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Motivation

Control of noisy systems: “Noisy data in, and, hopefully, less noisy
data out.”

Applications of Kalman filters:

1 tracking objects (e.g., balls, faces, heads, hands)

2 fitting Bezier patches to point data

3 economics

4 navigation

5 ...

6 many computer vision applications (e.g. stabilizing depth
measurements, feature tracking, cluster tracking, fusing data
from radar, laser scanner, and stereo-cameras)
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Continuous Equation of a Linear Dynamic System

A continuous linear dynamic system is defined by

ẋ = A · x

nD vector x ∈ Rn: specifies the state of the process

A is the constant n × n system matrix

Notation ẋ is short for the derivative of x with respect to time t

Signs and magnitudes of the roots of the eigenvalues of A
determine the stability of the dynamic system

Observability and controllability are further properties of dynamic
systems

5 / 26



Applications Linear Systems Prediction Kalman Filter A few Comments

Example

Moving Object with Constant Acceleration

Video camera captures an object moving along a straight line

Object’s centroid is described by coordinate x on this line

Its motion by speed v and a constant acceleration a

Process state x = [x , v , a]>; thus ẋ = [v , a, 0]> and

ẋ =

 v
a
0

 =

 0 1 0
0 0 1
0 0 0

 ·
 x

v
a


Eigenvalues of 3× 3 system matrix A:

det(A− λI) = −λ3

specifies identical eigenvalues λ1,2,3 = 0; system is “very stable”
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Discrete Equations of a Linear Dynamic System

Continuous system in Equ. (5) mapped into a time-discrete system

∆t is the time difference between time slots t and t + 1

For Euler number e, for any argument x :

ex = 1 +
∞∑
i=1

x i

i !

The state transition matrix for ∆t equals

F∆t = e∆tA = I +
∞∑
i=1

∆t iAi

i !

with an i0 > 0 such that Ai is zero everywhere, for all i ≥ i0

Equation (7) thus a finite sum for discrete system

xt = Fxt−1

Initial state x0 at time slot t = 0
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Discrete Linear System with Control and Noise

Consider noise and system control; Equ. (7) is replaced by

xt = Fxt−1 + But + wt

yt = Hxt + vt

with a control matrix B, applied to a control vector ut , system
noise vectors wt , observation matrix H, noisy observations yt , and
observation noise vectors vt

System noise and observation noise vectors are assumed to be
mutually independent

Control defines some type of system influence at time t which is
not inherent to the process itself
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Example

Continuation: Moving Object with Constant Acceleration

System vectors xt = [xt , vt , at ]
>, with at = a

State transition matrix F is defined by

xt+1 =

 1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 1

 · xt =

 xt + ∆t · vt + 1
2 ∆t2a

vt + ∆t · a
a


Verify by applying Equ. (7)
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Observation Matrix for this Example

We only observe the current location yt = [xt , 0, 0]>

This defines observation matrix H as used in the following
equation:

yt =

 1 0 0
0 0 0
0 0 0

 · xt
Noise vectors wt and vt would be zero vectors under ideal
assumptions

Control vector and control matrix are not used in the example
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Time-Discrete Prediction

Given: sequence y0, y1, . . . , yt−1 of noisy observations for a linear
dynamic system

Goal: estimate internal state xt = [x1,t , x2,t , . . . , xn,t ]
>, which is of

the system at time slot t

Minimize the estimation error

x̂t1|t2
is the estimate of state xt1 based on knowledge available at t2

Pt1|t2
is the variance matrix of the prediction error xt1 − x̂t1|t2

Goal: minimize Pt|t in some defined way

12 / 26



Applications Linear Systems Prediction Kalman Filter A few Comments

Available Knowledge at Time of Prediction

Available knowledge at time t:

1 Estimate of state transition matrix F which is applied to the
(“fairly known”) previous state xt−1

2 Control matrix B which is applied to control vector ut , if
there is a control mechanism at all in the system

3 Understanding about system noise wt (e.g. modeled as a
multivariate Gaussian distribution) by specifying a variance
matrix Qt and expected values µi ,t = E [wi ,t ] = 0, for
i = 1, 2, . . . , n

4 Observation vector yt for state xt
5 Observation matrix H (“how to observe yt”?)

6 Understanding about observation noise vt (e.g. modeled as a
multivariate Gaussian distribution) by specifying a variance
matrix Rt and expected values µi ,t = E [vi ,t ] = 0, for
i = 1, 2, . . . , n
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Prediction and Filter

Key idea: not just one prediction after the other by applying
available knowledge; we define a filter which aims at updating our
knowledge about the system noise, based on experienced prediction
errors and observations so far, and we want to use the improved
knowledge about the system noise for reducing the prediction error

Basic issues, such as assuming an incorrect state transition matrix
or an incorrect control matrix, are not solved by the filter

Predict Phase of the Filter = first phase of the filter

Calculate the predicted state and predicted variance matrix, using
assumed state transition matrix F and control matrix B; also apply
the system noise variance matrix Qt :

x̂t|t−1 = Fx̂t−1|t−1 + But

Pt|t−1 = FPt−1|t−1F
> + Qt
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Update Phase of the Filter

= second phase of the filter

Calculate the measurement residual vector z̃t and the residual
variance matrix St :

z̃t = yt −Hx̂t|t−1

St = HPt|t−1H
> + Rt

using observation matrix H of the assumed model and observation
noise variance matrix Rt .

We aim at improving these noise matrices

Updated state-estimation vector (i.e., prediction at time t) by an
innovation step of the filter at time t:

x̂t|t = x̂t|t−1 + Kt z̃t

Goal: matrix Kt such that innovation step is optimal
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History

R. E. Kalman (born 1930 in Hungary) defined and published in
[R. E. Kalman. A new approach to linear filtering and prediction

problems. J. Basic Engineering, volume 82, pages 35–45, 1960] a
recursive solution to the linear filtering problem for discrete signals,
today known as the linear Kalman filter

Related ideas were also studied at that time by the US-American
radar theoretician P. Swerling (1929 – 2000)

The Danish astronomer T. N. Thiele (1838 – 1910) is also cited
for historic origins of involved ideas

Apollo 8 (December 1968), the first human spaceflight from Earth
to an orbit around the moon, would certainly not have been
possible without the linear Kalman filter

17 / 26



Applications Linear Systems Prediction Kalman Filter A few Comments

Optimal Kalman Gain

Matrix
Kt = Pt|t−1H

>S−1
t

minimizes the mean square error E [(xt − x̂t|t)
2], which is

equivalent to minimizing the trace (= sum of elements on the
main diagonal) of Pt|t

Matrix Kt is known as the optimal Kalman gain; it defines the
linear Kalman filter

Filter also requires an updated variance matrix

Pt|t = (I−KtHt)Pt|t−1

of the system noise for predict phase at time t + 1

P0|0 needs to be initialized at the begin of the filter process
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Example

Continuation: Moving Object now with Random Acceleration

The object is still assumed to move along a straight line

Now with random acceleration at between t − 1 and time t

For modeling randomness, we assume a Gauss distribution with
zero mean and variance σ2

a ; measurements of positions of the
object are assumed to be noisy; again we assume Gaussian noise
with zero mean and variance σ2

y

State vector given by xt = [xt , ẋt ]
> where ẋt equals the speed vt

We have that

xt =

[
1 ∆t
0 1

] [
xt−1

vt−1

]
+ at

[
∆t2

2
∆t

]
= Fxt−1 + wt

with variance matrix Qt = var(wt)
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Example Continued

Using Gt = [ ∆t2

2 ,∆t]> we have that

Qt = E [wtw
>
t ] = GtE [a2

t ]G>t = σ2
aGtG

>
t = σ2

a

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]

Qt and Gt are also independent of t, thus just denoted by Q and G

At time t we measure the position of the object:

yt =

[
1 0
0 0

]
xt +

[
vt
0

]
= Hxt + vt

Observation noise vt has the variance matrix

R = E [vtv
>
t ] =

[
σ2
y 0

0 0

]
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Example Continued

If initial position x̂0|0 = [0, 0]> accurately known then use matrix

P0|0 =

[
0 0
0 0

]
otherwise (with a suitably large real c > 0)

P0|0 =

[
c 0
0 c

]
t = 1: Predict x̂1|0 and calculate variance matrix P1|0 by

x̂t|t−1 = Fx̂t−1|t−1

Pt|t−1 = FPt−1|t−1F
> + Q

Calculate auxiliary data z̃1 and S1 by update equations

z̃t = yt −Hx̂t|t−1

St = HPt|t−1H
> + R
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Example Continued

Calculate the optimal Kalman gain K1 and update x̂1|1:

Kt = Pt|t−1H
>S−1

t

x̂t|t = x̂t|t−1 + Kt z̃t

Calculate P1|1 to prepare for t = 2:

Pt|t = (I−KtH)Pt|t−1

Those calculations are basic matrix or vector algebra operations,
easy to implement, but numerically already rather complex
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Tuning the Kalman Filter

Specifications of variance matrices Qt and Rt , or of constant
c ≥ 0 in P0|0, influences the number of time steps of the Kalman
filter such that the predicted states converge to true states

Assuming a higher uncertainty (i.e., larger c ≥ 0, or larger values
in Qt and Rt), increases values in Pt|t−1 or St ; due to the use of

the inverse S−1
t in the definition of the optimal Kalman gain, this

decreases values in Kt and the contribution of the measurement
residual vector in the update equation

If we are totally sure about the correctness of the initial state z0|0
(i.e., c = 0), and that we do not have to assume any noise in the
system and in the measurement processes, then matrices Pt|t−1

and St degenerate to zero matrices; the inverse S−1
t does not exist,

and Kt remains undefined: The predicted state is equal to the
updated state; this is the fastest possible convergence of the filter
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Alternative Model for Predict Phase

An estimate of the continuous model matrix A in ẋ = A · x
supports the use of equations

˙̂xt|t−1 = Ax̂t−1|t−1 + Btut

Pt|t−1 = APt−1|t−1A
> + Qt

and defines a modified matrix B, now for the impact of control on
the derivatives of state vectors

This modification in the predict phase does not have formal
consequence on the update phase
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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