
Algorithms and Mechanisms

Cryptography is nothing more than a mathematical
framework for discussing the implications of
various paranoid delusions

— Don Alvarez

Historical Ciphers

Non-standard hieroglyphics, 1900BC

Atbash cipher (Old Testament, reversed Hebrew alphabet,
600BC)

Caesar cipher:

letter = letter + 3

‘fish’ ‘ilvk’

rot13: Add 13/swap alphabet halves
•Usenet convention used to hide possibly offensive jokes
•Applying it twice restores the original text

Substitution Ciphers

Simple substitution cipher:
a = p, b = m, c = f, ...
•Break via letter frequency analysis

Polyalphabetic substitution cipher
1. a = p, b = m, c = f, ...
2. a = l, b = t, c = a, ...
3. a = f, b = x, c = p, ...
•Break by decomposing into individual alphabets, then solve as

simple substitution

One-time Pad (1917)

OTP is unbreakable provided
•Pad is never reused (VENONA)
•Unpredictable random numbers are used (physical sources, e.g.

radioactive decay)

xxcdmg
242434137

5191218+15OTP
195173518

tercesMessage

One-time Pad (ctd)

Used by
•Russian spies
•The Washington-Moscow “hot line”
•CIA covert operations

Many snake oil algorithms claim unbreakability by
claiming to be a OTP
•Pseudo-OTPs give pseudo-security

Cipher machines attempted to create approximations to
OTPs, first mechanically, then electronically

Cipher Machines (~1920)

1. Basic component = wired rotor

•Simple substitution

2. Step the rotor after each letter
•Polyalphabetic substitution, period = 26

Cipher Machines (ctd)

3. Chain multiple rotors

Each rotor steps the next one when a full turn is complete

Cipher Machines (ctd)

Two rotors, period = 26 26

= 676

Three rotors, period = 26 26 26

= 17,576

Rotor sizes are chosen to be relatively prime to give
maximum-length sequence

Key = rotor wiring, rotor start position

Cipher Machines (ctd)

Famous rotor machines
US: Converter M-209
UK: TYPEX
Japan: Red, Purple
Germany: Enigma

Many books on Enigma
Kahn, Seizing the Enigma
Levin, Ultra Goes to War
Welchman, The Hut Six Story
Winterbotham, The Ultra Secret

“It would have been secure if used properly”

Use of predictable openings:
“MeinFuehrer! ...”
“Nothing to report”

Use of the same key over an extended period

Encryption of the same message with old (compromised)
and new keys
•Post-war KW-26 common fill device shredded the key card

when the cover was opened to prevent this

Device treated as a magic black box, a mistake still made
today

Inventors believed it was infallible, " " " " "

Cipher Machines (ctd)

Various kludges were made to try to improve security—
none worked

Enigmas were sold to friendly nations after the war

Improved rotor machines were used into the 70’s and 80’s

Further reading:
Kahn, The Codebreakers
Cryptologia, quarterly journal

Stream Ciphers

Binary pad (keystream), use XOR instead of addition

Plaintext = original, unencrypted data
Ciphertext = encrypted data

Two XORs with the same data always cancel out

1101001Plaintext

1011010XORKeystream

0110011Ciphertext

1011010XORKeystream

1101001Plaintext

Stream Ciphers (ctd)

Using the keystream and ciphertext, we can recover the
plaintext

but

Using the plaintext and ciphertext, we can recover the
keystream

Using two ciphertexts from the same keystream, we can
recover the XOR of the plaintexts
•Any two components of an XOR-based encryption will recover

the third
•Never reuse a key with a stream cipher
•Better still, never use a stream cipher

Stream Ciphers (ctd)

Vulnerable to bit-flipping attacks

QT-TRNSFER USD 000010,00 FRM ACCNT 12345-67 TO
sSJNsF7BQIPBCjTUo1yl06VohNJcsALNpqf05xe9X0nYLd

00101101

00101100

sSJNsF7BQIPBCjTTo1yl06VohNJcsALNpqf05xe9X0nYLd
QT-TRNSFER USD 100010,00 FRM ACCNT 12345-67 TO

Flip low bit

Plaintext
Ciphertext

Plaintext
Ciphertext

RC4

Stream cipher optimised for fast software implementation
•2048-bit key, 8-bit output

Formerly a trade secret of RSADSI
•Reverse-engineered and posted to the net in 1994
while(length--)
{
x++; sx = state[x]; y += sx;
sy = state[y]; state[y] = sx; state[x] = sy;
*data++ ^= state[(sx+sy) & 0xFF];
}

Takes about a minute to implement from memory

Extremely fast

RC4 (ctd)

Used in SSL (Netscape, MSIE), Lotus Notes, Windows
password encryption, MS Access, Adobe Acrobat, MS
PPTP, Oracle Secure SQL, ...
•Usually used in a manner that allows the keystream to be

recovered (Windows password encryption, Windows server
authentication, Windows NT SYSKEY, early Netscape server
key encryption, some MS server/browser key encryption, MS
PPTP, MS Access, MS Word, XBox, ...)
•Every MS product which is known to use it has got it wrong at

some time over more than a decade (!!)

Illustrates the problem of treating a cipher as a magic black
box

Recommendation: Avoid this, it’s too easy to get wrong

Block Ciphers

Originated with early 1970’s IBM effort to develop
banking security systems

First result was Lucifer, most common variant has 128-bit
key and block size
•It wasn’t secure in any of its variants

Called a Feistel or product cipher

Block Ciphers (ctd)

Key is applied via the f()-function
•A simple transformation
•Doesn’t have to be reversible

Each step is called a round
•The more rounds, the greater the security (to a point)

Most famous example of this design is DES
•16 rounds
•56 bit key
•64 bit block size (L,R = 32 bits)

Designed by IBM with advice from the NSA

Attacking Feistel Ciphers

Differential cryptanalysis
•Looks for correlations in f()-function input and output

Linear cryptanalysis
•Looks for correlations between key and cipher input and output

Related-key cryptanalysis
•Looks for correlations between key changes and cipher

input/output

Differential cryptanalysis was (re-)discovered in 1990;
virtually all block ciphers from before that time are
vulnerable...

...except DES. IBM (and the NSA) knew about it 15
years earlier

Strength of DES

Key size = 56 bits

Brute force = 255 attempts

Differential cryptanalysis = 247 attempts

Linear cryptanalysis = 243 attempts
•(but the last two are impractical)
•This type of attack is known as a certificational weakness

> 56 bit keys don’t make it any stronger
•NSA didn’t really weaken DES by setting the key size at 56

bits

> 16 rounds don’t make it any stronger

DES Key Problems

Key size = 56 bits

= 8 7-bit ASCII chars

Alphanumeric-only password converted to uppercase

= 8 ~5-bit chars

= 40 bits

DES uses the low bit in each byte for parity

= 32 bits
•Many 1980s/early-90s DES programs used this form of keying
•Forgetting about the parity bits is so common that the NSA

probably designs its keysearch machines to accommodate this

Breaking DES

DES was designed for efficiency in early-70’s hardware

Made it easy to build pipelined brute-force breakers in late-
90’s hardware

16 stages, tests 1 key per clock cycle

Breaking DES (ctd)

Can build a DES-breaker using
•Field-programmable gate array (FPGA), software-

programmable hardware
•Application-specific IC (ASIC)

100 MHz ASIC = 100M keys per second per chip

Chips = $10 in 5K+ quantities

$50,000 = 500 billion keys/sec

= 20 hours/key (40-bit DES takes 1 second)

Breaking DES (ctd)

$1M = 1 hour per key (1/20 sec for 40 bits)

$10M = 6 minutes per key (1/200 sec for 40 bits)

(US black budget is ~$25-30 billion)

(distributed.net = ~70 billion keys/sec with 20,000
computers)

EFF (US non-profit organisation) broke DES in 2½ days

Amortised cost over 3 years = 8 cents per key

September 1998: German court rules DES “out of date and
unsafe” for financial applications

Other Block Ciphers

AES
•Advanced Encryption Standard, replacement for DES
•128 bit block size, 128/192/256 bit key, 10/12/14 rounds
•Non-Feistel structure
•Based on a sophisticated mathematical design
–Easy to analyse security properties
–Advances in mathematics may make it easier to analyse

attacks

Blowfish
•Optimised for high-speed execution on 32-bit RISC processors
•448 bit key, relatively slow key setup

Other Block Ciphers (ctd)

CAST-128
•Used in PGP 5.x, 128 bit key

GOST
•GOST 28147, Russian answer to DES
•32 rounds, 256 bit key
•Incompletely specified

IDEA
•Developed as PES (proposed encryption standard), adapted to

resist differential cryptanalysis as IPES, then IDEA
•Gained popularity via PGP, 128 bit key
•Patented

Other Block Ciphers (ctd)

RC2
•Companion to RC4, 1024 bit key
•RSADSI trade secret, reverse-engineered and posted to the net

in 1996
•RC2 and RC4 had special status for US exportability
•Designed for 16-bit CPUs (8086), inefficient on more recent

32-bit RISC processors

Other Block Ciphers (ctd)

Skipjack
•Classified algorithm intended for the Clipper chip, declassified

in 1998
•Very efficient to implement using minimal resources (e.g.

smart cards)
•32 rounds, breakable with 31 rounds
•80 bit key, inadequate for long-term security

Triple DES (3DES)
•Encrypt + decrypt + encrypt with 2 (112 bits) or 3 (168 bits)

DES keys
•After 1998, banking auditors were requiring the use of 3DES

rather than DES based on precedents set in court cases

Other Block Ciphers (ctd)

Many, many others
•Fun to design, like wargames enthusiasts re-fighting historic

battles
•No good reason not to use one of the above, proven algorithms

Using Block Ciphers: ECB

ECB, Electronic Codebook

Each block is encrypted independently

Plaintext1

Encrypt

Ciphertext1

Plaintext2

Encrypt

Ciphertext2

Plaintext3

Encrypt

Ciphertext3

Key

Ciphertext1

Decrypt

Plaintext1

Ciphertext2

Decrypt

Plaintext2

Ciphertext3

Decrypt

Plaintext3

Key

Encryption

Decryption

Using Block Ciphers: ECB (ctd)

Cipher acts as a 64-bit lookup table (electronic codebook)

Plaintext

Ciphertext

Using Block Ciphers: ECB (ctd)

Original text

Intercepted encrypted form

Second intercepted message

Cut and paste blocks with account information

Decrypted message will contain the attacker’s account —
without them knowing the encryption key

789012-3Deposit $10,000 in acct. number 12-3456-

7eMPZcE2H2nx/GHE KgvldSbq GQHbrUt5 tYf6K7ug S4CrMTvH

a8oaNWpjH2nx/GHE 5guZEHVr GQHbrUt5 tYf6K7ug Pts21LGb

7eMPZcE2H2nx/GHE 5guZEHVr GQHbrUt5 tYf6K7ug S4CrMTvH

Using Block Ciphers: CBC

To protect against ECB-mode attacks, need to
•Chain one block to the next to avoid cut & paste attacks
•Randomise the initial block to disguise repeated messages
–Inject initial randomness by prepending an Initialisation

Vector (IV)

Using Block Ciphers: CBC (ctd)

CBC, cipher block chaining, with IV for randomisation

IV

Encrypt

Plaintext1

Ciphertext1

Encrypt

Plaintext2

Ciphertext2

Encrypt

Plaintext3

Ciphertext3

Key

IV

Decrypt Decrypt Decrypt

Ciphertext1 Ciphertext2 Ciphertext3

Plaintext1 Plaintext2 Plaintext3

Key

Encryption

Decryption

Using Block Ciphers: CFB

Both ECB and CBC operate on entire blocks

CFB (ciphertext feedback) operates on bytes or even bits

This converts a block cipher to a stream cipher (with the
accompanying vulnerabilities)

EncryptKey

IV

Data

Encrypt

IV

Key

Data

Encryption Decryption

Using Block Ciphers: Other Modes

None of these modes provide integrity protection
•Chaining modes like CBC and CFB recover after one corrupted

data block
–This is a feature, since it provides error recovery

Various combined encryption + integrity-protection modes
have been proposed
•All the ones that are as fast as just encryption are patented
•All the ones that aren’t patented aren’t much quicker than

separate encryption + MAC
–WPA uses one of these slow-but-unencumbered modes,

AES-CCM

Relative Performance
Fast

RC4
AES, Blowfish, CAST-128
Skipjack
DES, IDEA, RC2
3DES, GOST

Slow

Typical speeds
•RC4 = Tens of MB/second
•3DES = MB/second

Public Key Encryption

How can you use two different keys?
•One is the inverse of the other:

key1 = 3, key2 = 1/3, message M = 4
Encryption: Ciphertext C = M key1

= 4 3
= 12

Decryption: Plaintext M = C key2
= 12 1/3
= 4

One key is published, one is kept private public-key
cryptography, PKC

Example: RSA

n, e = public key, n = product of two primes p and q

d = private key

Encryption: C = Me mod n

Decryption: M = Cd mod n

p, q = 5, 7

n = p q
= 35

e = 5

d = e-1 mod ((p-1)(q-1))
= 5

Example: RSA (ctd)

Message M = 4

Encryption: C = 45 mod 35

= 9

Decryption: M = 95 mod 35

= 59049 mod 35

= 4

(Use mathematical tricks otherwise the numbers get
dangerous)

Public-key Algorithms

RSA (Rivest-Shamir-Adelman), 1977
•Digital signatures and encryption in one algorithm
•Private key = sign and decrypt
•Public key = signature check and encrypt

DH (Diffie-Hellman), 1976
•Key exchange algorithm

Elgamal
•DH variant, one algorithm for encryption, one for signatures
•Attractive as a non-patented alternative to RSA (before the

RSA patent expired)

Public-key Algorithms (ctd)

DSA (Digital Signature Algorithm)
•Elgamal signature variant, designed by the NSA as the US

government digital signature standard
•Intended for signatures only, but can be adapted for encryption

DH, DSA, and Elgamal are all based on the discrete
logarithm problem (DLP)
•Keys are interchangeable across DLP algorithms

All have roughly the same strength
•512 bit key is marginal
•1024 bit key is recommended minimum size
•2048 bit key is better for long-term security

Using PKCs

PKCs are advanced mathematics, not just an X : Y
mapping like a block cipher
•Can be attacked using mathematics
•Need to take special care in their use to avoid problems

Example: RSA
•Encrypt the same message to 3 people when e = 3
–Recover message using the Chinese Remainder Theorem

•Sign a smooth (product of small primes) number
–Allows forgery of signatures on other values

•Encrypt a guessable message
–Allows message recovery through trial encryption with the

public key

Using PKCs (ctd)

Countermeasures
•Pad the hash to be signed on the left with zeroes
–Hash is small and likely to be smooth

•Pad the hash to be signed on the right with zeroes
–Merely multiplies the hash by 2n

•Pad the hash to be signed on the right with random data
–Defeat with cube root attack (assuming e = 3)

•Many more similar pitfalls

PKCS

Public-key Cryptography Standard
•PKCS #1 covers safe use of RSA

RSA encryption

RSA signing
•0 guarantees value < modulus
•1 or 2 distinguishes signed from encrypted data
–RSA duality, signing = decryption

•Encryption padding produces a non-guessable message,
ensures that each message is different, the message isn’t a
small value, etc
•Signature padding ensures the message isn’t a small value, etc
•0 delimits the end of the padding

0 1 >= 8 nonzero random 0 Data

0 2 >= 8 bytes 0xFF 0 Data

DLP Algorithms

Need to be very careful with key generation
•Malicious user can generate booby-trapped keys
•DSA kosherizer and Lim-Lee algorithm guarantee verifiably

safe keys

Incautious use of DLPs has the tendency to leak key bits
•RSA can do this too under some circumstances

Need to be very careful to apply PKCs correctly
•Neveruse raw RSA, DSA, DH, Elgamal, …
•Chances are you’ll be using them incorrectly
–“Evil will always triumph over good because good is
dumb” — Dark Helmet

Elliptic Curve Algorithms

Use mathematical trickery to speed up public-key
operations

Elliptic Curve Algorithms (ctd)

Now we can add, subtract, etc. So what?
•Calling it “addition” is arbitrary, we can just as easily call it

multiplication
•We can now move (some) conventional PKCs over to EC

PKCs (DSA ECDSA)

Now we have a funny way to do PKCs. So what?
•Breaking PKCs over elliptic curve groups is much harder than

beaking conventional PKCs
•We can use shorter keys that consume less storage space

Advantages/Disadvantages ofECC’s

Advantages
•Sometimes useful in smart cards because of their low storage

requirements

Disadvantages
•New, details are still being resolved
–Many ECC techniques are still too new to trust

•Almost nothing uses or supports them
•No more efficient than standard algorithms like RSA
•ECCs are a minefield of patents, pending patents, and

submarine patents

Recommendation: Don’t use them unless you really need
the small key size

Key Sizes and Algorithms

Conventional vs. public-key vs. ECC key sizes

(Your mileage may vary)

256 bits2304 bits128 bits
210 bits2048 bits120 bits
195 bits1792 bits112 bits
160 bits1024 bits90 bits
—768 bits80 bits
—512 bits64 bits
—(400 bits)56 bits
——(40 bits)

ECCPublic-keyConventional

Key Sizes and Algorithms (ctd)

However
•Conventional key is used once per message
•Public key is used for hundreds or thousands of messages

A public key compromise is much more serious than a
conventional key compromise
•Compromised logon password, attacker can
–Delete your files

•Compromised private key, attacker can
–Drain credit card
–Clean out bank account
–Sign contracts/documents
–Identity theft

Key Sizes and Algorithms (ctd)

512 bit public key vs. 40 bit conventional key is a good
balance for weak security

Recommendations for public keys:
•Use 512-bit keys only for micropayments/smart cards
•Use 1K bit key for short-term use (1 year expiry)
•Use 1.5K bit key for longer-term use
•Use 2K bit key for certification authorities (keys become more

valuable further up the hierarchy), long-term contract signing,
long-term secrets

The same holds for equivalent-level conventional and ECC
keys

Hash Algorithms

Reduce variable-length input to fixed-length (usually 128
or 160 bit) output

Requirements
•Can’t deduce input from output
•Can’t generate a given output (CRC fails this requirement)
•Can’t find two inputs that produce the same output (CRC also

fails this requirement)

Used to
•Produce a fixed-length fingerprint of arbitrary-length data
•Produce data checksums to enable detection of modifications
•Distil passwords down to fixed-length encryption keys

Also called message digests or fingerprints

MAC Algorithms

Hash algorithm + key to make the hash value dependant on
the key

Most common form is HMAC (hashed MAC)

hash(key, hash(key, data))
•Key affects both the start and the end of the hashing process
•Having it at only one point would allow extension attacks

Naming: hash + key = HMAC-hash

MD5 HMAC-MD5

SHA HMAC-SHA

Recent attacks on MD5, SHA-1 don’t affect HMAC form

Algorithms

MD2: 128-bit output, deprecated

MD4: 128-bit output, broken

MD5: 128-bit output, weaknesses

SHA-1: 160-bit output, NSA-designed US government
secure hash algorithm, companion to DSA

SHA-2: Extension of SHA-1 design to larger output sizes

RIPEMD-160: 160-bit output

HMAC-MD5: MD5 turned into a MAC

HMAC-SHA: SHA-1 turned into a MAC

Pseudorandom Functions

Universal impedance-matcher for security algorithms

Used to transform one or more input values to a random
(but input-dependent) output value
•Generate arbitrary-length pseudorandom sequences from fixed-

length seeds
•Example: Convert a password and salt to a 3DES key

No standards for these
•Cryptographers: It’s simple, just use HMAC, QED.

Implementers: How should we use HMAC?
•No analysis of requirements
•Little security analysis

Pseudorandom Functions (ctd)

Everyone invents their own
•SSL/TLS

out(0) = HMAC(key, HMAC(key, seed) || seed)
out(n) = HMAC(key, out(n-1) || seed)
–TLS uses dual HMAC-MD5 and HMAC-SHA1XOR’d

together in case one is found to be weak
•SSH

out(0) = hash(key || exchange hash || session ID)
out(1) = hash(key || exchange hash || out(0))

Pseudorandom Functions (ctd)
•IPsec
–No consistency, whole range of ad hoc PRFs built using

HMAC or raw hashes
–See the IPsec section of the tutorial

–One example: Encryption key calculation
out(0) = HMAC(Ne_i, 0)
out(n) = HMAC(Ne_i, out(n-1))
•PGP

out(0) = hash(salt || password)
out(n) = hash(n ‘0’ || salt || password)

Pseudorandom Functions (ctd)
•S/MIME (PKCS #5v2, PBKDF2)
out(0) = HMAC(password, salt || ‘00000001’) XOR

HMAC(password, previous-out) XOR
…

out(n) = HMAC(password, salt || ‘0000000n’) XOR
HMAC(password, previous-out) XOR
…

–Sound approach, XOR protects against collapsing
everything down to a single iteration

