
Tracking LK Tracker Translation and More

Lukas-Kanade Tracker1

Lecture 23

See Sections 9.3.1 and 9.3.2 in
Reinhard Klette: Concise Computer Vision

Springer-Verlag, London, 2014

1See last slide for copyright information.
1 / 31

Tracking LK Tracker Translation and More

Agenda

1 Tracking of Features

2 Lucas-Kanade Tracker

3 Examples: Translation and More

2 / 31

Tracking LK Tracker Translation and More

Example

3 / 31

Tracking LK Tracker Translation and More

Caption

Top: Tracked feature points in a frame of a stereo video sequence
recorded in a car

Middle: Tracked feature points are used for calculating the motion
of the car; this allows to map 3D points provided by stereo vision
into a uniform 3D world coordinate system

Bottom: Stereo matcher iSGM has been used for the shown
example (example of a disparity map for the recorded sequence).

4 / 31

Tracking LK Tracker Translation and More

Example of an Application Scenario

A car, which is called the ego-vehicle because it is the reference
vehicle where the considered system is working in, in distinction to
“other” vehicles in a scene

This ego-vehicle is equipped with a stereo vision system and it
drives through a street, providing reconstructed 3D clouds of
points for each stereo frame at time t

After understanding the motion of the ego-vehicle, these 3D clouds
of points can be mapped into a uniform 3D world coordinate
system supporting 3D surface modeling of the road sides

For understanding the motion of the ego-vehicle, we track detected
features from Frame t to Frame t + 1, being the input for a
program calculating the ego-motion of the car

5 / 31

Tracking LK Tracker Translation and More

Tracking is a Sparse Correspondence Problem

Binocular stereo
Point or feature correspondence is calculated between images taken
at the same time; the correspondence search is within an epipolar
line; thus, stereo matching is a 1D correspondence problem

Dense Motion (i.e. optic flow) Analysis
Point or feature correspondence is calculated between images
taken at subsequent time slots; movements of pixels not
constrained to be along one straight line; dense motion analysis is
a 2D correspondence problem

Feature Tracking
A sparse 2D correspondence problem

6 / 31

Tracking LK Tracker Translation and More

Tracking and Updating of Features

Theoretically, its solution could also be used for solving stereo or
dense motion analysis

But there are different strategies for solving a dense or a sparse
correspondence problem

In sparse correspondence search we cannot utilize a smoothness
term, and need to focus more at first on achieving accuracy based
on the data term only

We can use global consistency of tracked feature point patterns for
stabilizing the result

7 / 31

Tracking LK Tracker Translation and More

Tracking with Understanding 3D Changes

Pair of 3D points Pt = (Xt ,Yt ,Zt) and
Pt+1 = (Xt+1,Yt+1,Zt+1), projected at times t and t + 1 into
pt = (xt , yt , f) and pt+1 = (xt+1, yt+1, f), respectively, when
recording a video sequence

Z-ratio

ψZ =
Zt+1

Zt

We can derive X - and Y -ratios

ψX = Xt+1

Xt
= Zt+1

Zt
· xt+1

xt
= ψZ

xt+1

xt

ψY = Yt+1

Yt
= Zt+1

Zt
· yt+1

yt
= ψZ

yt+1

yt

8 / 31

Tracking LK Tracker Translation and More

Update Equation

Xt+1

Yt+1

Zt+1

 =

ψX 0 0
0 ψY 0
0 0 ψZ

 ·
Xt

Yt

Zt


Knowing ψZ and ratios xt+1

xt
and yt+1

yt
allows us to update the

position of point Pt into Pt+1

Assuming that Pt and Pt+1 are positions of a 3D point P, from
time t to time t + 1, we only have to

1 decide on a technique to track points from t to t + 1

2 estimate ψZ

9 / 31

Tracking LK Tracker Translation and More

Initial Position and Z -Ratios

If an initial position P0 of a tracked point P is known then we may
identify its 3D position at subsequent time slots

Without having an initial position, we only have a 3D direction Pt

to Pt+1, but not its 3D position

Stereo vision is the general solution for estimating Z -values or
(just) ratios ψZ

We can also estimate ψZ in a monocular sequence from
scale-space results

Now: how to track points from t to t + 1?

10 / 31

Tracking LK Tracker Translation and More

Agenda

1 Tracking of Features

2 Lucas-Kanade Tracker

3 Examples: Translation and More

11 / 31

Tracking LK Tracker Translation and More

Lucas-Kanade Tracker

Image I

y

x

Image J

y

x

t h

p p

Wp

Wp,a

Template or base window Wp in base image I compared with a
match window Wp,a in match image J

12 / 31

Tracking LK Tracker Translation and More

Sketch

Shown case: dissimilarity vector a is a translation t and a scaling
of height h into a smaller height

Figure indicates that a disk of influence is contained in Wp

Pixel location p in J is the same as in I ; it defines the start of the
translation

Lucas-Kanade Tracker

Match template Wp, being a (2k + 1)× (2k + 1) window around
keypoint p = (x , y) in a base image I , with windows Wp,a in a
match image J

Method should be general enough to allow for translation, scaling,
rotation and so forth between base window Wp and match window
Wp,a in J

Vector a parametrizes the transform from p into a new center
pixel, and also the transformation of window W into a new shape

13 / 31

Tracking LK Tracker Translation and More

Newton-Raphson Iteration

Task: Calculate a zero of a smooth unary function φ(x), for
x ∈ [a, b], provided that we have φ(a)φ(b) < 0

Inputs are the two reals a and b

We also have a way to calculate φ(x) and the derivative φ′(x) (e.g.
approximated by difference quotients), for any x ∈ [a, b]

Calculate a value c ∈ [a, b] as an approximate zero of φ:

1: Let c ∈ [a, b] be an initial guess for a zero.
2: while STOP CRITERION = false do
3: Replace c by c − φ(c)

φ′(c)
4: end while

Derivative φ′(c) is assumed to be non-zero; if φ has a derivative of
constant sign in [a, b] then there is just one zero in [a, b]

14 / 31

Tracking LK Tracker Translation and More

Comments

Initial value of c can be specified by (say) a small number of
binary-search steps for reducing the run-time of the actual
Newton-Raphson iteration

A small ε > 0 is used for specifying the STOP CRITERION
“|φ(c)| ≤ ε”

Method converges in general only if c is “sufficiently close” to the
zero z

If φ′′(x) has a constant sign in [a, b], then we have the following: if
φ(b) has the same sign as φ′′(x) then initial value c = b gives
convergence to z , otherwise chose initial value c = a

15 / 31

Tracking LK Tracker Translation and More

Figure

A smooth function φ(x) on an interval [a, b] with φ(a)φ(b) < 0

Assume that we start with c = x1

Tangent at (x1, φ(x1)) intersects x-axis at x2 and defined by

x2 = x1 −
φ(x1)

φ′(x1)

Have φ′(x1) 6= 0. Now continue with c = x2 and new tangent, etc.
16 / 31

Tracking LK Tracker Translation and More

Convergence and Valleys

For initial value x1, sequence x2, x3, . . . converges to zero z

If start at c = x0 then the algorithm would fail

Note that φ′′(x) does not have a constant sign in [a, b]

We need to start in the “same valley” where z is located

We search for the zero in the direction of the (steepest) decent

If we do not start in the “same valley” then we cannot cross the
“hill” in between

Following the Newton-Raphson Iteration.

Lucas-Kanade tracker uses approximate gradients which are robust
against variations in intensities

For window matching, an error function E is defined based on an
LSE optimization criterion

17 / 31

Tracking LK Tracker Translation and More

Agenda

1 Tracking of Features

2 Lucas-Kanade Tracker

3 Examples: Translation and More

18 / 31

Tracking LK Tracker Translation and More

Translation

Simplest case: only a translation t = [t.x , t.y]> such that
J(x + t.x + i , y + t.y + j) ≈ I (x + i , y + j), for all i , j , with
−k ≤ i , j ≤ k , defining relative locations in template Wp

Simplifying notation: assume that p = (x , y) = (0, 0), and we
use W or Wa instead of Wp or Wp,a, respectively

Case of translation-only: approximate a zero (i.e. a minimum) of
the error function

E (t) =
k∑

i=−k

k∑
j=−k

[J(t.x + i , t.y + j)− I (W (i , j))]2

where t = [t.x , t, y]> and W (i , j) = (i , j)

19 / 31

Tracking LK Tracker Translation and More

Goal for General Warps

Tracker not just for translations but for general warps defined by
an affine transform, with a vector a parametrizing the transform

Let J(Wa(q)) be the value at that point Wa(q) in J which results
from warping pixel location q = (i , j), with −k ≤ i , j ≤ k ,
according to parameter vector a

Warping will not map a pixel location onto a pixel location, thus
we also apply some kind of interpolation for defining J(Wa(q))

Translation with a = [t.x , t.y]> : for q = (i , j) we have
Wa(q) = (t.x , t.y) + q and J(Wa(q)) = J(t.x + i , t.y + j)

General case: calculate dissimilarity vector a which minimizes error
function

E (a) =
∑
q

[J(Wa(q))− I (W (q))]2

20 / 31

Tracking LK Tracker Translation and More

Iterative Steepest-Ascent Algorithm

Assume: we are at a parameter vector a = [a1, . . . , an]>

Similarly to mean-shift algorithm for image segmentation, calculate
(as partial step) shift ma = [m1, . . . ,mn]> which minimizes

E (a + ma) =
∑
q

[J(Wa+ma(q))− I (W (q))]2

Solving this LSE optimization problem:

Consider Taylor expansion (analog to deriving the Horn-Schunck
constraint) of J(Wa(q)) with respect to dissimilarity vector a and a
minor shift ma

J(Wa+ma(q)) = J(Wa(q)) + m>a · grad J · ∂Wa

∂a
+ e

Assume e = 0, thus linearity of values of image J in the
neighborhood of pixel location Wa(q)

21 / 31

Tracking LK Tracker Translation and More

LSE Optimization Problem

Second term on the right-hand side is a scalar: product of shift
vector ma, derivative grad J of the outer function (i.e. the usual
image gradient), and the derivative of the inner function

Window function W defines a point with x- and y -coordinates;
derivative of W with respect to locations identified by a:

∂Wa

∂a
(q) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]

This is the Jacobian matrix of the warp; minimization problem now:

∑
q

[
J(Wa(q)) + m>a · grad J · ∂Wa

∂a
− I (W (q))

]2
Follow standard LSE optimization for calculating optimum shift ma

22 / 31

Tracking LK Tracker Translation and More

LSE Procedure

1 Calculate the derivative of this sum with respect to shift ma

2 Set this equal to zero
3 Obtain the equation (with 2× 1 zero-vector 0)

2
∑

q

[
grad J ∂Wa

∂a

]> [
J(Wa(q)) + m>a · grad J · ∂Wa

∂a − I (W (q))
]

= 0

2× 2 Hessian matrix

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
Solution defines optimum shift vector ma

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

from given parameter vector a to updated vector a + ma
23 / 31

Tracking LK Tracker Translation and More

Analogy to the Newton-Raphson Iteration

1 Start with an initial dissimilarity vector a

2 New vectors a + ma are calculated in iterations

3 Follow the steepest ascent

Possible stop criteria

1 Error value or length of shift vector ma is below a given ε > 0

2 A predefined maximum of iterations

24 / 31

Tracking LK Tracker Translation and More

Example: Translation Case

Only translation a with Wa(q) = [t.x + i , ty + j]>, for q = (i , j)

Jacobian matrix

∂Wa

∂a
(q, a) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]
=

[
1 0
0 1

]
Hessian matrix (approximated by products of first-order derivatives)

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
=
∑
q

 (∂J∂x)2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2


Steepest ascent

grad J · ∂Wa

∂a
= grad J

and
I (W (q))− J(Wa(q)) = I (W (q))− J(q + a)

25 / 31

Tracking LK Tracker Translation and More

Altogether (for Translation)

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

=

∑
q

 (∂J∂x)2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2
−1∑

q

[grad J]> [I (W (q))− J(q + a)]

1 Approximate derivatives in image J around the current pixel
locations in window W

2 This defines the Hessian and the gradient vector

3 Then a sum of differences for identifying the shift vector ma

26 / 31

Tracking LK Tracker Translation and More

Lucas-Kanade Algorithm

Given is an image I , its gradient image grad I , and a local
template W (i.e. a window) containing (e.g.) the disk of influence
of a keypoint

1: Let a be an initial guess for a dissimilarity vector
2: while STOP CRITERION = false do
3: For the given vector a, compute the optimum shift ma as

defined above
4: Let a = a + ma

5: end while

27 / 31

Tracking LK Tracker Translation and More

Line 3

Line 3 in the algorithm requires calculations for all pixels q defined
by template W ; basically the main steps:

1 Warp W in I into Wa(q) in J

2 Calculate the Jacobian matrix and its product with grad J

3 Compute the Hessian matrix

The algorithm performs magnitudes faster than an exhaustive
search algorithm for an optimized vector a

Program for Lucas-Kanade algorithm available in OpenCV

28 / 31

Tracking LK Tracker Translation and More

Dents and Hills

Assume that error values are defined on the plane, and for different
values of a they describe a “hilly terrain”, with local minima,
possibly a uniquely defined global minimum, local maxima, and
possibly a uniquely defined global maximum

Blue point “cannot climb” to global maximum; red point is already
at local maximum; yellow dot can iterate to global peak

29 / 31

Tracking LK Tracker Translation and More

Drift

There is also the possibility of a drift

The individual local calculation can be accurate, but the
composition of several local moves may result in significant errors
after some time, mainly due to the discrete nature of the data

30 / 31

Tracking LK Tracker Translation and More

Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.

31 / 31

http://www.cs.auckland.ac.nz/~rklette

	Tracking of Features
	Lucas-Kanade Tracker
	Examples: Translation and More

