
Context-sensitive Languages and Linear Bounded

Automata

Josh Bax
Andre Nies, Supervisor

November 15, 2010

Contents

1 Definitions of Context-Sensitive Languages 2
1.1 Introduction . 2
1.2 First Definition of Context Sensitive Languages 2
1.3 The Chomsky Hierarchy . 4
1.4 Second Equivalent Definition of Context Sensitive Languages . . 6
1.5 Third Equivalent Definition of Context Sensitive Languages . . . 6

2 Properties of Context-Sensitive Languages 10
2.1 Introduction . 10
2.2 Basic closure theorems . 10
2.3 Immerman-Szelepcsényi theorem 12
2.4 Space Complexity . 15
2.5 Computability . 15
2.6 Conclusion . 17

3 References and Acknowledgements 19

1 Definitions of Context-Sensitive Languages 2

1 Definitions of Context-Sensitive Languages

1.1 Introduction

The first complete description of the context-sensitive languages (CSLs) was
developed by Noam Chomsky in the 1950’s as a tool for linguistic analysis.
A context-sensitive language is defined by a set of rewriting rules (called a
grammar) involving symbols from a given finite set of symbols. These rules
take a symbol from one distinct set, the variables, and replace it with one or
more symbols from another set, the terminal symbols. The application of these
rules depends on the symbols preceding and following the variable symbol,
hence they are called context-sensitive. There are other forms of grammar:
regular, context-free and unrestricted, classified according to the form of their
productions. This classification was made by Chomsky and now forms what
is known as the Chomsky hierarchy[1]. Within this hierarchy, the class of
context-sensitive languages contains the class of context-free languages, and is
itself contained in the recursively enumerable languages.

Over time the context-free languages have been used in parsers and compil-
ers and the recursively enumerable languages have been found to be equivalent
to the class of languages recognisable by Turing machines. Context-sensitive
languages however, have not been so widely used and it is this seeming omission
that spurred this project.

The aim of this text is to present theorems that show the place of the context-
sensitive languages within the theory of computation. The primary source is
the comprehensive work, (Theory of Formal Languages with Applications) by
Simovici and Tenney[4], while some parts also make use of Sipser[5].

In this first section we investigate different definitions for context-sensitive
languages which are useful in understanding their behaviour. We cover gram-
mars, as mentioned above; non-contracting grammars and linear bounded au-
tomata (LBA). Then we show that all of these are equivalent. The proof of
equivalence with LBA is due to Kuroda[3] and is instrumental in understanding
the place of context-sensitive languages in terms of their computational com-
plexity. In the second part we examine the properties of the class of context-
sensitive languages: closure under elementary set operations, including the fa-
mous Immerman-Szelepcsényi theorem which has great importance for complex-
ity theory. We then look at the place of the context-sensitive languages in the
space complexity hierarchy and the decidability of linear bounded automata.

1.2 First Definition of Context Sensitive Languages

Definition 1.2.0 A grammar is a quadruple (V,Σ, S, P), such that:

V is a finite set of variable symbols.

Σ is the alphabet (of terminal symbols) of the grammar. It is required that
Σ ∩ V = ∅.

S ∈ V is the starting variable.

1.2 First Definition of Context Sensitive Languages 3

P is a finite set of productions πi of the form α→ β, where α, β ∈ (Σ∪V)∗. �

Definition 1.2.1 A grammar G defines a unique subset of (Σ ∪ V)∗ called the
set of sentential forms of G by the following rules:

• S is a sentential form of G

• a′ := a1βa2 is a sentential form if and only if a := a1αa2 is a sentential
form, where a1, a2 ∈ (Σ ∪ V)∗ and α→ β is a production of G

In this case we say a derives a′ in G and may write this as a ` a′. �

Example 1.2.2 Let G = ({S}, {a}, S, {S → a, S → aSa}).
Some sentential forms of G:

S ` a
S ` aSa
aSa ` aaa

a, aaa, aaaaa, aaaaaaa are all strings generated by G. Clearly L(G), the
language generated by G, is {an|n is odd}. �

Example 1.2.3 Some grammars may not generate any strings at all. Let
G1 = ({S,A,B}, {c}, S, S → A,A→ B, c→ c). The only possible derivation is:

S ` A
A ` B

But this does not end in a terminal string so L(G1) = ∅. �

It is worth noting that while still quite general, a grammar is a specialised
form of semi-Thue system (also called a string rewriting system). These
make no distinction between terminal and variable symbols and may operate
as recognisers or generators. In fact they are identical in function to finite
presentations of monoids.

Definition 1.2.4 Given a grammar G = (V,Σ, S, P); G is context-sensitive
if every production in P is of the form

αAβ → αγβ,

with A ∈ V , α, β ∈ (Σ ∪ V)∗ and γ ∈ (V ∪ Σ)∗ − λ. However S → λ is allowed
provided that there is no rule in P with S on the right. A language L ⊆ Σ∗

is a context-sensitive language if it is generated by some context-sensitive
grammar G = (V,Σ, S, P). This means that for every string s ∈ L there is a
derivation of s from S, using the productions in P . �

Note that the grammar generating L is not unique; if G generates a language
L(G), then we can always construct a grammar G′ that also generates L(G)
by inserting an arbitrary number of redundant productions eg. A→ B,B → A
for A ∈ V,B ∈ V ′ − V .

1.3 The Chomsky Hierarchy 4

Example 1.2.5 Let L := {anbncn|n ∈ N} then L is a context-sensitive lan-
guage.
To generate L use the following grammar G := ({A,B,C,H, S}, {a, b, c}, S, P)
and define

P := { S → aSBC, CB → HB, aB → ab,
S → aBC, HB → HC, bB → bb,

HC → BC, bC → bc,
cC → cc}

To show that G does indeed generate L, we will look at the derivation scheme
in general. Starting with S, the only possible productions which can be applied
are S → aSBC or S → aBC. Suppose we apply S → aSBC n − 1 times to
obtain the sentential form

an−1S(BC)n−1, n > 0

At this point we can apply S → aBC to get

an(BC)n

Now the B and C variables must be rearranged into the correct order, this is
the function of the productions involving the variable H. Clearly, applying the
productions CB → HB,HB → HC,HC → BC in sequence will transform one
instance of CB to BC. Hence the sentential form an(BC)n = anB(CB)n−1C
becomes

anBnCn

The remaining rules in P simply rewrite variables as terminal symbols from left
to right beginning with aB, leaving the desired string anbncn.

But does G generate any strings outside of L? To be a terminal string of
G every variable must be replaced with a terminal symbol. This can only be
done by using productions from the third column above. Also notice that the
left side of each of these has first a terminal, then a variable symbol and that
these are dependent on previous rules from that column having been applied,
eg. cC → cc requires a c, but this means at least one application of bC → bc has
occurred. This means that these rules must be applied in this order: at least
one application of aB → ab; zero or more applications of bB → bb; at least one
application of bC → bc; zero or more applications of cC → cc. Additionally we
are constrained by the fact that the first column rules specify that there must
be an equal number of a, B and C symbols. So if every variable symbol is to
be replaced, we can only start with sentential form anBnCn as above. Hence
G generates L. �

1.3 The Chomsky Hierarchy

As mentioned in the introduction, context-sensitive languages are members of
a hierarchy of formal languages of increasing complexity. This is very useful in
terms of understanding how the class of context-sensitive languages relates to
those of lesser or greater complexity and how this is classification is perhaps a
natural one given our definition in terms of grammars.

1.3 The Chomsky Hierarchy 5

L0 - Every grammar is L0, these characterise the recursively enumerable lan-
guages and are equivalent to the languages recognisable by Turing ma-
chines. An example of a recursively enumerable language is {< T, s > | <
T, s > is an encoding of Turing machine T which accepts s}.

L1 - Context-sensitive grammars, with productions of the form αAβ → αγβ.
An example is {anbncn|n ∈ N} as above.

L2 - Context-free grammars, with productions of the form A→ β where A ∈ V
and β ∈ (V ∪ Σ)∗. An example is {aibjck|i, j, k ≥ 0 and i = j or j = k}.

L3 - Regular grammars, with productions of the form A → αB or A → α for
A,B ∈ V and α ∈ Σ. An example is {an|n is even }.

By definition each class is contained in the preceding class. So every
language generated by a context-sensitive grammar is recursively enumerable;
but some context-sensitive languages are not context-free. The previously
mentioned language {anbncn|n ∈ N} is an example of a CSL that is not
context-free. However, to prove this we will need a property of context-free
languages that does not apply to CSLs.

Theorem 1.3.6 (Pumping lemma for context-free-languages): If L is
a context-free language then there is some natural number p (known as the
pumping length) such that if s ∈ L and |s| ≥ p then s can be written as
s = vwxyz where for each i ≥ 0, vwixyiz ∈ L, |wy| > 0 and |wxy| ≤ p. �

Example 1.3.7 L = {anbncn|n ∈ N} is not context-free.

Suppose for contradiction that L is a context-free language and that p is
its pumping length. Let s = apbpcp. Then, by the pumping lemma, s can be
written as s = vwxyz. Using the conditions that |wxy| ≤ p and |wy| > 0, we
see that there are five possible forms that wxy may take:

1. wxy = am for m ≤ p

2. wxy = ambn where m+ n ≤ p

3. wxy = bm for m ≤ p

4. wxy = bmcn where m+ n ≤ p

5. wxy = cm for m ≤ p

Now by assumption vwixyiz ∈ L for every i ≥ 0. Clearly, in all cases
vwixyiz = ambnco /∈ L for i > 1 and m,n, o ∈ N as m 6= n or m 6= o.
Contradiction. �

Unfortunately there is no correspondingly simple pumping lemma for
context-sensitive languages. To prove that a given language has no context-
sensitive grammar requires a different way of looking at this class of languages.

1.4 Second Equivalent Definition of Context Sensitive Languages 6

1.4 Second Equivalent Definition of Context Sensitive
Languages

Definition 1.4.8 Given a grammar G = (V,Σ, S, P), we say that G is length
increasing if for all productions α→ β in P we have that |α| ≤ |β|. �

Context-sensitive languages can also be defined as the class of languages
generated by length increasing grammars. It is evident from the definition of
context-sensitive grammars that they are necessarily length increasing. The
fact that all length increasing grammars generate context-sensitive languages is
slightly more surprising.

Theorem 1.4.9 Given a length increasing grammar G1 there is a context-
sensitive grammar G2 such that L(G1) = L(G2).

Since G1 is length increasing, each production can be written as

X0X1 . . . Xm → Y0Y1 . . . Yn, m ≤ n,

where Xi, Yj ∈ (Σ ∩ V)∗ for all 0 ≤ i ≤ m, and 0 ≤ j ≤ n.
This is not necessarily a context-sensitive production. For instance AB → CDE
is length increasing but not context-sensitive. Context-sensitive productions
can have only one variable substituted for on the right-hand side. Hence to
find an equivalent grammar, we need context-sensitive productions that de-
rive the sentential form on the right from the one on the left. This can be
done quite simply; in the above example AB → CDE can be rewritten as
AB → XB,XB → XDE,X → C, provided that X doesn’t appear in any
other productions. In the general case:

X0X1 . . . Xm → Z0X1 . . . Xm

Z0X1 . . . Xm → Z0Z1 . . . Xm

. . .
Z0Z1 . . . Zm−1Xm → Z0Z1 . . . Zm−1Ym . . . Yn

Z0Z1 . . . Zm−1Ym . . . Yn → Y0Z1 . . . Zm−1Ym . . . Yn
. . .

Y0Y1 . . . Zm−1Ym . . . Yn → Y0Y1 . . . Ym−1Ym . . . Yn

Where Zk ∈ (Σ∩ V)∗ for all 0 ≤ k ≤ m− 1. Note that each Zk appears only in
the above set of productions. This and the fact that the entire sentential form
is recorded in the productions (as opposed to using Z0 → Y0 say), ensures that
no derivations are possible other than the one we intend. Hence applying the
above scheme to all of the non-context-sensitive productions in G1 will yield a
context-sensitive grammar G2 with L(G1) = L(G2). �

1.5 Third Equivalent Definition of Context Sensitive Lan-
guages

A third way to define the context-sensitive languages is as the class of
languages recognised by nondeterministic linear bounded automata (LBA).
These automata are simply nondeterministic Turing machines that have a work
tape restricted to the length of the input string or, equivalently, to a constant

1.5 Third Equivalent Definition of Context Sensitive Languages 7

multiple of the length of the input. This represents a different approach
to defining languages than that used above. Whereas grammars generate a
language, LBAs analyse strings from Σ∗ and define a language as the set of
strings which have accepting runs.

The LBA construct formally represents a computer operating with limited
memory. It has three components: the control unit, an input/work tape and a
read/write head that scans this tape. The input, a string in Σ∗, is preloaded on
the tape. The LBA operates on this input by first scanning in a symbol from
the current cell (the position of the read/write head on the tape). Then, based
on this input, the control unit can write a new symbol to that position on the
tape or leave it unchanged. Following this it will then move the head left, right,
or have it remain in place. The fact that the working space is restricted to the
length of the input string means that the read/write head cannot be made to
move beyond the ends of the tape. Saying that it operates nondeterministically
means that it doesn’t quite operate like a physical computer, rather it operates
as the luckiest possible guesser. This means that at each point there may be
several choices for the control unit as to the next state. If one of these choices
leads to a successful result then it will choose that one, being the luckiest
possible guesser.

Definition 1.5.10 A nondeterministic linear bounded automaton
(LBA) µ is a 5-tuple (A,Q, δ, q0, F) where the components are defined as fol-
lows:

A - The tape alphabet, defined as Σ∪ {�,�,t}. These extra symbols are the
left and right end markers and empty symbol respectively. The read/write
head cannot move beyond the end markers.

Q - The set of states. It is assumed that Q ∩A = ∅

δ : Q×A→ P({Q∪F}×A×{0, L,R}) - The transition function. The symbols
0, L,R indicate that the read/write head should remain in place, move left
or right respectively. If (q′, a′, d) ∈ δ(q,�) then d = R or d = 0. Similarly
if (q′, a′, d) ∈ δ(q,�) then d = 0 or d = L.

q0 - The initial state, a unique element of Q.

F - The set of final states, where Q ∩ F = ∅. This ensures that computation
always halts when a final state is reached. �

Definition 1.5.11 A configuration of an LBA µ is a string in (Q ∪ A)∗

that represents the work tape, current state and the position of the read/write
head. For example, µ in its initial state on input s = a0a1 . . . an would have
configuration q0�a0a1 . . . an�. Note that the tape cell currently being scanned
is to the right of the state symbol. �

Definition 1.5.12 A computation of µ on a string s ∈ Σ∗ is a sequence of
configurations (also called a run) of µ; c0, c1, . . . , cn such that c0 = q0 � s� and
if ci = �s1qxs2� and ci+1 = �s1x

′q′s2� then (q′, x′, R) ∈ δ(q, x). Similarly,
the read/write head may move left or remain in place and this is reflected in

1.5 Third Equivalent Definition of Context Sensitive Languages 8

ci, ci+1. An accepting computation is any run on µ such that the final state
qn is in F . �

Theorem 1.5.13 A language L is context-sensitive if and only if there is a
linear bounded automaton µ such that L(µ) = L

”⇒” Given a context-sensitive grammar G = (V,Σ, S, P) there is an LBA µ
recognising L(G). What needs to be done to prove this is to construct an LBA
from G that on input s ∈ Σ∗ reaches an accepting configuration iff s ∈ L(G).
This can be accomplished by the LBA operating as follows: On input s ∈ Σ∗;

1. Nondeterministically choose a production p ∈ P where p = α→ β.

2. If β is a substring of the current work tape string, s′, replace β with α in s′,
ensuring that the string remains contiguous, otherwise leave s′ unchanged.

3. Repeat 1 and 2 until the tape reads St|s|−1 then ACCEPT.

Clearly if there is a derivation of s using G then µ will eventually accept.
Conversely for each string that µ accepts there is a derivation using G (simply
apply the original productions in the reverse order to which they were guessed
using µ). Since the class of languages generated by CSGs is equivalent to the
class generated by length increasing grammars, it is clear that applying the
inverses of length increasing productions produces sentential forms no longer
than the original string. Hence this computation can be carried out in linear
space.

”⇐” Given a linear bounded automaton µ accepting L(µ) a grammar G =
(V,Σ, S, P) can be constructed from µ that recognises L(µ). So given s ∈ L(µ)
there is a derivation of s using G iff µ has an accepting computation on s. Here
we should pause to note the similarities of LBAs and grammars; LBAs proceed
from state to state via applications of the transition function while grammars
proceed from sentential form to sentential form via applications of productions.
The difference is that LBAs begin from an input string which may or may not
be accepted. This is what the desired grammar must do then. We will use the
symbols of G to represent the configuration of µ but also to retain the input
string: each symbol in V is a pair (a, b) where a ∈ Σ and b ∈ T , b is of the form
a, aqx, qxa or q0 � a i.e. it may contain tape symbols but it only contains a
from Σ. Now any starting configuration of µ can be represented by:

S → (a, q0 � a�)
S → (a, q0 � a)X

X → (a, a)
X → (a, a�)

There are duplicate productions for every other a ∈ Σ too. Next we must encode
the transition function δ of µ in the productions of G:

• If (q′, b′, R) ∈ δ(q, b) then for every a ∈ Σ add production (a, qb) →
(a, b′q′).

• If (q′, b′, L) ∈ δ(q, b) then for every a, an ∈ Σ and bn ∈ A add production
(an, bn)(a, qb)→ (an, bq

′)(a, b′).

1.5 Third Equivalent Definition of Context Sensitive Languages 9

• If (q′, b′, 0) ∈ δ(q, b) then for every a ∈ Σ add production (a, qb)→ (a, q′b′).

Finally we need productions that will recover the original string. Here we
make the assumption that µ only enters a final state when the read head has
moved fully to the left. Then we can include rules for every a, an ∈ A and q ∈ F :

(a, q�a�)→ a
(a, q�a)→ a

a(an, xn)→ aan

Now if c = c0, c1, . . . , cm is an accepting computation of µ on s = s0s1 . . . sn
we must show that s can be derived by G. c0 = q0 � s� is represented by the
sentential form (s0, q� s0)(s1, s1) . . . (sn, sn�) which can be obtained using the
first set of productions defined above. Each configuration ci is preceded by a
configuration ci−1 such that ci is reached by a single application of a member
of the transition function applied to the cell and state in ci−1. Since the second
set of productions defines productions for every possible application of the
transition function, the sentential form of ci can be derived from ci−1 in G. And
lastly cm = q�x0x1 . . . xn� with sentential form (s0, q�x0)(s1, x1) . . . (sn, xn).
Using the final set of productions above, the string s can be extracted.
Conversely if S, S0, S1, . . . , Sn is a sequence of sentential forms of G where
s := Sn we must show that there is an accepting computation of s on µ.
Given that |s| = l then Sl−1 encodes c0. From there each Si must follow
by the application of a rule from the second production set. These strictly
correspond to valid applications of the transition function, meaning ci−(l−1)
entails ci−(l−1)+1. G can only produce a terminal string if it first produces a
sentential form encoding a final state configuration of µ. Hence if G produces
s there is an accepting computation of s on µ. �

Note that the above equivalence is only true for LBAs, not for Turing
machines in general (which do not have the linear bound condition). This is
because if the machine has a work tape that is longer than the input string
(or a constant multiple of the length as we shall see later) then there may be
configurations of the machine that are arbitrarily longer than the input string.
But then when the equivalent grammar produces a terminal string (the original
input string) it will be shorter than the configuration; hence the grammar is no
longer length increasing.

Example 1.5.14 {ap|p is prime} is a context-sensitive language. It would
be difficult to find a grammar that generates this language, but it is simple to
find an LBA to recognise it. Consider the LBA that on input s = an divides
n by all natural numbers m where 1 ≤ m ≤ n − 1. This machine accepts only
when no m divides n, otherwise it rejects after trying all m < n. �

2 Properties of Context-Sensitive Languages 10

2 Properties of Context-Sensitive Languages

2.1 Introduction

Given any new class of sets we usually want to find out how it behaves un-
der standard set operations. To have a useful mathematical object it is de-
sirable that the operations of intersection, union and composition do not form
new objects outside the definition of the class. It turns out that the class
of context-sensitive language is closed under all of the above operations; al-
most all are easy to prove. Closure under complementation however, was not
proven until 1987 when it was proven by both N. Immerman and R. Szelepcsényi
independently[2][6].

2.2 Basic closure theorems

The first three operations considered; union, concatenation and Kleene closure,
are in fact closure operations for all formal languages. These are called the
regular operations.

Theorem 2.2.0 The class of context-sensitive languages is closed with respect
to concatenation.

Let L1 and L2 be context-sensitive languages generated by G1 = (V1,Σ, S1, P1)
and G2 = (V2,Σ, S2, P2) respectively. We can assume, without loss of generality,
that V1 ∩V2 = ∅. Now define G = (A1 ∪A2,Σ, S, P1 ∪P2 ∪{S → S1S2}), where
S /∈ A1 ∪A2. The new rule S → S1S2 is context-sensitive as are the rules in P1

and P2 by definition, hence G is context-sensitive. Claim that L(G) = L1L2.
If s ∈ L1L2 then s = s1s2 where s1 ∈ S1 and s2 ∈ S2. A derivation of s
using G uses S → S1S2. There are derivations for s1 and s2 from S1 and
S2 respectively and since V1 ∩ V2 = ∅ applying these derivations to S1S2 we
must get s. Conversely, if s ∈ L(G) then the rule S → S1S2 along with the
assumption V1 ∩ V2 = ∅ ensures that s = s1s2 where s1 ∈ L1 and s2 ∈ L2. �

Theorem 2.2.1 Given two context-sensitive languages L1 and L2, then L1∪L2

is a context-sensitive language also.

The idea behind this proof is simple; take two LBAs µ1 and µ2 that recognise
L1 and L2, respectively and construct a new machine µcup to recognise the
union. Define a new start state and link it to the start states of the original
machines. Then µcup will non-deterministically choose a machine to execute on
a given input and accept only if the computation eventually reaches a final state
in either of the LBAs.
Formally, if µ1 = (A1, Q1, δ1, q(1,0), F1) and µ2 = (A2, Q2, δ2, q(2,0), F2) then let
µ∪ = (A1 ∪A2, Q1 ∪Q2 ∪ {q0}, δ′, q0, F0 ∪ F1), where δ′ is defined as follows:

δ′(q0,�) = {(q(1,0),�, 0), (q(2,0),�, 0)}
δ′(q, a) = δ1(q, a), if a ∈ A1 and q ∈ Q1

δ′(q, a) = δ2(q, a), if a ∈ A2 and q ∈ Q2

If s ∈ L1 then s has an accepting computation on µ∪, namely from q0 to q(1,0)
from which it can reach a final state by assumption. Similarly, s ∈ L2 has an

2.2 Basic closure theorems 11

accepting computation on µ∪. Conversely, if s′ is accepted by µ∪ it must have
an accepting computation on either µ1 or µ2. This can be found simply by
removing the first configuration, q0 � s′�, of the accepting computation. �

The proof of closure under the Kleene star operation requires care since
the Kleene star is a unary operator. We make use of the assumption that
the productions of a context-sensitive grammar can be written with terminal
symbols only occurring on the right hand side of productions. An example of
this is Kuroda Normal form described by Kuroda in [3]. The proof that every
context-sensitive language has a Kuroda Normal form grammar is omitted here
as it is a largely technical formalism.

Theorem 2.2.2 The set of context-sensitive languages is closed under the
Kleene star operation.

Let L := L(G) and G = (V,Σ, S, P) such that L a context-sensitive language
that does not contain λ. Let L∗ := {s1s2 . . . sn : si ∈ L and n ∈ N} be the
Kleene closure of L. Define a new grammar G∗ = (V ∪ {S1, S2},Σ, S1, P

∗),
assuming that {S1, S2} ∩ V = ∅. The augmented set of productions of G∗ is
defined as:

P ∗ = P ∪ {S1 → λ, S1 → S, S1 → S2S} ∪ {S2a→ S2Sa, S2a→ Sa : a ∈ Σ}

The two extra variables are required because the of fact that s0 = λ for s ∈ L
means that we need a rule S1 → λ. But then, by definition, we cannot have S1

on the right side of any other rule. The second new set of productions added
above allows us to derive strings of the form s1s2 . . . sn by inserting a new S
on the left at any point in the derivation, eg. from S2sn−i . . . sn we obtain
S2Ssn−i . . . sn and from the new S we may derive a new string in L. This is
why we require that L does not contain the empty string, otherwise G∗ would
not be length increasing. It is fairly clear that using these productions we can
derive all strings in L∗ using G∗. Now we must show that these are the only
strings that are in L(G∗). Suppose x is derived by G. There are only three
possible ways for this to occur:

1. By an application of S1 → λ, so x = λ ∈ L∗.

2. By an application of S1 → S then a derivation using G. Then x ∈ L ⊆ L∗.

3. By an application of S1 → S2S followed by zero or more applications of
S2a → S2Sa, for some a ∈ Σ. Then one application of S2b → Sb, for
some b ∈ Σ. The result is a sentential form of G∗, X1X2 . . . Xn where
each Xi is a sentential form of G that has the form aα1α2 . . . αn for a ∈ Σ
and αi ∈ Σ∪V . This is because of our assumption that terminal symbols
only occur on the left of productions of G and that {S1, S2}∩V = ∅. This
also means that from X1X2 . . . Xn we can only derive the string s1s2 . . . sn
with each si ∈ L.

Hence L(G∗) = L∗. Now suppose L contains λ. Note that L − {λ} is context-
sensitive; we can simply delete the rule S → λ, since S is not on the right side
of any other productions. Then form (L− {λ})∗. This is context-sensitive and

2.3 Immerman-Szelepcsényi theorem 12

equal to L∗. �

The proof of closure under intersection is slightly more complex than for
union. This is because for a string to be in L1 ∩ L2 it must have an accepting
computation on both µ1 and µ2. We must check first that µ1 accepts the
string then that µ2 accepts. But this means that the string must be delivered
unchanged to µ2 after µ1 has performed its accepting computation on the same
tape (which is restricted to the length of the string). To do this we make an
LBA with work alphabet consisting of pairs of symbols from µ1 and µ2 then
have copies of the machines operate on two separate copies of the input string.

Theorem 2.2.3 Given two context-sensitive languages L1 and L2, then L1∩L2

is a context-sensitive language also.

The idea in this case is to have the tape store pairs of symbols ie. the tape
alphabet is A1×A2. A modified version of µ1 will operate on the first symbol in
the pair while a version of µ2 will operate on the second. Since each pair in A1×
A2 occupies only one tape cell and both µ1 and µ2 are LBAs, the new machine
is an LBA also. Let µ1 = (A1, Q1, δ1, q(1,0), F1) and µ2 = (A2, Q2, δ2, q(2,0), F2)
be LBAs recognising L1 and L2 respectively. Now define µ∩ as the LBA that
operates as follows:

1. On input s = s0s1...sn ∈ A1 ∩A2, set the tape to (s0, s0)(s1, s1)...(sn, sn).

2. Run µ1 on the first symbols in the tape pairs.

3. If µ1 accepts, run µ2 on the unmodified second symbols in the tape pairs.

4. If µ2 accepts then µ∩ accepts.

Then µ∩ accepts s if and only if s ∈ L1 ∩ L2. �

2.3 Immerman-Szelepcsényi theorem

The Immerman-Szelepcsényi theorem demonstrates that given an LBA µ
recognising a certain context-sensitive language we can construct an LBA µ
that recognises all the strings not recognised by µ. The theorem originally
proven by Immerman and Szelepcsényi is a lot more general; it shows that
every language that is accepted by a Turing machine operating within some
space constructable bound has a machine recognising its complement that
operates in the same bound. Clearly LBAs are just a special case of this. We
discuss more about the theory of space complexity after the proof, but first we
introduce a crucial tool; the multitape LBA.

Definition 2.3.4 A multi-tape LBA is an LBA that uses several inde-
pendent read/write heads, each with their own tapes of length equal to the
size of the input. A k-tape LBA is defined as µk = (A,Q, δk, q0, F) where
δk : Q×Ak → Q× (A× {L,R, 0}) is the transition function. �

Multi-tape machines can be simulated on single-tape machines by using
k-tuples as the work tape alphabet, as in the proof of closure under intersection.

2.3 Immerman-Szelepcsényi theorem 13

We also need special markers to keep track of the positions of the read/write
heads from each tape. What is important though, is that this new machine has
a work tape with the same length as the input string (as each of the individual
tapes are this long). In a similar way we can see that a single tape machine
with work tape restricted to at most a linear multiple of the input can be
represented as an LBA. These notions allow us to simplify our representation
of LBAs in proofs. If we have an algorithm that runs on a Turing machine and
only uses finitely many variables, each of which can be represented in space
linear in terms of the input, then we know it is able to run on an LBA. This
fact is used in the following proof.

Theorem 2.3.5 The context-sensitive languages are closed under complemen-
tation.

Given a context-sensitive language L ⊆ Σ∗ with corresponding LBA µ =
(A,Q, q0, δ, F), we wish to construct an LBA µ which accepts a string s only if
µ does not accept s. Then L(µ) = Σ∗−L. At first glance, simply simulating the
computation of s on µ and rejecting if µ accepts seems a promising approach.
However µ must accept only if every possible computation of s is not accepting.
Hence µ must do the following:

1. Determine how many configurations are reachable given input s.

2. Check that for each of these µ is not in an accepting state.

Let Ci be the set of configurations of µ reachable in no more than i steps and
let m = |Q|(|s| + 2)|A||s|, this is the total number of possible configurations
of µ on s. The first task then, is equivalent to finding |Cm|. This can be
accomplished by performing a nondeterministic breadth-first search of all
the possible computations of µ on s. However we are restricted by the fact
that µ must operate within a linear bound, so we cannot store every current
configuration for each possible branch of the computation. Instead, at each
iteration of the algorithm we nondeterministically select the configurations from
the previous iteration then count the configurations which can be reached in one
further step of µ. The following is a psuedocode representation of this algorithm:

NBreadthFirstSearch(s):-
Set CountOverall = 1.
For i = 0 to (m− 1):

Set Counti+1 = 0.
Set ConfigsChecked = 0.
For each ca 6= c0 of µ:

For each cb of µ non-deterministically choose to execute or skip the following:
Simulate µ on input s.
-REJECT if after i steps µ has not reached cb.
Increment ConfigsChecked.
If ca follows from cb or ca = cb then increment Counti+1.

Then Goto next ca.
End For

End For

2.3 Immerman-Szelepcsényi theorem 14

If ConfigsChecked < CountOverall then REJECT.
Set CountOverall = Counti+1.

End For
RETURN CountOverall.

To show the correctness of this algorithm we prove by induction that for each
i the value of CountOverall on that iteration is |Ci|. Use for the base case
|C0| = 1; at this point CountOverall has been initialised to 1 and so is correct.
Now suppose CountOverall = |Cp| for some p ∈ {0, ..m − 2}. The (p + 1)th
iteration of the outer for-loop can succeed only if the following are true:

• Each cb chosen to execute on must be the result of a computation of length
at most i.

• Each ca selected must follow immediately from cb or ca = cb.

• ConfigsChecked must be equal to CountOverall, the number of config-
urations reachable in i steps.

Taken together these conditions imply that a configuration increments the
Counti+1 variable only if it is reachable by a computation of length at
most i + 1 and each time this occurs |Ci| = CountOverall configurations
must have already been checked, as recorded by ConfigsChecked. If the
above algorithm is to run on an LBA, each of the variables must be able to
be stored in space directly proportional to the input length, |s|. Now the
maximum value of any of these variables is the number of possible states,
m = |Q|(|s| + 2)|A||s|. This value has a binary representation of length
log2m = |s| log2 |A| + log2(|s| + 2) + log2 |Q| ≤ c|s| for some c ∈ N. So an
LBA implementing this algorithm will need at least seven tapes, six for the
variables (Counti+1, CountOverall, etc.) and one for the work tape of µ used
to simulate it.

Now that we have the number of reachable configurations we can check for
final states. If µ can guess |Cm| distinct configurations all of which are reachable
and non-accepting, then |s| is in the complement of L(µ) and so µ should accept.
An algorithm for this follows:

Check(|Cm|):-
Set Count = 0
For each c 6= c0 of µ non-deterministically choose to execute or skip the following:

If c is a final state of µ REJECT.
Simulate µ on s.
If after m steps c has not been reached REJECT.
Increment Count.

If Count = |Cm| ACCEPT.

As with the first algorithm the variables Count, c, |Cm| and the simulation
tape can all be represented on an LBAs linear bounded work tape. Since both
algorithms can be carried out by an LBA the desired result follows from the
equivalence of LBAs and context-sensitive languages. �

2.4 Space Complexity 15

2.4 Space Complexity

The flexibility of the concept of multi-tape LBAs illustrates the fact that LBAs
(equivalently CSGs and context-sensitive languages) represent an entire class
of computations of Turing machines: those that can be carried out in space at
most a linear multiple of the input. In addition we have seen that this class
has several desirable closure properties. This leads us to define the notion of
space complexity; loosely this is a classification of Turing machine algorithms
by the maximum size of the work tape needed to compute them.

Definition 2.4.6 The Space complexity of a nondeterministic Turning
machine µ is a function f : N → N such that f(n) is the maximum number of
tape cells scanned by the read/write head of µ in any branch of computation
on input of length n. �

In practice it is difficult to find the specific space complexity of a given
algorithm. However we can still form a useful framework for space complexity
by estimating the degree of scalability of the complexity function relative to its
input.

Definition 2.4.7 Let f : N→ N. O(f(n)) = {g : N→ N| if g(n) ≤ Cf(n) for
every n ∈ N and where C is some constant}.
This is called asymptotic or Big-O notation �

Definition 2.4.8 NSPACE(f(n)) = {L = L(µ)|µ is a non-deterministic TM
with space complexity g(n) ∈ O(f(n))}. SPACE(f(n)) is the corresponding
class for deterministic TMs. �

Using these two definitions we see that all algorithms that run on LBAs are
in NSPACE(n) in other words, the problem of finding whether a given context-
sensitive grammar derives a certain string is in NSPACE(n). This illustrates
the close ties between complexity theory and formal language theory. As an
interesting aside, there remains an open problem to do with LBAs in the realm
of complexity theory: does a deterministic LBA have the same power as a normal
non-deterministic LBA or, equivalently, does NSPACE(n) = SPACE(n). This
problem was first posed, along with the complementation problem, by Kuroda
in his paper detailing the equivalence of LBAs and context-sensitive languages.
We know from Savitch’s theorem that NSPACE(f(n)) ⊆ SPACE(f2(n)) and by
space hierarchy theorems that SPACE(n) (SPACE(n2) hence the best we can
say with current knowledge is that SPACE(n) ⊆ NSPACE(n).

2.5 Computability

Certain problems to do with classes of languages have the desirable property
that they are able to be decided by a Turing machine. Decided is used in
a technical sense to mean the Turing machine must halt on both accepting
and rejecting input. Problems which are decidable are quite often able to be
implemented on real life computers, however it must be noted that decidability
says nothing about efficiency of computation. That is the realm of complexity
theory.

2.5 Computability 16

Definition 2.5.9 Given a language L ⊆ Σ∗ (normally an encoding of a problem
or function) a decider for L is a Turing machine T that for every s ∈ Σ∗, T
accepts if s ∈ L or halts after finitely many steps. In the non-deterministic case
this means that every possible computation branch has finite length. L is then
said to be decidable. If L does not have a decider it is undecidable. If T
accepts when s ∈ L but does not necessarily halt then it is a recogniser for L. �

The first problem we will look at is called the acceptance problem for
context-sensitive languages. This is the most fundamental problem for a
language: given a string s ∈ Σ∗ and some description of the language eg. a
grammar, is s in the language? In fact this problem is decidable for all of
the languages in the Chomsky hierarchy except the recursively enumerable
languages.

Theorem 2.5.10 The acceptance problem for context-sensitive languages is
decidable.

Given µ = (Q,A, δ, q0, F) we know that if s ∈ L(µ) then µ will halt in an
accepting state by definition. Instead suppose s /∈ L(µ). As noted in our proof
of the Immerman-Szelépscenyi theorem there are m = |Q|(|s|+ 2)|A||s| possible
configurations of µ on s. We can use this as an upper bound on the length
of a computation of µ since, by the pigeon-hole principle, if µ runs for more
than m steps on s without halting then there must be at least one repeated
configuration. So we know that by this stage µ must have been through every
possible reachable configuration on s and so we deduce that s cannot be in
L(µ). Therefore every LBA µ is a decider for L(µ) as it must either reach an
accepting state or reject after m steps. �

Next we highlight a computational facet of the increase in complexity
of context-sensitive languages over context-free languages in the emptiness
problem. This asks, if given a description of a language, does it contain any
strings? Immediately it can be seen that this problem is harder than the
acceptance problem as a positive answer asserts that all strings in Σ∗ are not
in the language. However with context-free languages we can use the simple
structure of the grammar to our advantage.

Theorem 2.5.11 The emptiness problem for context-free languages is decid-
able.

Recall that a context-free grammar is one in which each production is of the
form A → γ where A is a variable and γ is any combination of variables and
terminals. Given a string representation of a context-free grammar, first mark
the terminal symbols. Then scan the right hand side of all productions for
terminal only forms. If they exist, mark the corresponding left hand side
variables. Now repeat but searching for marked symbols on the right this time.
Repeat this until either S is marked or no new symbols are marked. Since
there are only a finite number of symbols and productions this algorithm must
halt in either case. �

2.6 Conclusion 17

The proof of the undecidability of the emptiness problem for context-
sensitive languages makes use of the fact that the acceptance problem
(sometimes called the halting problem) for Turing machines is undecidable. We
form a reduction from the emptiness problem to the halting problem, showing
that a decider for the emptiness problem can be used to build a decider for the
halting problem.

Theorem 2.5.12 The emptiness problem for context-sensitive languages is
undecidable.

Suppose for contradiction that the emptiness problem for context-sensitive lan-
guages has a decider D. So D takes input < µ >, an encoding of an LBA
µ, and accepts if µ does not accept any strings. We must now show that this
can be used to construct a decider for the halting problem. Given a Turing
machine M and input string w we may construct an LBA µ that accepts the
language consisting of all accepting computations of M operating on w. For a
fixed M = (Q,A, δ, q0, F) and w, let µ operate as follows:
On input c0, c1, . . . , cn:

1. Check that c0 = q0w, (w is built into µ).

2. For each of c1, . . . , cn:

3. Check that ci+1 follows from ci according to the transition function δ.

4. Check that the state in cn is a final state of M .

This may be carried out by an LBA as it involves only reading from the work
tape, no extra information need be stored.
Now if µ is not empty then there is an accepting computation of w on M , so we
may define a decider for the halting problem that works by constructing µ as
above, then feeds the definition of µ into the decider for the emptiness problem,
D. If D accepts this input then REJECT as this means the language of µ is
empty; M has no accepting computation on w. If D rejects; which it must if
< µ > is not empty, then ACCEPT because there is an accepting computation
of Mo on w. Hence we have a decider for the halting problem; contradiction.
�

2.6 Conclusion

We have seen that far from being just an arbitrary subdivision of the set of
all possible grammars, context-sensitive languages turn up in many other fields
from formal language theory to complexity theory. There are three equivalent
definitions of context-sensitive languages: as languages generated by context-
sensitive grammars; as the class of non-contracting grammars and as the lan-
guages recognised by linear bounded automata. This last and by far most im-
portant equivalence made the connection between context-sensitive grammars
and the class of non-deterministic linear space algorithms and illustrated the
expressive power of context-sensitive languages.

2.6 Conclusion 18

Next we used properties of LBA and grammars to prove the closure of the
class of context-sensitive languages under the union, intersection, concatena-
tion, complementation and Kleene star operations; thus showing it is a useful
mathematical object worthy of study. The Immerman-Szelepcsényi proof of
closure under complementation illustrates how results in complexity theory can
be applied to context-sensitive languages via the LBA equivalence. Then an
important open problem in complexity theory was posed- does NSPACE(n) =
SPACE(n)?

3 References and Acknowledgements 19

3 References and Acknowledgements

This text follows closely the development in Simovici and Tenney[4], chap-
ter nine; significantly in the proof of the LBA/context-sensitive languages
equivalence. Parts are also due to Sipser[5], namely the exposition of the
Immerman-Szelepcsényi theorem and the emptiness and acceptance problems
for LBAs. And finally, thanks must go to my supervisor Andre Nies for his
help with this project.

1. CHOMSKY, Noam. Three models for the description of language. IRE
Transactions on Information Theory (2), 1956, pp.113-124.

2. IMMERMAN, Neil. Nondeterministic Space is Closed Under Complemen-
tation. SIAM Journal on Computing 17, 1988, pp. 935-938.

3. KURODA, Sige-Yuki. Classes of Languages and Linear-Bounded Au-
tomata. Information and Control, 7(2), 1964, pp. 207–223.

4. SIMOVICI, Dan A., TENNEY, Richard L. Theory of Formal Languages
With Applications. World Scientific Publishing Co., 1999.

5. SIPSER, Michael. Introduction to the Theory of Computation, Second
Edition. Course Technology, 2006.

6. SZELEPCSÉNYI, Róbert . The Method of Forcing for Nondeterministic
Automata. Bulletin of the EATCS 33, 1987, pp. 96-100.

