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2 Chapter 2

3 Chapter 3
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1.1-1.3

Exercise

Show the correctness of

σ2
I =

 1

|Ω|
∑

(x ,y)∈Ω

I (x , y)2

 − µ2
I

Exercise

Who was Fourier? When was the Fast Fourier Transform designed
for the first time? How is the Fourier transform related to optical
lens systems?

Exercise

Assume an N × N image, for even N. Prove that a multiplication
with (−1)x+y in the spatial domain causes a shift by N/2 (both in
row and column direction) in the frequency domain.
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1.4-1.5

Exercise

In extension of the given example in the lectures, transform a few
more (easy) RGB values manually into corresponding HSI values.

Exercise

Let (δ, S ,M) be the color representation in the HSI space. Justify
the following steps for recovering the RGB components in the
following special cases:

• If δ ∈ [0, 2π/3] then B = (1− S)M.

• If δ ∈ [2π/3, 4π/3] then R = (1− S)M.

• If δ ∈ [4π/3, 2π] then G = (1− S)M.

How can we compute the remaining components in each of the
above cases?
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1.7

Exercise

In the CIE’s RGB color space (which models human color
perception), scalars R, G , or B may also be negative. Provide a
physical interpretation (obviously, we cannot subtract light from a
given spectrum).
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3 Chapter 3
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2.1-2.2

Exercise

Linear local operators are those which can be defined by a
convolution. Classify the following whether they are linear
operators or not: box, median, histogram equalization, sigma-filter,
Gauss filter, and LoG.

Exercise

Equalization of color pictures is an interesting area of research.
Discuss why the following approach is expected to be imperfect:
do histogram equalization for all three color (e.g., RGB) channels
separately; use the resulting scalar pictures as color channels for
the resulting image.
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2.3-2.5

Exercise

Prove that conditional scaling correctly generated an image J
which has mean and variance identical to those corresponding
values of image I used for normalization.

Exercise

Specify exactly how the integral image can be used for minimizing
run time for a box filter of large kernel size.

Exercise

Following the derivation of a Laplace mask in the lecture, what
could be a filter kernel for the quadratic variation (instead of the
one derived for the Laplace operator)?
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2.6-2.7

Exercise

Prove that Sobel masks are of the form ds> and sd> for 3D
vectors s and d which satisfy the assumptions of the
Meer-Georgescu algorithm for edge detection.

Exercise

The sigma-filter replaces I (p) by J(p) as defined in the lecture.
The procedure uses the histogram H(u) computed for values u in
the window Wp(I ) which belong to the interval [I (p)−σ, I (p) +σ].
Alternatively, a direct computation can be applied:

J(p) =

∑
q∈Zp,σ

I (q)

|Zp,σ|

where Zp,σ = {q ∈Wp(I ) : I (p)− σ ≤ I (q) ≤ I (p) + σ}. Analyze
possible advantages of this approach for small windows.
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2.8

Exercise

Sketch, as in the figure

a

u

1

a

u

1

a

u

1

a

u

1

filter curves in the frequency domain which might be called
“exponential low-emphasis filter” and “ideal band-pass filter”.
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3.1

Exercise

Consider 6-adjacency in images, for pixel location p = (x , y): In an
even row (i.e. y is even) use

Aeven
6 = A4 ∪ {(x + 1, y + 1), (x + 1, y − 1)}

and in an odd row use

Aodd
6 = A4 ∪ {(x − 1, y + 1), (x − 1, y − 1)}

Consider the case on the left in the figure. Discuss the result.
Consider a chess-board type of binary image. What is the result?
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3.2–3.3

Exercise

K-adjacency requires a test about ownership of the central corner
of a 2× 2 pixel configuration in some cases. Specify the condition
when such a test becomes necessary. For example, if all four pixels
have identical values, no test is needed; and if three pixels have
identical values, no test is needed either.

Exercise

What will happen if you use the local circular order

1

2

3

4

in the Voss algorithm, rather than a clockwise or counter-clockwise
local circular order?
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3.4–3.5

Exercise

Discuss similarities and differences for the eccentricity measure and
the shape factor. Use examples of binary shapes in your discussion.

Exercise

Explain how image gradient information can be used to enhance
accuracy and speed of circle detection using the concept of the
Hough transform.
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3.6

Exercise

Design a Hough transform method for detecting parabolas, for
example as present in an image as shown in the figure.
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4.1–4.2

Exercise

Calculate the coefficients of the Taylor expansion of the function
I (x , y , t) = 2x2 + xy 2 + xyt + 5t3 up to derivatives of the 3rd order.

Exercise

Verify the equations

∂Edata

∂uxy
(u, v) = 2 [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Ix (x , y)

∂Edata

∂vxy
(u, v) = 2 [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Iy (x , y)

∂Esmooth

∂uxy
(u, v) = 2 [(uxy − ux+1,y ) + (uxy − ux,y+1)

+ (uxy − ux−1,y ) + (uxy − ux,y−1)]
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4.3–4.4

Exercise

An initialization by zero in the Horn-Schunck algorithm would not
be possible if the resulting initial u- and v-values would also be
zero. Verify that this is not happening in general (i.e., if there
exists motion) at the start of the iteration of this algorithm.

Exercise

Use the provided simple data example for manual calculations of
the first 3 iterations of the Horn-Schunck algorithm, using zero as
initialization, and simple two-pixel approximation schemes for Ix ,
Iy , and It .
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4.5–4.6

Exercise

Verify the equation

(G>G)
−1

=
1

ad − bc

[
d −b
−c a

]

Exercise

Show for the Lucas-Kanade algorithm that the matrix inversion in
the equation

u = (G>G)−1G>B

fails if image gradients in the selected neighborhood are parallel to
each other. Is this possible to happen for real image data? Check a
linear algebra book about how to tackle such singularities in order
to get a least-square solution.
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5.1

Exercise

Suppose that the mean-shift algorithm for features clustering uses
a window of K grid points in a feature space; the histogram table
includes C nonempty cells. Exactly M ≥ C different grid points are
visited as the result of all mean calculations.
(1) Show that the total time of mean-shift algorithm is of
complexity O(MK + M2) where power two comes from multiple
visits over the same path from a grid point to the stable mean.
(2) In order to avoid multiple visits apply the ideas of the
UNION-FIND algorithm, i.e. when you visit the grid point
v = u + mg (u) as the result of mean shifting to grid point u then
assign to q the segment SEG(v) = UNION(SEG(u),FIND(q))
where v is rounded to the nearest grid point, and FIND(q) returns
the segment q belongs to.
Show that the use of UNION-FIND data structures reduces the
time for mean-shift clustering from O(MK + M2) to O(MK ).
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5.2

Exercise

If we like to use the mean-shift idea to identify local maxima in a
histogram in the feature space then we find all grid points in
feature space for which shift mg (u) is sufficiently small:

M = {u : ‖mg (u)‖2 < ∆u}

where ∆u is a grid step in the feature space.
Show that using a window with K grid points for the feature
histogram with C nonempty cells requires O(CK ) time to identify
the set of grid points M approximating local maxima.
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5.3

Exercise

We define the recovery rate, which is useful when comparing
different segmentation or clustering techniques.
We consider clustering of vectors x ∈ Rd , for d > 0. For example,
consider vectors x = [x , y ,R,G ,B]>, with d = 5, for segmenting a
color image.
Our general definition is: A clustering algorithm A maps a finite
set S of points in Rd into a family of pairwise-disjoint clusters. A
segmentation algorithm is an example for this more general
definition.
Assume that we have an algorithm A which maps S into m > 0
pairwise disjoint clusters Ci (e.g. segments), for i = 1, 2, . . . ,m,
containing mi = |Ci | vectors xij ∈ Rd . When segmenting an
image, the sum of all mi ’s is equal to the cardinality |Ω|. We call
the Ci ’s the old clusters.
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5.3 - Continued

Exercise

Now consider another clustering algorithm B which maps the same
set S into n > 0 pairwise disjoint clusters Gk , for k = 1, 2, . . . , n.
We call the Gk ’s the new clusters. A new cluster Gk contains
vectors x which were assigned by A to old clusters. Let

Gk = ∪skj=1Gkj

where each Gkj is a non-empty subset of exactly one old cluster Ci ,
for j = 1, 2, . . . , sk . Indices or names i and k of old and new
clusters are not related to each other, and in general we can expect
that n 6= m. Let us assume that n ≤ m (i.e. the number of new
clusters is upper bounded by the the number of old ones).
An ideal recovery would be if each old cluster is equal to one of the
new clusters, i.e. the two sets of clusters are just permutations by
names, and n = m.

24 / 29



1 2 3 4 5

5.3 - Continued

Exercise

Both algorithms A and B, would, for example, lead to the same
image segmentation result; segments might be just labeled by
different colors. We select contributing sets G1j1

,G2j2
, . . . ,Gnjn , one

for each new cluster, which optimize the following two properties:

1 For each pair aja and bjb of two different indices in the set
{1j1 , 2j2 , . . . , njn}, there exist two different old clusters Ca and
Cb such that Gaja ⊆ Ca and Gbjb

⊆ Cb.

2 Let Ck be the old cluster assigned to subset Gkjk
of the new

cluster Gk in the sense of the previous item such that the sum
m∑

k=1

|Gkjk
|

|Ck |

is maximized; and this maximization is achieved for all
possible index sets {1j1 , 2j2 , . . . , njn}.
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5.3 - Continued

Exercise

The selected contributing sets G1j1
,G2j2

, . . . ,Gnjn are thus
assigning each new cluster Gk to exactly one old cluster Ck by
maximizing the given sum. In particular, a chosen subset Gkjk
might be not the one of maximum cardinality in the partition of
Gk ; the selected contributing sets have been selected by
maximizing the total sum. Then, value

RA(B) =
n∑

k=1

|Gkjk
|

|Ck |
× 100%

n

is called the recovery rate for clustering algorithm B with respect
to algorithm A for input set S.
Discuss the time complexity of the proposed measure for a
recovery rate for clustering (and segmentation in particular).
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5.4

Exercise

The lectures suggested to replace the simple Potts smoothness
term by an alternative smoothness term in BP segmentation. For
example, if µ1 and µ2 are the intensity means in adjacent
segments, then constant c in equation

Esmooth(l − h) = Esmooth(a) =

{
0 if a = 0
c otherwise

can be replaced by a term where c is scaled in dependency of
difference |µ1 − µ2|.
Specify and discuss modified smoothness functions based on this
equation which include data characteristics into the smoothness
term.
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5.5

Exercise

Consider the dissimilarity measure D defined by equation

D(A,B) =
|(A ∪ B) \ (A ∩ B)|

|A ∪ B|

We recall: The general axioms of a metric d on a base set S are as
follows:

1 f = g iff d(f , g) = 0,

2 d(f , g) = d(g , f ) (symmetry), and

3 d(f , g) ≤ d(f , h) + d(h, g), for a third element h (triangular
inequality).

for all f , g , h ∈ S. Show that D is a metric on the family of sets of
pixels. Each set of pixels has a defined cardinality (i.e. the number
of pixels in this set).
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This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.
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