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Laplacian of Gaussian (LoG) Edge Detector

Convolution theorem for LoG: ∇2 (G ∗ I ) = I ∗ ∇2G

Follows from applying twice the general rule of convolution:
D(F ∗ H) = D(F ) ∗ H = F ∗ D(H) where D is a derivative

Conclusion: only one convolution needed with ∇2G

∂G
∂x (x , y) = − x

2πσ4 e−(x2+y2)/2σ2

∂G
∂y (x , y) = − y

2πσ4 e−(x2+y2)/2σ2

∇2G (x , y) = 1
2πσ4

(
x2+y2−2σ2

σ2

)
e−(x2+y2)/2σ2

3 / 27



LoG and DoG Phase-Congruency Model Embedded Confidence

The Mexican Hat as Filter Kernel

w = |x1 − x2| = 2
√

2σ; sample a 3w × 3w kernel
σ = 1, thus 3w = 8.485 . . ., thus 9× 9 (i.e., k = 4)
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Difference of Gaussians (DoG)

Approximation of LoG for reduced run time

Scale s = 2σ2

Level function

L(x , y , s) = [I ∗ Gs ](x , y)

DoG for initial scale s and scaling factor k > 1:

Ds,k(x , y) = L(x , y , s)− L(x , y , ks)

We have that Ds,1.4(x , y) ≈ [∇2(Gs ∗ I )](x , y)

Edges detected by zero-crossings (as for the LoG)
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Kovesi Edge Map

Edge map resulting when applying the Kovesi algorithm
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Recall: Magnitude and Phase of Complex Numbers

DFT maps real-valued images into a complex-valued Fourier
transform

z = a +
√
−1b defined in polar coordinates by

magnitude ||z ||2 = r =
√

a2 + b2 and phase α = arctan(b/a)
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Local Fourier Transform

p = (x , y) in image I and (2k + 1)× (2k + 1) filter kernel

J(u, v) =
1

(2k + 1)2

2k∑
i=0

2k∑
j=0

I (x + i , y + j) ·W−iu
2k+1 ·W

−yv
Nrows

0 ≤ u, v ≤ 2k + 1
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Vector Sum of Complex Numbers

J composed of n = (2k + 1)2 complex numbers zh, for 1 ≤ h ≤ n

Each zh defined by rh = ||zh||2 and αh

Imaginary part

Real part

r3

α2

r2

r1

r4

α4

α3

α1

z

Addition of four complex numbers zh = (rh, αh)
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The Phase-Congruency Model for Edges

0 ≤ Cphase(p) =
||z ||2∑n
h=1 rh

≤ 1

Cphase(p) = 1 defines perfect congruency

Cphase(p) = 0 for perfectly opposing phases and magnitudes

Local phase congruency identifies features in images

High phase congruency at adjacent pixels defines edges
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Kovesi Algorithm

1 Apply n Gabor-filter functions for an approximate local DFT

2 Quantify phase congruency for resulting (rh, αh), 1 ≤ h ≤ n
also incorporating noise compensation

3 If phase congruency ≥ T then edge pixel

Only one threshold parameter T if set of Gabor functions is fixed

Example of a Gabor function (also known as Gabor wavelet)
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Confidence Measure for a Feature Detector

A confidence measure is

quantified information derived from calculated data,

to be used for deciding about the existence of a particular feature;

if calculated data match the underlying model of the feature
detector reasonably well

then this should correspond to high values of the confidence
measure.
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Meer-Georgescu Algorithm

1: for every pixel p in image I do
2: estimate gradient magnitude g(p) and edge direction θ(p);
3: compute the confidence measure η(p);
4: end for
5: for every pixel p in image I do
6: determine value ρ(p) in the cumulative distribution of

gradient magnitudes;
7: end for
8: generate the ρη diagram for mage I ;
9: perform non-maxima suppression;

10: perform hysteresis thresholding;

Four parameters: gradient magnitude g(p) = ||g(p)||2, gradient
direction θ(p), edge confidence η(p), percentile ρk of cumulative
gradient magnitude distribution
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Gradient Magnitude and Gradient Direction Estimators

Trace Tr(A) of n × n matrix A = (aij)ij
is the sum

∑b
i=1 aii of (main) diagonal elements

A a matrix representation of (2k + 1)× (2k + 1) window Wp(I )

W a row-/column-symmetric (2k + 1)× (2k + 1) matrix of weights

d1 = Tr(WA) and d2 = Tr(AW>)

g(p) =
√

d2
1 + d2

2 and θ(p) = arctan
(d1

d2

)
Note: not in x- and y -direction, but 45◦ rotated directions; but we
could also use estimators as defined earlier
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Percentile and Confidence

Gradient-magnitudes g[1] < . . . < g[k] < . . . < g[N] in image I with

ρk = Prob
[
g ≤ g[k]

]
for 1 ≤ k ≤ N. If g[k] the closest real to edge magnitude g(p) then

Percentile: ρ(p) = ρk between 0 and 1

Let Aideal be a (2k + 1)× (2k + 1) matrix representing a template
of an ideal step edge having gradient direction θ(p).

Confidence: η(p) = |Tr(A>idealA)| between 0 and 1
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ρη Diagram

1

1
0

0 ρ

η

L

H
H > 0

H < 0

L < 0
L > 0

p

q2

q1

Left: Implicitly given curves L(ρ, η) = 0 and H(ρ, η) = 0 separate
square into points with positive or negative signs.

Right: Virtual neighbors q1 and q2 in estimated gradient direction
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Non-Maxima Suppression

Define a curve X (ρ, η) = 0 in ρη space

1 For current pixel p, determine virtual neighbors q1 and q2

2 Determine ρ and η values for q1 and q2 by interpolation of
values at adjacent pixel locations

3 p describes with respect to X a maximum if both virtual
neighbors q1 and q2 have a negative sign for curve X

Non-maxima suppression in Step 9:
only remaining pixels are candidates for the edge map.
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Hysteresis Thresholding

Hysteresis thresholding is a general technique to decide in a
process based on previously obtained results, attempting to
continue as before.

Have two hysteresis thresholds L and H in ρη space.
Pixel p with values ρ and η stays on the edge map if

1 L(ρ, η) > 0 and H(ρ, η) ≥ 0 or

2 p is adjacent to a pixel in the edge map and satisfies
L(ρ, η) · H(ρ, η) < 0

Second condition describes hysteresis thresholding; it is applied
recursively.
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Options for the Meer-Georgescu Algorithm

The Meer-Georgescu algorithm can be a

1 Canny edge detector of the gradient magnitudes if the two
hysteresis thresholds are vertical lines, and

2 a confidence only detector if the two lines are horizontal
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Results

Results of the Meer-Georgescu algorithm with a larger (left) or a
smaller (right) filter kernel
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Original Image Set1Seq1
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Kovesi Edge Detector

Results of the Kovesi algorithm using different thresholds T
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Sobel and Canny Edge Detector

Results of Sobel detector (left) and of Canny operator (right)
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Adaptation, and Model Diversity versus Simplicity

There is no “best edge detector”, it all depends on the application
context.

Adaptation is often the word - operator and parameters need to
be adjusted to the given data.

Design ideas such as step-edge or phase-congruency model,
combination of 1st and 2nd order derivatives in the first case,
accumulated evidence based on results at adjacent pixels
(hysteresis thresholding), confidence measures, thinning of
resulting edges (non-maxima suppression) can be used for going
towards adapted solutions.

A simple method such as the Sobel operator is still often useful
because it does not modify data at this early processing stage
based on some model which might not be true in general.
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.
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In case of citation: just cite the book, that’s fine.
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