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3PSM - The Solution

nP is collinear with the cross product

(E1u2||s2||2 · s1 − E2u1||s1||2 · s2)×(E1u3||s3||2 · s1 − E3u1||s1||2 · s3)

Uniquely defines unit normal n◦P pointing away from the camera

We only need relative intensities of light sources, no absolute
measurements Ei
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Agenda

1 Calibration of Light Sources

2 Albedo Recovery

3 Integration of Gradient Fields

4 Local Integration Methods

5 Global Optimization

6 Fourier-Transform Based Method
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Calibration of Light Source Direction

Image of a calibration sphere, ideally with uniform albedo and
Lambertian reflectance

Illustration of detected isointensity “lines”, showing the noisiness
involved
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Direction to Light Sources by Inverse PSM

Calibration of directions si to the three light sources

We apply inverse photometric stereo:

Use of a calibration sphere with (about) Lambertian reflectance
and uniform albedo

Sphere about at location where object normals will be recovered.

1 Identify the circular border of the imaged sphere.

2 Calculate surface normals (of the sphere) at more than three
points P (say, about 100) projected into pixel positions within
the circle. How?

3 Identify direction si by least-square error optimization using
the 3PSM solution equations

4 We have values ui and normals nP ; solve for unknown
direction si
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Light Source Energy and Set-Up

Also measure this way (i.e. inverse PSM) energy ratios between
intensities Ei of the three light sources.

Recommendation

Angle between two light source directions (centered around the
viewing direction of the camera) should be about 56◦ for optimized
PSM results
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Albedo Recovery

For i = 1, 2, 3, consider equations

ui =
Ei

cπ
· ρ(P) ·

s>i · nP
||si||2 · ||nP ||2

We have three values ui at p (projection of surface point P)

We have (approximate) values for unit vectors s◦i and n◦P

We have relative intensities of the three light sources.

Only remaining unknown is ρ(P)

Combine first and second, first and third, and second and third
image for a robust estimation of ρ(P)

How?
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Why Albedo Recovery?

The knowledge of the albedo is of importance for light-source
independent modeling of the surface of an object, defined by
geometry and texture (albedo)

In general (if not limited to Lambertian reflectance), the albedo
depends upon the wavelength of the illuminating light

As a first approximation, we may use light sources of different
color, such as red, green, or blue light, to recover the related
albedo values

Note that after knowing s◦ and n◦, we only have to change the
wave length of illuminations (e.g. using transparent filters),
assuming the object is not moving in between
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Example: Human Faces

3PSM is of reasonable accuracy for recovering the albedo values of
a human face

Face recovered by 3PSM (at University of Auckland in 2000)

Closed eyes avoid the recording of specularity
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Discrete Gradient Field

Discrete field of normals (or gradients) transformed into a surface
by integration

Integration is not unique even when dealing with smooth surfaces

Result only determined up to an additive constant

Ill-Posedness of Discrete Integration

Results of PSM are discrete and erroneous surface gradient data

Surfaces often “non-smooth” (e.g. polyhedral)

Example: Camera looks onto a stair case, orthogonal to the front
faces; recovered normals point straight towards camera

Densities of recovered surface normals do not correspond uniformly
to local surface slopes
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Integration Path

(x ,y )00

γ

γ

(x ,y )111

2

1 A surface patch defined on a simply-connected set

2 Its explicit surface function satisfies the integrability condition

Then: local integration along different paths will lead (in the
continuous case) to identical elevation results at point (x1, y1),
after starting at (x0, y0) with the same initial elevation value
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Theoretical Model for Ideal Inputs

Depth function Z = Z (x , y) defined on simply-connected set Ω

At all p ∈ Ω, Z satisfies the integrability condition

∂Z 2

∂x∂y
=

∂Z 2

∂y∂x

Then: Z can be recovered by starting at one point (x0, y0) with an
initial value Z (x0, y0), and then by integrating gradients along a
path γ which is completely in the set

Different integration paths lead (theoretically) to an identical value
at (x1, y1)
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Local Integration Methods

Implement integration along selected paths (e.g. one or multiple
scans through the image)

by using initial Z -values and local neighborhoods at a pixel
location when updating Z -values incrementally
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Example: Two-Scan Method

Task: Recover depth function Z such that

∂Z

∂x
(x , y) = a(x , y)

∂Z

∂y
(x , y) = b(x , y)

for given gradient values ax ,y and bx ,y at pixel locations (x , y) ∈ Ω
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Local Increments

Line connecting (x , y + 1,Zx ,y+1) and (x + 1, y + 1,Zx+1,y+1) is
approximately perpendicular to average normal between these two
points

Thus: Dot product of slope of this line and average normal equal
to zero

Zx+1,y+1 = Zx ,y+1 +
1

2
(ax ,y+1 + ax+1,y+1)

Similarly:

Zx+1,y+1 = Zx+1,y +
1

2
(bx+1,y + bx+1,y+1)

Adding both equations and dividing by 2

Zx+1,y+1 =
1

2
(Zx ,y+1 + Zx+1,y )

+
1

4
(ax ,y+1 + ax+1,y+1 + bx+1,y + bx+1,y+1)
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Two Stages of Algorithm

Total number of points on object surface is Ncols × Nrows

Two arbitrary initial height values at (1, 1) and at (Ncols ,Nrows)

Two-scan algorithm: first stage starts at (1, 1), determines
height values along x-axis and y -axis by discretizing weak
integrability in terms of forward differences

Zx ,1 = Zx−1,1 + ax−1,1

Z1,y = Z1,y−1 + b1,y−1

where x = 2, ...,Ncols and j = 2, ...,Nrows , and scans image then
vertically using the local increments defined on the last slide
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Second Stage

Starts at corner (Ncols ,Nrows), sets height values by

Zx−1,Nrows = Zx ,Nrows − ax ,Nrows

ZNcols ,y−1 = ZNcols ,y − bNcols ,y

and scans the image horizontally using

Zx−1,y−1 =
1

2
(Zx−1,y + Zx ,y−1)

− 1

4
(ax−1,y + ax ,y + bx ,y−1 + bx ,y )

Final step: Estimated height values are affected by the choice of
the initial height values. Take average of results of both scans as
final height value
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Example for Two-scan Method

Original synthetic vase object

Ground truth: 3D plot of the vase object

Reconstruction result using the two-scan method

General: Local methods provide unreliable reconstructions for
noisy gradient inputs since errors propagate along the scan paths
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Generation of the Vase

Synthetic vase generated by using the following explicit surface
equation

Z (x , y) =
√

f 2(y)− x2

where

f (y) = 0.15− 0.1 · y(6y + 1)2(y − 1)2(3y − 2)2

for − 0.5 ≤ x ≤ 0.5

and 0.0 ≤ y ≤ 1.0
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Global Integration

Gradient vector estimated at any p ∈ Ω

Task: map this uniform and dense gradient vector field into a
surface in 3D space which is likely to be the actual surface which
caused the estimated gradient vector field

Depth values Z (x , y) define labels at pixel locations (x , y)

Back to a labeling problem with error (or energy) minimization

Data term

Edata(Z ) =
∑

Ω

[(Zx−a)2+(Zy−b)2]+λ0

∑
Ω

[(Zxx−ax)2+(Zyy−by )2]

Smoothness term

Esmooth(Z ) = λ1

∑
Ω

[Z 2
x + Z 2

y ] + λ2

∑
Ω

[Z 2
xx + 2Z 2

xy + Z 2
yy ]
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Notation

Zx and Zy

first-order partial derivatives of Z

ax and by

first-order partial derivatives of a and b

Zxx , Zxy = Zyx , and Zyy

second-order partial derivatives of Z

λ0 ≥ 0 controls consistency between surface curvature and changes
in available gradient data

λ1 ≥ 0 controls smoothness of surface

λ2 ≥ 0 controls smoothness of surface curvature
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Total Energy and Two Algorithms

Determine surface Z (i.e. the labeling function) such that total
error (or total energy)

Etotal(Z ) = Edata(Z ) + Esmooth(Z )

is minimized

Two Algorithms

Frankot-Chellappa algorithm is for λ0 = λ1 = λ2 = 0, thus not
using the second part of the data constraint and no smoothness
constraint at all

Wei-Klette algorithm also uses second-order derivatives (curvature)
and smoothness optimization
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Optimization problem can be solved by using the theory of
projections onto convex sets

Gradient field (ax ,y , bx ,y ) is projected onto the nearest integrable
gradient field in the least-square sense, using the Fourier transform
for optimizing in the frequency domain

2D DFT of surface function Z (x , y)

Z(u, v) =
1

|Ω|
∑

(x ,y)∈Ω

Z (x , y) · exp

[
−i2π

(
xu

Ncols
+

yv

Nrows

)]

Inverse transform

Z (x , y) =
∑

(u,v)∈Ω

Z(u, v) · exp

[
i2π

(
xu

Ncols
+

yv

Nrows

)]

i =
√
−1 and u and v represent frequencies in 2D Fourier domain

28 / 41



Light Sources Albedo Recovery Integration Local Methods Global Optimization DFT-Based Method

More Fourier Pairs

Zx(x , y) ⇔ iu Z(u, v)

Zy (x , y) ⇔ iv Z(u, v)

Zxx(x , y) ⇔ −u2 Z(u, v)

Zyy (x , y) ⇔ −v2 Z(u, v)

Zxy (x , y) ⇔ −uv Z(u, v)

Define the appearance of considered derivatives of Z in frequency
domain

A(u, v) and B(u, v) be Fourier transforms of gradients
A(x , y) = ax ,y and B(x , y) = bx ,y , respectively
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Optimization in Frequency Domain

In conclusion to Parseval’s Theorem: Equivalence of optimization
problem in spatial domain to optimization problem in frequency
domain

Minimize, where sums are for (u, v) ∈ Ω:∑
Ω

[
(iuZ− A)2 + (ivZ− B)2

]
+ λ0

∑
Ω

[(
−u2Z− iuA

)2
+
(
−v2Z− ivB

)2
]

+ λ1

∑
Ω

[
(iuZ)2 + (ivZ)2

]
+ λ2

∑
Ω

[(
−u2Z

)2
+ 2 (−uvZ)2 +

(
−v2ZF

)2
]
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Start of Solution Process

Above expression expanded into∑
Ω

[
u2ZZ? − iuZA? + iuZ?A + AA?

+v2ZZ? − ivZB? + ivZ?B + BB?
]

+λ0

∑
Ω

[
u4ZZ? − iu3ZA? + iu3Z?A + u2AA?

+v4ZZ? − iv3ZB? + iv3Z?B + v2BB?
]

+λ1

∑
Ω

(
u2 + v2

)
ZZ?

+λ2

∑
Ω

(
u4 + 2u2v2 + v4

)
ZZ?

? denotes the complex conjugate, and sums for (u, v) ∈ Ω
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Optimization in Frequency Space

Differentiating the above expression with respect to Z? and setting
the result to zero, we can deduce the necessary condition for a
minimum of the cost function

For each (u, v) ∈ Ω we have(
u2Z + iuA + v2Z + ivB

)
+ λ0

(
u4Z + iu3A + v4Z + iv3B

)
+λ1

(
u2 + v2

)
Z + λ2

(
u4 + 2u2v2 + v4

)
Z = 0

A rearrangement of this equation yields[
λ0

(
u4 + v4

)
+ (1 + λ1)

(
u2 + v2

)
+ λ2

(
u2 + v2

)2
]
Z(u, v)

+i
(
u + λ0u

3
)
A(u, v) + i

(
v + λ0v

3
)
B(u, v) = 0
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Solution

Solve the above equation except for (u, v) 6= (0, 0):

Z(u, v) =
−i
(
u + λ0u

3
)
A(u, v)− i

(
v + λ0v

3
)
B(u, v)

λ0 (u4 + v4) + (1 + λ1) (u2 + v2) + λ2 (u2 + v2)2

Result

This is the Fourier transform of the unknown surface function
Z (x , y) expressed as a function of the Fourier transforms of the
given gradients A(x , y) = ax ,y and B(x , y) = bx ,y
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Algorithm Part 1: Forward Transform

1: input gradients a(x , y), b(x , y); parameters λ0, λ1, and λ2

2: for (x , y) ∈ Ω do
3: if (|a(x , y)| < cmax & |b(x , y)| < cmax) then
4: A1(x,y)=a(x,y); A2(x,y)=0;
5: B1(x,y)=b(x,y); B2(x,y)=0;
6: else
7: A1(x,y)=0; A2(x,y)=0;
8: B1(x,y)=0; B2(x,y)=0;
9: end if

10: end for
11: Calculate Fourier transform in place: A1(u,v), A2(u,v);
12: Calculate Fourier transform in place: B1(u,v), B2(u,v);
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Algorithm Part 2: Optimize in Frequency Domain

1: for (u, v) ∈ Ω do
2: if (u 6= 0 & v 6= 0) then

3: ∆ = λ0

(
u4 + v4

)
+ (1 + λ1)

(
u2 + v2

)
+ λ2

(
u2 + v2

)2
;

4: H1(u, v) = [(u +λ0u
3)A2(u, v) + (v +λ0v

3)B2(u, v)]/∆;
5: H2(u, v) = [−(u+λ0u

3)A1(u, v)−(v+λ0v
3)B1(u, v)]/∆;

6: else
7: H1(0, 0) = average depth; H2(0, 0) = 0;
8: end if
9: end for
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Algorithm Part 3: Backward Transform

1: Calculate inverse Fourier transform of H1(u,v) and H2(u,v) in
place: H1(x,y), H2(x,y);

2: for (x , y) ∈ Ω do
3: Z (x , y) = H1(x , y);
4: end for
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Example 1

Image triplet of a Beethoven statue used as input for 3PSM
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Example

Left: Recovered surface using the Frankot-Chellappa algorithm

Right: Recovered surface using the Wei-Klette algorithm with
λ0 = 0.5 and λ1 = λ2 = 0
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Comments

Constant cmax eliminates gradient estimates which define angles
with the image plane close to π/2

A value such as cmax = 12 is an option

Real parts are stored in arrays A1, B1, and H1, and imaginary
parts in arrays A2, B2, and H2

Average height can be estimated for the visible scene

Parameters λ0, λ1 and λ2 should be chosen based on experimental
evidence for the given scene
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Test on Noisy Gradients

Generate discrete gradient vector field for synthetic vase and add
Gaussian noise (with a mean, set to zero, and a standard deviation,
set to 0.01)

Left: Frankot-Chellappa. Right: Wei-Klette with λ0 = 0, λ1 = 0.1,
and λ2 = 1
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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