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1See last slide for copyright information.
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1.1–1.3: Basics

1.1. Show the correctness of

σ2
I =

 1

|Ω|
∑

(x ,y)∈Ω

I (x , y)2

 − µ2
I

1.2. How was the contrast C (I ) defined, for image I . How does
the contrast change when applying a local mean or local median
operator?

1.3. What are phase and magnitude values of the complex
numbers z1 = 5− 4i , z2 = 0, and z3 = 7i , for i =

√
−1?
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1.4–1.6: Fourier Transform

1.4. How is the 2D DFT defined for an N × N image I ? What is
the value I(0, 0) in frequency space?

1.5. Why are powers of the Mth root of unity located on the unit
circle in the complex plane?

1.6. Assume an N × N image as input for the 2D DFT, for even
N. Prove that a multiplication with (−1)x+y in the spatial domain
causes a shift by N/2 (both in row and column direction) in the
frequency domain.
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1.7–1.9: Color

1.7. How is the xy color space of CIE defined? Start with
explaining the meaning of tristimulus values X , Y , and Z , and end
with a graphical sketch of the xy -diagram.

1.8. Define the RGB color space. Where are the gray-levels
located? How is saturation and intensity defined for one of those
colors? What are the saturation values for gray-levels?

1.9. How is hue defined for a color in RGB space? You do not
need to provide a formula; just give an informal explanation how to
define a hue value for RGB colors.
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2.1–2.3

2.1. Linear local operators are those which can be defined by a
convolution. Classify the following whether they are linear
operators or not: box, median, histogram equalization, sigma-filter,
Gauss filter, and LoG.

2.2. Equalization of color pictures is an interesting area of
research. Discuss why the following approach is expected to be
imperfect: do histogram equalization for all three color (e.g., RGB)
channels separately; use the resulting scalar pictures as color
channels for the resulting image.

2.3. Derive the formula for linear scaling from given values umin

and umax.
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2.4–2.6

2.4. Specify exactly how the integral image can be used for
minimizing run time for a box filter of large kernel size.
2.5. Following the derivation of a Laplace mask in the lecture,
what could be a filter kernel for the quadratic variation (instead of
the one derived for the Laplace operator)?

2.6. The sigma-filter replaces I (p) by J(p) as defined in the
lecture. The procedure uses the histogram H(u) computed for
values u in the window Wp(I ) which belong to the interval
[I (p)− σ, I (p) + σ]. Alternatively, a direct computation can be
applied:

J(p) =

∑
q∈Zp,σ

I (q)

|Zp,σ|

where Zp,σ = {q ∈Wp(I ) : I (p)− σ ≤ I (q) ≤ I (p) + σ}. Analyze
possible advantages of this approach for small windows.
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2.7–2.8

2.7. What is the “symmetry property” in the frequency domain,
and why do we have to ensure the validity of this property when
designing a Fourier filter?

2.8. Sketch, as in the figure

a

u

1

a

u

1

a

u

1

a

u

1

filter curves in the frequency domain which might be called
“exponential low-emphasis filter” and “ideal band-pass filter”.
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2.9-2.11

2.9. Specify the 2D Gauss function (the zero-mean version is
sufficient). Describe how a discrete filter mask (for smoothing) can
be derived from this function.

2.10. How is a LoG scale space defined? How is a DoG scale space
defined?

2.11. How is the gradient for an image I defined, and how is the
output of the Sobel operator related to the gradient? Demonstrate
values of the Sobel operator for examples of 3× 3 image windows.
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3.1

3.1. Consider 6-adjacency in images, for pixel location p = (x , y):
In an even row (i.e. y is even) use

Aeven
6 = A4 ∪ {(x + 1, y + 1), (x + 1, y − 1)}

and in an odd row use

Aodd
6 = A4 ∪ {(x − 1, y + 1), (x − 1, y − 1)}

Consider the case on the left in the figure. Discuss the result.
Consider a chess-board type of binary image. What is the result?
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3.2–3.6

3.2. Explain why using 4-adjacency alone for a binary image leads
to topological problems. Explain why using 8-adjacency alone is
also not a topologically sound solution.

3.3. What is a component or region in an image?

3.4. Specify a way for defining K-adjacency for a gray-level image?
How is K-adjacency motivated by Euclidean topology in the plane?

3.5. What is the stop criterion in the border tracing algorithm of
Voss?

3.6. Why is the number of pixels on a border not a multi-grid
convergent estimator for the perimeter of a digitized set?
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3.7–3.9

3.7. Specify two ways how to define curvature at a point on a
continuous arc in the Euclidean plane.

3.8. Select a simple (e.g. 4× 4) gray-level image, a pixel adjacency
set A, and explain the concept of a co-occurrence matrix by using
the chosen example.

3.9. Define moments of order a + b for a set S ⊂ Ω and a given
image I defined on Ω. How is the centroid of S defined? Assume
that I is equal to 0 everywhere in S . What is the centroid of S in
this case?
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3.10 - 3.11

3.10. Why is the straight-line representation y = ax + b not
suitable for defining a parameter space for detecting line segments
in an image? Which representation has been suggested by Duda
and Hart instead?

3.11. Assume that we only map two pixel locations from an image
into the dα-Hough space. Sketch the resulting Hough space and
explain how the straight line is detected defined by those two pixel
locations. – Now assume that we have a ”noisy line segment” in
the image. How can this line segment be detected in Hough space?

3.12. Explain how image gradient information can be used to
enhance accuracy and speed of circle detection using the concept
of the Hough transform.
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4.1–4.4

4.1. What is the aperture problem for detecting local
displacements (i.e. 2D motion) in an image?

4.2. Describe cases where 2D motion (projected into an image)
does not correspond to the visible optical flow.

4.3. Calculate the coefficients of the Taylor expansion of the
function I (x , y , t) = 2x2 + xy 2 + xyt + 5t3 up to derivatives of the
3rd order.

4.4. What is the optical flow equation (also known as
Horn-Schunck constraint)? Specify the defined straight line in
uv -velocity space.
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4.5–4.7

4.5. When presenting the optical flow problem as a labeling
problem, defined by data-cost and smoothness-cost terms, what
are those two terms in case of the Horn-Schunck algorithm?

4.6. Explain as a general concept how LSE optimization is used for
solving a minimization problem such as defined by the
Horn-Schunck approach towards optical flow? What is LSE
standing for?

4.7. Provide a pseudo-code for the the Horn-Schunck algorithm
based on the mathematical solution

un+1
xy = ūn

xy − Ix(x , y) ·
Ix(x , y)ūn

xy + Iy (x , y)v̄n
xy + It(x , y)

λ2 + I 2
x (x , y) + I 2

y (x , y)

vn+1
xy = v̄n

xy − Iy (x , y) ·
Ix(x , y)ūn

xy + Iy (x , y)v̄n
xy + It(x , y)

λ2 + I 2
x (x , y) + I 2

y (x , y)
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4.8–4.10

4.8. For a given pixel location p, let Q be the point in uv -velocity
space where the straight line define by the optic-flow equation
intersects with the line in direction [Ix , Iy ]>. Derive (step by step)
a solution for Q (i.e an expression in terms of Ix , Iy , and It).

4.9. What is the basic idea behind the Lucas-Kanade algorithm?
How does this work for two adjacent pixels, and how for a whole
neigborhood of k pixels?

4.10. Show for the Lucas-Kanade algorithm that the matrix
inversion in the equation

u = (G>G)−1G>B

fails if image gradients in the selected neighborhood are parallel to
each other. Is this possible to happen for real image data?
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5.1–5.4

5.1. Specify one technique for image binarization which is more
advanced than just using one given global threshold T .

5.2. Assume that segments are generated by seed growing. How to
ensure independence of generated segments from the choice of a
selected seed in a segment?

5.3. Specify a pseudo-code for the recursive labeling of all pixels in
a defined region (defined by an equivalence relation on the given
image).

5.4. Describe the basic ideas behind mean-shift image
segmentation. An informal description is sufficient.
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5.5–5.7

5.5. Assume that we only use gray-levels in feature space. Specify
a variant of a mean-shift segmentation algorithm for this particular
case.

5.6. Define the image segmentation problem as a labeling problem,
specified by a data-cost term and a smoothness-cost term. Provide
one example of a relevant data term.

5.7. Describe the message-update process (either just by an
informal explanation, or by providing the update equation and
explaining the symbols involved in your equation) of
belief-propagation.
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5.8

5.8. The lectures suggested to replace the simple Potts
smoothness term by an alternative smoothness term in BP
segmentation. For example, if µ1 and µ2 are the intensity means in
adjacent segments, then constant c in equation

Esmooth(l − h) = Esmooth(a) =

{
0 if a = 0
c otherwise

can be replaced by a term where c is scaled in dependency of
difference |µ1 − µ2|.
Specify and discuss modified smoothness functions based on this
equation which include data characteristics into the smoothness
term.
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5.9–5.10

5.9. Consider the dissimilarity measure D defined by equation

D(A,B) =
|(A ∪ B) \ (A ∩ B)|

|A ∪ B|

Show that this measure satisfies the following two properties of a
metric d on a base set S :

1 f = g iff d(f , g) = 0

2 d(f , g) = d(g , f )

for all f , g , h ∈ S . Here, S is the family of sets of pixels.
Optional: A proof of the triangularity property would give you
additional marks.

5.10. What is “temporal consistency” when segmenting a sequence
of images, and give one example of a procedure which might help
to ensure this type of temporal consistency.

24 / 25



1 2 3 4 5

Copyright Information

This slide show was prepared by Reinhard Klette
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