Area, Length, Curvature ${ }^{1}$

Lecture 07

See Section 3.2 in
Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014

ccv.wordpress.fos.auckland.ac.nz
${ }^{1}$ See last slide for copyright information.

Agenda

(1) Digital Geometry

2 Length

(3) Area

Geometry in Digital Images

Images are given with a resolution of $N_{\text {cols }} \times N_{\text {rows }}$, i.e. the size of Ω
This resolution influences the accuracy when solving geometric tasks

Examples of geometric tasks

Area or perimeter of an object region
Length or curvature of a path in an image

An increase in image resolution should support an increase in accuracy for measured properties (known as multigrid convergence of measurements)

This needs to be ensured by the used measurement algorithms

Agenda

1 Digital Geometry

2 Length
(3) Area

4 Curvature

The "Staircase Effect"

Length $a \sqrt{2}$ of a diagonal $p q$ in a square with sides of length a But: Length of diagonal 4-paths always equal to 2 a

Also: Perimeter of a digitised unit disks always equal to 4

How to Measure Length in the Euclidean Plane?

Length is measured for arcs

Consider the length of a polygonal approximation of an arc
Defined by points $\phi\left(t_{i}\right)$ on the arc
Let points $\phi\left(t_{i}\right)$ move closer and closer together (i.e. increase of n)
We obtain more line segments on the polygonal approximation Their length converges against the length of the given arc

Observation

The use of the length of a 4-path for estimating the length of a digital arc can lead to errors of 41.4% compared to arcs prior to digitisation
without any chance to reduce these errors in some cases by using higher grid resolution. This method is not recommended for length measurements in image analysis.

May be Weighted Edges Can Solve the Problem?
Another attempt: Use the length of an 8-path for length measurements Use weight $\sqrt{2}$ for diagonal edges and weight 1 for isothetic edges (i.e. parallel to one of the coordinate axes)

Example

Consider digitised line segment pq with slope 22.5° and length $5 \sqrt{5} / 2$

What are the lengths of those 8 -paths when using the proposed weights?

Answer

For a grid with edges of length 1 (shown on the left)
The length equals $3+2 \sqrt{2}$

For any grid with edges of length $1 / 2^{n}$, for $n \geq 1$
The length equals $(5+5 \sqrt{2}) / 2$
Result
Length of 8-paths not converging to $5 \sqrt{5} / 2$ as grid edge length goes to 0

Observation

The use of the length of an 8-path for estimating the length of a digital arc can lead to errors of 7.9% compared to arcs prior to digitisation

This upper bound for errors might be acceptable in some applications

A Solution with Convergence to True Length

Polygonal Simplification of Borders

We recall the scheme illustrated on Page 6
(1) Segment a given digital arc into maximum-length digital straight segments (DSSs) as on the next page

2 Take the sum of lengths of those straight segments

Measurement converges to the true length of a digitized arc when going for images with finer and finer grid resolution

Illustration of Arc Segmentation into DSSs

Clockwise (left) and counterclockwise (right) polygonal approximation of the border of a region by maximum-length DSSs
(For details see algorithms for DSS calculation)

Agenda

1 Digital Geometry

2 Length

3 Area

4 Curvature

Area Estimation is Simpler

First: How is area defined in the Euclidean plane?
(1) Area of triangle $\langle p, q, r\rangle$, for $p=\left(x_{1}, y_{1}\right), q=\left(x_{2}, y_{2}\right), r=\left(x_{3}, y_{3}\right)$

$$
A=\frac{1}{2} \cdot\left|x_{1} y_{2}+x_{3} y_{1}+x_{2} y_{3}-x_{3} y_{2}-x_{2} y_{1}-x_{1} y_{3}\right|
$$

(2) Area of simple polygon $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$, for $p_{i}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$

$$
A=\frac{1}{2}\left|\sum_{i=1}^{n} x_{i}\left(y_{i+1}-y_{i-1}\right)\right|
$$

with $y_{0}=y_{n}$ and $y_{n+1}=y_{1}$
(3) In general: Area of a measurable set $R \subset \mathbb{R}^{2}$

$$
A=\int_{R} \mathrm{~d} x \mathrm{~d} y
$$

How to Measure the Area of a Region in an Image?

Answer by C. F. Gauss in the early 19th century:
Count all the grid points (i.e. pixel locations) in the digitised set and multiply by the size of a grid square (i.e. the pixel size)

Next page: Illustration of an experiment
(1) Given: Simple polygon defined in a grid of size 512×512 having area $A=102,742.5$ and perimeter $P=4,040.7966 \ldots$

2 Subsample this polygon in images of reduced resolution
3 Estimate area and perimeter in images and compare with A and P

Different Digitizations

Results

Area: As proposed by Gauss, the number of pixels (i.e. grid cells) times the square of the edge length

Perimeter: Number of cell edges on the frontier of the polygon times the length of an edge (i.e. illustrating failure of 4-adjacency again)

Relative Deviation

Relative deviation
is the absolute difference between estimated property values $P_{\text {est }}$ and P for subsampled polygon and original polygon, respectively, divided by P

$$
\frac{\left|P_{\text {est }}-P\right|}{P}
$$

Relative deviation in percent

$$
\frac{\left|P_{\text {est }}-P\right|}{P} \cdot 100
$$

Agenda

1 Digital Geometry

2 Length

3 Area
4. Curvature

Curvature for Border Characterization

Shapes may also be characterised by
high-curvature points or change in curvature along the border

A Third Property: Curvature

Curvature can be defined at non-singular points of a smooth arc $\gamma(t)$ in the Euclidean plane

Curvature at a point p on γ
can be defined in different ways
Option 1: Rate of change of angle of a tangential line at p
Option 2: Derivative at p (requires a parameterised representation of γ)

Option 1: Rate of Change

Starting at $t=a$, the arc to $p=\gamma(t)$ has the length $I=\mathcal{L}(t)$
\mathbf{n} is the normal, and \mathbf{t} the tangent defining angle ψ
While p is sliding along γ, angle ψ will change

Rate of Change in ψ

Defines curvature $\kappa_{\tan }(p)$

$$
\kappa_{\tan }(t)=\frac{\mathrm{d} \psi(t)}{\mathrm{d} /}
$$

(1) "Fast change" in $\psi=$ "high curvature"
(2) "Slow change" in $\psi=$ "low curvature"
(3) No change in $\psi=p$ on a straight segment of γ

Convex, Inflection or Straight, or Concave

$\kappa_{\tan }(t)$ can be
(1) negative: p is a convex point

2 zero: p is a point of inflection or on a straight segment
(3) positive: p is a concave point

Option 2: Curvature of a Parametrized Arc

Assume a parametric representation $\gamma(t)=(x(t), y(t))$. Then:

$$
\kappa_{\tan }(t)=\frac{\dot{x}(t) \cdot \ddot{y}(t)-\dot{y}(t) \cdot \ddot{x}(t)}{\left[\dot{x}(t)^{2}+\dot{y}(t)^{2}\right]^{1.5}}
$$

with

$$
\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}, \dot{y}(t)=\frac{\mathrm{d} y(t)}{\mathrm{d} t}, \ddot{x}(t)=\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}, \ddot{y}(t)=\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}
$$

Now: Curvature in an Image

How to define curvature of a border of an object region at pixel location p ?

Example:
Go $k=3$ steps forward and backward for points p_{i-k} and p_{i+k}
Use those three points now for estimating curvature

Example: Following Option 2

Given: Digital curve $\left\langle p_{1}, \ldots, p_{m}\right\rangle$, where $p_{j}=\left(x_{j}, y_{j}\right)$ for $1 \leq j \leq m$
Assume: Samples along parametrized curve $\gamma(t)=(x(t), y(t)), t \in[0, m]$ At p_{i} thus $\gamma(i)=p_{i}$

Functions $x(t)$ and $y(t)$ locally interpolated by second order polynomials

$$
\begin{aligned}
& x(t)=a_{0}+a_{1} t+a_{2} t^{2} \\
& y(t)=b_{0}+b_{1} t+b_{2} t^{2}
\end{aligned}
$$

Let $x(0)=x_{i}, x(1)=x_{i-k}, x(2)=x_{i+k}$ for $k \geq 1$; analogously for $y(t)$
Curvature at p_{i} then defined by

$$
\kappa_{i}=\frac{2\left(a_{1} b_{2}-b_{1} a_{2}\right)}{\left[a_{1}^{2}+b_{1}^{2}\right]^{1.5}}
$$

Copyright Information

This slide show was prepared by Reinhard Klette with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations. However, all the material is copyrighted.
R. Klette. Concise Computer Vision.
(C)Springer-Verlag, London, 2014.

In case of citation: just cite the book, that's fine.

