Colour, RGB, HSI^{1}

Lecture 03

See Section 1.3 in
Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014
ccv.wordpress.fos.auckland.ac.nz

${ }^{1}$ See last slide for copyright information.

Agenda

1 Color Definitions

2 Color Perception

3 Gray Levels

4 Color Representations

Perceived Color

Not objectively defined
Varies for people
Depends on lighting:
Why is the sky blue or orange, but never green?
There are good explanations on the net.
No light then there is no color (e.g inside of a body)
Human vision can discriminate a few dozens of gray-levels but hundreds to thousands of different colors

Electromagnetic Spectrum

The visible Spectrum is only a very small interval in the electromagnetic spectrum of frequencies or wavelengths of electromagnetic radiation

Frequency (Hz) Wavelength

(Figure by Victor Blacus, in the public domain)

Color Definitions in Visible Spectrum

$1 \mathrm{~nm}=1$ nanometer $=10^{-9} \mathrm{~m}$
(1) Red (about 625 to 780 nm), Orange (about 590 to 625 nm), invisible spectrum continues with Infrared (IR)

2 Yellow (about 565 to 590 nm), Green (about 500 to 565 nm), Cyan (about 485 to 500 nm)
(3) Blue (about 440 to 485 nm)

4 Violet (about 380 to 440 nm), invisible spectrum continues with Ultraviolet (UV)

Retina of the Human Eye

Photoreceptors: some 120 million rods for luminosity response, and some 6 to 7 million cones, concentrated towards the fovea

Tristimulus Values and CIE

Experimental evidence: three types of color-sensitive cones, Red (about 64%), Green (about 32\%), Blue (about 2\%)

Visible color modeled by tristimulus values
CIE (Commission Internationale de l'Eclairage $=$ International Commission on Illumination) defines color standards since the 1930s

Tristimulus values defined by weighting functions $\bar{x} \bar{y}$, and \bar{z}

Energy Distributions: A Lamp and a Model

Monochromatic energy distributions $L(\lambda), 380 \leq \lambda \leq 780$
Chromatic is $L_{R}(\lambda), L_{G}(\lambda)$, and $L_{B}(\lambda)$

Sketch for an incandescent house lamp
CIE energy distribution functions $\bar{x}(\lambda)$ (blue), $\bar{y}(\lambda)$ (green), and $\bar{z}(\lambda)$ (red) for defining tristimulus values X, Y, and Z

Weighting Functions

Cut-offs at both ends of functions $\bar{x}(\lambda)$ (blue), $\bar{y}(\lambda)$ (green), and $\bar{z}(\lambda)$ (red) do not correspond exactly to human-eye abilities to perceive shorter (down to 380 nm) or larger (up to 810 nm) wavelengths

Curves have also been scaled:

$$
\int_{400}^{700} \bar{x}(\lambda) \mathrm{d} \lambda=\int_{400}^{700} \bar{y}(\lambda) \mathrm{d} \lambda=\int_{400}^{700} \bar{z}(\lambda) \mathrm{d} \lambda
$$

Example: Curve \bar{y} models the luminosity response of an "average human eye"

Tristimulus Values

Values X, Y, and Z by integrating a given energy function L

$$
\begin{aligned}
X & =\int_{400}^{700} L(\lambda) \bar{x}(\lambda) \mathrm{d} \lambda \\
Y & =\int_{400}^{700} L(\lambda) \bar{y}(\lambda) \mathrm{d} \lambda \\
Z & =\int_{400}^{700} L(\lambda) \bar{z}(\lambda) \mathrm{d} \lambda
\end{aligned}
$$

Example: Y models brightness (= intensity) or, approximately, the green component of given L

Normalized CIE xy-Parameters

$$
x=\frac{X}{X+Y+Z} \quad \text { and } \quad y=\frac{Y}{X+Y+Z}
$$

Assume: Y is given. Can derive X and Z from x and y
With $z=Z /(X+Y+Z)$ it is $x+y+z=1$
The xy Color Space of the CIE.
Represents colors, not brightness
$x y$ color space represented by a chromaticity diagram for $0 \leq x, y \leq 1$

Chromaticity Diagram: The xy CIE Color Space

Gamut of Human Vision

Shows the gamut of human vision
Colors which are visible to the average person; white parts already in the invisible spectrum

Convex outer curve: contains monochromatic colors (pure spectral colors)
Straight edge at the bottom (i.e. the purple line): contains colors which are not monochromatic

In the interior: less saturated colors, with White at $E=(0.33,0.33)$
Triangle: gamut of $R G B$ primaries defined by CIE
700 nm for Red, 546.1 nm for Green, and 435.8 nm for Blue

Different Gamuts of Media

Gamut: available color range (such as "perceivable", "printable", or "displayable")

Depends on used medium
Example: warning of image-editing system:

Rule of thumb: transparent media have potentially larger gamut than printed material

Agenda

(1) Color Definitions

2 Color Perception
(3) Gray Levels

4 Color Representations

Red-Green Color Blindness

Different energy distributions $L_{1}(\lambda)$ and $L_{2}(\lambda)$ for visible spectrum, human H may perceive both as identical colors

$$
L_{1} \stackrel{H}{=} L_{2}
$$

Color blindness: some colors cannot be distinguished
About 99\% of cases: red-green color blindness
For people of European origin: about 8\%-12\% males, about 0.5\% females

Ishihara Color Test

Dot pattern: a 5 for most of the people, but for some it is a 2

Two Comments on Colour Presentations

A Rule for Graphics Design

When using red-green colors in a presentation then some of your audience (e.g. the above-mentioned percentage with European origin) might not see what you are intending to show.

Red-blue or red-yellow works in general for a larger audience.

Gamma Correction

For a computer screen, for $\gamma>0$:
Color value $u=k / 2^{a}$ (one channel) presented as u^{γ}
$\gamma<1$ defines gamma compression; $\gamma>1$ defines gamma expansion

Color as a Purely Visual Sensation

Benham Disk: Benham was a nineteenth-century toymaker

Spinn under bright incandescent light or sunlight
Three types of cones in the eye, each type has a different latency time .. (full explanation is more complicated)

Four Primary Colors

There appears to be agreement that Yellow, Red, Green, and Blue define the four primary color perceptions

For avoiding green-red misperceptions, option is to use yellow, red, and blue as base colors in presentations

Agenda

(1) Color Definitions

2 Color Perception
(3) Gray Levels

4 Color Representations

Specific Perceptions

Two squares of identical intensity
Three examples for gray-level ratios of 5 to 6

Gray-Levels

Gray-levels are not colors
Described by luminance (the physical intensity) or brightness (the perceived intensity)

Linear scale of gray-levels or intensities is common:

$$
u_{k}=k / 2^{a}, \quad \text { for } 0 \leq k<2^{a}
$$

Human vision perceives the ratio of intensities
Visually difficult to discriminate between slightly different very dark gray-levels

Human eye: better for noticing different bright gray-levels
See: build-in non-linear correction in digital cameras

Visual Illusions: Rotating Snake by A. Kitaoka

From motion, luminance or contrast, geometry, 3D space, cognitive effects, specialized imaginations, or from color

Agenda

(1) Color Definitions

2 Color Perception

3 Gray Levels

4 Color Representations

Color Checker by Macbeth ${ }^{T M}$ and Scalar Channels

Top: RGB image and channel for Green
Bottom: Channel for Blue and intensity channel

RGB

RGB color representation model is additive: adding to a color contributes to going towards White

Color models used for printing are subtractive: adding to a color contributes to going towards Black
The RGB Space

RGB Comments

$0 \leq R, G, B \leq G_{\text {max }}$, image I with pixel values $\mathbf{u}=(R, G, B)$
If $G_{\text {max }}=255$ then $16,777,216$ different colors
$\mathbf{u}=(255,0,0)$ for Red, $\mathbf{u}=(255,255,0)$ for Yellow, and so forth
Diagonal in cube from
White at $(255,255,255)$ to Black at $(0,0,0)$
Gray-levels (u, u, u) are not colors
$\mathbf{q}=(R, G, B)$ in RGB cube defines a color or a gray-level Intensity given by the mean

$$
M=\frac{R+G+B}{3}
$$

HSI

Assume: plane cuts RGB cube orthogonal to gray-level diagonal

$\mathbf{q}=(R, G, B)$ incident with plane but not on diagonal
Disc is an abstract representation of actually resulting polygons

Hue, Saturation, Intensity

The intensity axis: along the gray-level diagonal in the RGB cube Identify one color (here, Red) as reference color

Describe \mathbf{q} by intensity, hue (angle with respect to reference color), and saturation (distance to the intensity axis)

Formal HSI Definition

One of many options

$$
\begin{aligned}
H= & \left\{\begin{array}{l}
\delta, \\
2 \pi-\delta, \\
\text { if } B \leq G
\end{array} \text { if } \quad\right. \text { with } \\
& \delta=\operatorname{arcos} \frac{(R-G)+(R-B)}{2 \sqrt{(R-G)^{2}+(R-B)(G-B)}} \text { in }[0, \pi) \\
S= & 1-3 \cdot \frac{\min \{R, G, B\}}{R+G+B}
\end{aligned}
$$

Intensity defined by the mean M (note: symbol $/$ used for an image in this lecture)

This defines an HSI color model; more options possible

Actual Cuts Through the RGB Cube

Cuts through the RGB cube at $u=131$
RGB image I_{131} of the cut
Saturation values for this cut How do the hue values look like if shown as gray-level image?

RGB and HSI Examples

Gray-level (u, u, u) with $u \neq 0$:
$M=$??, $S=$??, and H undefined

Black ($0,0,0$):
$M=$??; saturation and hue undefined
Transformation of other RGB values into HSI values is one-one

```
Red (Gmax , 0, 0):
M=??, H=??, and S =??
```

Green ($0, G_{\text {max }}, 0$):
$M=$??, $S=? ?, \delta=? ?, H=? ?$
Blue $\left(0,0, G_{\text {max }}\right)$:
$\delta=$??, $H=$??

A Visualization Effect

Map S and H linearly into $\left\{0,1, \ldots, G_{\max }\right\}$
Visualize resulting images
Then: hue value of $\left(G_{\max }, \varepsilon_{1}, \varepsilon_{2}\right)$ either black or white, just for minor changes in small reals ε_{1} and ε_{2}

Why?

Color Checker Again

Visualizing hue and saturation values by means of gray-levels

Copyright Information

This slide show was prepared by Reinhard Klette with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations. However, all the material is copyrighted.
R. Klette. Concise Computer Vision.
(C)Springer-Verlag, London, 2014.

In case of citation: just cite the book, that's fine.

