gibbs
(1839 – 1903).

Here: Error- (or energy-) minimisation by pixel-interaction on undirected
pixel-adjacency graphs; labels assigned to pixels play the role of random
variables; assigned labels and pixel-interaction specify an MRF model
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Neighborhoods for Correspondence Search

Consider (2l + 1)× (2k + 1) windows

W l ,k
p (B) around reference point p in image B and

W l ,k
q (M) around reference point q in image M

Consider image row y (the current epipolar line) and

compare values in those local neighborhoods of p and q
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Examples of Simple Data Cost Terms

p = (x , y) and q = (x + d , y)

SSD data cost measure

ESSD(p, d) =
l∑

i=−l

k∑
j=−k

[B(x + i , y + j)−M(x + d + i , y + j)]2

SSD for sum of squared differences

SAD for sum of absolute differences

SAD data cost measure

ESAD(p, d) =
l∑

i=−l

k∑
j=−k

|B(x + i , y + j)−M(x + d + i , y + j)|
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Five Reasons Why Just SSD or SAD Will Not Work

1 Invalidity of Intensity Constancy Assumption (ICA). Intensity values
at corresponding pixels, and in their neighborhoods, typically
impacted by lighting variations, or just by image noise

2 Local reflectance differences. Due to different viewing angles, P and
its neighborhood reflect light differently to cameras recording B and
M

3 Differences in cameras. Different gains or offsets in cameras used
result in high SAD or SSD errors

4 Perspective distortion. 3D point P = (X ,Y ,Z ) is on a sloped
surface; local neighborhood around P on this surface is differently
projected into images B and M

5 No unique minimum. There might be several pixel locations q
defining the same minimum
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Zero-Mean Version

Calculate mean Bx of a used window W l ,k
x (B), and mean Mx+d of

window W l ,k
x+d(M), subtract Bx from all values in W l ,k

x (B), and Mx+d

from all values in W l ,k
x+d(M), calculate this way the data-cost function in

its zero-mean version

Option for reducing impact of lighting artifacts (i.e. not depending on ICA)

Indicated by starting subscript of data-cost function with a Z

Example: EZSSD or EZSAD are zero-mean SSD or zero-mean SAD
data-cost functions

EZSSD(x , d) =
l∑

i=−l

k∑
j=−k

[
(Bx+i ,y+j − Bx)− (Mx+i+d ,y+j −Mx+d)

]2
EZSAD(x , d) =

l∑
i=−l

k∑
j=−k

∣∣[Bx+i ,y+j − Bx ]− [Mx+d+i ,y+j −M i+d ]
∣∣
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NCC Data Cost

Normalized cross correlation (NCC) already used for comparing two images

Already defined by zero-mean normalization, but we add Z to the index for
uniformity in notation; let EZNCC (x , d) =

1−
∑l

i=−l
∑k

j=−k
[
Bx+i ,y+j − Bx

] [
Mx+d+i ,y+j −Mx+d

]√
σ2
B,x · σ2

M,x+d

where

σ2
B,x =

l∑
i=−l

k∑
j=−k

[
Bx+i ,y+j − Bx

]2
σ2
M,x+d =

l∑
i=−l

k∑
j=−k

[
Mx+d+i ,y+j −Mx+d

]2
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Census Data-Cost Function

The zero-mean normalized census cost function

EZCEN(x , d) =
l∑

i=−l

k∑
j=−k

ρ(x + i , y + j , d)

with

ρ(u, v , d) =

{
0 Buv ⊥ Bx and Mu+d ,v ⊥ Mx+d

1 otherwise

where ⊥ either < or >

By using Bx instead of Bx , and Mx+d instead of Mx+d , we have the
census data-cost function ECEN
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Example for Census Data Cost

Windows Wx(B) and Wx+d(M)

2 1 6
1 2 4
2 1 3

5 5 9
7 6 7
5 4 6

Have Bx ≈ 2.44 and Mx+d ≈ 6.11

i = j = −1 results in u = x − 1 and v = y − 1
Bx−1,y−1 = 2 < 2.44 and Mx−1+d ,y−1 = 5 < 6.11
Thus ρ(x − 1, y − 1, d) = 0

i = j = +1 results in u = x + 1 and v = y + 1
Bx+1,y+1 = 3 > 2.44 but Mx+1+d ,y+1 = 6 < 6.11
Thus ρ(x + 1, y + 1, d) = 1

i = j = −1: values in the same relation with respect to the mean
i = j = +1: opposite relationships
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Result for Example

For the given example: EZCEN = 2

Spatial distribution of ρ-values

0 0 0
1 0 0
0 0 1

Vector cx ,d lists these ρ-values in a left-to-right, top-to-bottom order:

[0, 0, 0, 1, 0, 0, 0, 0, 1]>
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Hamming Distance

Let bx be the vector listing results sgn(Bx+i ,y+j − Bx) in a left-to-right,
top-to-bottom order, where sgn is the signum function

Similarly, mx+d lists values sgn(Mx+i+d ,y+j −Mx+d)

For the values in previous example

bx = [−1,−1,+1,−1,−1,+1,−1,−1,+1]>

mx+d = [−1,−1,+1,+1,−1,+1,−1,−1,−1]

cx ,d = [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 ]>

Vector cx ,d shows positions where bx and mx+d differ; the number of
positions where two vectors differ is known as Hamming distance
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Efficient Calculation

Observation The zero-mean normalized census data cost EZCEN(x , d)
equals the Hamming distance between vectors bx and mx+d

By replacing values “-1” by “0” in vectors bx and mx+d , Hamming
distance for resulting binary vectors can be calculated very time-efficiently
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Steps Towards Stereo Vision

1 Choose 2 (or more) cameras appropriate for application

2 Aim at “CSG installation” of cameras

3 Calibrate cameras

4 Rectify recorded images using calibration results

5 Choose a stereo matcher for finding corresponding points

6 Possibly use B = L and M = R, followed by B = R and M = L

7 Evaluate calculated disparities (apply a confidence measure)

8 Calculate depth from disparities

9 Possibly approximate a surface model based on depth values
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Varying Qualities of Stereo Matchers
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Caption to Figure on Page Before

Top: Input image of a stereo sequence
recorded at Tamaki campus, The University of Auckland

Middle: Disparity map using a local matcher (block matching, as available
in OpenCV beginning of 2013

Bottom: Disparity map using iSGM as stereo matcher which applies a 3× 9
zero-mean normalized census data cost term
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Comparative Evaluations of Stereo Matchers

For examples of test data and performance of stereo matchers, see

1 KITTI: www.cvlibs.net/datasets/kitti/index.php

2 HCI: ci.iwr.uni-heidelberg.de/Static/challenge2012

3 EISATS: ccv.wordpress.fos.auckland.ac.nz/eisats

4 Middlebury Stereo Vision: vision.middlebury.edu/stereo/

It is also an important task to evaluate the provided test data (what kind
of challenges are given by a set of data); the performance of stereo
matchers depends on input data (lighting, complexity of scene, trajectories
of moving objects, etc.)

For a clip showing iSGM results on HCI test data, see
www.mi.auckland.ac.nz/DATA/CCV/VideoStereoGrey
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Frames in a Video Sequence and Optic Flow

We consider a sequence of scalar images, also called frames

Time difference δt between two subsequent time slots

I (., ., t) is the frame at time slot t with values I (x , y , t)

Example: δt = 1/30 s means 30 Hz (read: “hertz”) or

30 fps (read: “frames per second”) or 30 pps (read: “pictures per second”)

The optic flow u(x , y) = (u(x , y), v(x , y))

is the visible motion of a pixel at (x , y) into a pixel at
(x + u(x , y), y + v(x , y)) between two subsequent frames
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The Horn-Schunck Algorithm

Taylor expansion for frame sequence:

I (x + δx , y + δy , t + δt)

= I (x , y , t) + δx · ∂I∂x (x , y , t) + δy · ∂I∂y (x , y , t)

+ δt · ∂I∂t (x , y , t) + e

Assumption 1.
Let e = 0, i.e. I (., ., .) linear for small values of δx , δy , and δt

Assumption 2.
δx and δy model the motion u and v of one pixel between t and t + 1

Assumption 3.
Intensity constancy assumption I (x + δx , y + δy , t + δt) = I (x , y , t)
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Horn-Schunck Constraint or Optic Flow Equation

0 =
δx

δt
· ∂I

∂x
(x , y , t) +

δy

δt
· ∂I

∂y
(x , y , t) +

∂I

∂t
(x , y , t)

Changes in x- and y -coordinate during δt as optic flow

0 = u (x , y , t) · ∂I

∂x
(x , y , t) + v (x , y , t) · ∂I

∂y
(x , y , t) +

∂I

∂t
(x , y , t)

Short form:

0 = uIx + vIy + It
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The uv Velocity Space

Straight line
−It = u · Ix + v · Iy = u · ∇x ,y I

in uv velocity space, with optic flow vector u = [u, v ]>
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Labeling Model, Constraints, and an MRF

Labeling function f assigns label (u, v) to p ∈ Ω in I (., ., t)

Possible set of vectors (u, v) ∈ R2 defines the set of labels

Data error or data energy

Edata(f ) =
∑

Ω

[ u · Ix + v · Iy + It ]2

Smoothness error or smoothness energy

Esmooth(f ) =
∑

Ω

u2
x + u2

y + v 2
x + v 2

y

where ux is the 1st order derivative of u with respect to x , and so forth

Derivatives define dependencies between adjacent pixels: our first MRF
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The Optimization Problem

Task: Calculate labelling function f which minimizes

Etotal(f ) = Edata(f ) + λ · Esmooth(f )

where λ > 0 is a weight, e.g. λ = 0.1

Characterization: Total variation (TV)

Search for an optimum f in the set of all possible labelings
We apply L2-penalties for error terms, thus TVL2 optimization

Applied solution strategy: least-square error (LSE) optimization

1 Define an error or energy function. – DONE

2 Calculate derivatives of this function with respect to all the unknown
parameters. – NEXT ON OUR LIST

3 Set derivatives equal to zero and solve equational system with respect
to the unknowns. Result defines minimum of the error function.

30 / 31



Model for Stereo Matching Data Cost Optic Flow Model for Optic Flow Calculation

Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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