
Denial of Service via Algorithmic Complexity Attacks

Scott A. Crosby Dan S. Wallach
scrosby@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

Abstract

We present a new class of low-bandwidth denial of
service attacks that exploit algorithmic deficiencies
in many common applications’ data structures. Fre-
quently used data structures have “average-case”
expected running time that’s far more efficient than
the worst case. For example, both binary trees and
hash tables can degenerate to linked lists with care-
fully chosen input. We show how an attacker can
effectively compute such input, and we demonstrate
attacks against the hash table implementations in
two versions of Perl, the Squid web proxy, and the
Bro intrusion detection system. Using bandwidth
less than a typical dialup modem, we can bring a
dedicated Bro server to its knees; after six min-
utes of carefully chosen packets, our Bro server was
dropping as much as 71% of its traffic and consum-
ing all of its CPU. We show how modern universal
hashing techniques can yield performance compa-
rable to commonplace hash functions while being
provably secure against these attacks.

1 Introduction

When analyzing the running time of algorithms,
a common technique is to differentiate best-case,
common-case, and worst-cast performance. For ex-
ample, an unbalanced binary tree will be expected
to consumeO(nlogn) time to insertn elements,
but if the elements happen to be sorted beforehand,
then the tree would degenerate to a linked list, and
it would takeO(n2) time to insert alln elements.
Similarly, a hash table would be expected to con-

sumeO(n) time to insertn elements. However, if
each element hashes to the same bucket, the hash
table will also degenerate to a linked list, and it will
takeO(n2) time to insertn elements.

While balanced tree algorithms, such as red-black
trees [11], AVL trees [1], and treaps [17] can avoid
predictable input which causes worst-case behav-
ior, and universal hash functions [5] can be used
to make hash functions that are not predictable by
an attacker, many common applications use simpler
algorithms. If an attacker can control and predict
the inputs being used by these algorithms, then the
attacker may be able to induce the worst-case exe-
cution time, effectively causing a denial-of-service
(DoS) attack.

Such algorithmic DoS attacks have much in com-
mon with other low-bandwidth DoS attacks, such as
stack smashing [2] or the ping-of-death1, wherein a
relatively short message causes an Internet server to
crash or misbehave. While a variety of techniques
can be used to address these DoS attacks, com-
mon industrial practice still allows bugs like these
to appear in commercial products. However, unlike
stack smashing, attacks that target poorly chosen al-
gorithms can function even against code written in
safe languages. One early example was discovered
by Garfinkel [10], who described nested HTML
tables that induced the browser to perform super-
linear work to derive the table’s on-screen layout.
More recently, Stubblefield and Dean [8] described
attacks against SSL servers, where a malicious
web client can coerce a web server into perform-
ing expensive RSA decryption operations. They

1http://www.insecure.org/sploits/
ping-o-death.html has a nice summary.
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Figure 1: Normal operation of a hash table.

suggested the use ofcrypto puzzles[9] to force
clients to perform more work before the server does
its work. Provably requiring the client to con-
sume CPU time may make sense for fundamen-
tally expensive operations like RSA decryption, but
it seems out of place when the expensive opera-
tion (e.g., HTML table layout) is only expensive
because a poor algorithm was used in the system.
Another recent paper [16] is a toolkit that allows
programmers to inject sensors and actuators into a
program. When a resource abuse is detected an ap-
propriate action is taken.

This paper focuses on DoS attacks that may be
mounted from across a network, targeting servers
with the data that they might observe and store in
a hash table as part of their normal operation. Sec-
tion 2 details how hash tables work and how they
can be vulnerable to malicious attacks. Section 3
describes vulnerabilities in the Squid web cache,
the DJB DNS server, and Perl’s built-in hash ta-
bles. Section 4 describes vulnerabilities in the Bro
intrusion detection system. Section 5 presents some
possible solutions to our attack. Finally, Section 6
gives our conclusions and discusses future work.

2 Attacking hash tables

Hash tables are widely used throughout computer
systems. They are used internally in compilers to
track symbol tables. They are used internally in op-
erating systems for everything from IP fragment re-
assembly to filesystem directory lookup. Hash ta-
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Figure 2: Worst-case hash table collisions.

bles are so common that programming languages
like Perl provide syntactic sugar to represent hash
tables as “associative arrays,” making them easy for
programmers to use. Programmers clearly prefer
hash tables for their constant-time expected behav-
ior, despite their worst-caseO(n) per-operation run-
ning time. After all, what are the odds that a hash
table will degenerate to its worst case behavior?

In typical usage, objects to be inserted into a
hashtable are first reduced to a 32-bithash value.
Strings might be hashed using a checksum oper-
ator like CRC32 or MD5, but are usually hashed
by much simpler algorithms. More complex ob-
jects might have custom-written hash-value oper-
ators. The hash table then takes this hash value,
modulo thebucket count, the size of the array of
pointers to data being stored in the hash table, de-
termining the bucket that will hold the reference to
the object being inserted. When two inputs map
the the same bucket, acollision has occurred. To
deal with this case, eachhash bucketholds a linked
list of all inserted objects whose hash value, mod-
ulo the bucket count, maps to that particular bucket
(see Figure 1). These linked lists are referred to
ashash chains. When the total number of objects
in the hash table grows too large, resulting in long
average chain length, the size of the array of hash
buckets is typically increased, perhaps multiplied
by a constant factor, and the entries in the table are
reinserted, taking their hash values modulo the new
bucket count.

There are other methods of implementing hash ta-
bles, includingopen addressing, where collisions
are not resolved using hash chains. Instead, the



system follows a deterministic strategy to probe for
an empty hash bucket, where the object is then in-
serted. Although this paper focuses on hash chain-
ing, the attacks described here will be at least as
effective on open addressing hash tables.

The worse case (see Figure 2) can occur for two rea-
sons: either the 32-bit hash values are identical, or
the hash values modulo the bucket count becomes
identical. Of course, for randomly chosen input, the
odds of every object hashing to the same bucket is

vanishingly small —
(

1
b

)n−1
for b buckets andn ob-

jects. For maliciously chosen input, however, it be-
comes entirely feasible. If the hash table is check-
ing for duplicates when a new object is inserted,
perhaps to guarantee that it acts as a mapping from
object keys to values, then it will need to scan ev-
ery entry in the hash bucket. This will induce the
worst-caseO(n) behavior for each insert.

There are only a few requirements in order to en-
gage in such an attack. First, the hash function be-
ing used must be deterministic and known to the at-
tacker. Second, the attacker needs the ability to pre-
dict or supply all of the input being used by the hash
function. Third, the attacker needs to ensure that a
sufficient volume of attack input gets to the victim
such that they experience a performance degrada-
tion.

The attacker must understand how raw data, ini-
tially read by the application from the network,
is processed before it is inserted into the hash ta-
ble. Knowing this, the attacker must compute ob-
jects that will eventually collide, either in the 32-bit
hash-value space, or only in the eventual hash buck-
ets. Section 2.1 will describe how these collisions
can be efficiently computed for some hash func-
tions. At worst, computing hash collisions requires
an attacker to exhaustively search within the space
of possible inputs. While expensive, the attacker
can do this work ahead of time. Ultimately, the
question is whether the victim will accept enough
attack-input for theO(n2) worst-case behavior to
manifest itself. Furthermore, some victims may en-
force various limits on the growth of their hash ta-
bles, making them robust against this class of at-

tack. We describe such limits in Section 2.2.

2.1 Constructing a specific attack

The first step in analyzing a program’s vulnerabil-
ities to this attack is to determine where hash ta-
bles are being used and identifying whether exter-
nal, untrusted input can be fed directly into the ta-
ble. This can be time consuming. As an example,
the Bind DNS server places some four different ab-
straction layers between the network and the ulti-
mate hash table storing DNS bindings. Tracing this
can be tedious work for an attacker unfamiliar with
the source code.

2.1.1 Hash collision versus bucket collision

An attacker may not know the bucket count ex-
actly; many implementations change the bucket
count based on the number of objects stored in the
hash table. However, given the application’s source
code, an attacker may be able to guess possible val-
ues for the bucket count. This leads to two avenues
of attack: those where you don’t care about the
bucket count and those where you know or guess
the bucket count.

If collisions can be computed in the full 32-bit hash-
value space, then the bucket count is irrelevant;
the hash table will exhibit worst-case behavior re-
gardless of how many buckets it has. More for-
mally, we wish to derive inputsk1,k2, . . .ki such that
Hash(k1) = Hash(k2) = . . . = Hash(ki). We refer
to these ashash collisions. If the inputs have dif-
ferent hash values, but still collide into the same
bucket (e.g., after a modulo operation has taken
place), we refer to these asbucket collisions. For-
mally, a bucket collision is when we derive inputs
k1,k2, . . .ki such that f (k1) = f (k2) = . . . = f (ki)
where f is the the function mapping from inputs to
buckets. In many cases,f (k) = Hash(k) (modn) ,
with n being the number of buckets.

While hash collisions would seem straightforward,
they do not always result in a feasible attack. For



example, consider an attacker who wishes to at-
tack an intrusion detection system (IDS) scanning
TCP/IP SYN packets to detect SYN flooding ac-
tivity. If the IDS is remembering packets based
purely on the source and destination IP addresses
and port numbers, this would give the attacker a
96-bit search space. However, the destination ad-
dress must be close enough to the IDS for the IDS
to observe the traffic. Likewise, the attacker’s ser-
vice provider may do egress filtering that prevents
forged source IP addresses. This could reduce the
attacker to as little as 48-bits of freedom in selecting
packets. If the hash function reduces these packets
to 32-bit hash values, then there will be, on aver-
age, 216 packets that an attacker can possibly send
which will collide in the 32-bit hash-value space.
216 values stored in the same hash bucket may or
may not be enough to noticeably degrade the IDS’s
performance.

Conversely, suppose the attacker wishes to com-
pute bucket collisions rather than hash collisions.
Because the bucket count is much smaller than the
size of the hash-value space, it will be easier to find
bucket collisions. Thus, if the attacker can predict
the precise bucket count, then many more possible
collisions can be computed. This flexiblity may al-
low effective attacks on applications hashing inputs
as short as 32-bits. However, if there are several
possible bucket counts, then the attacker has sev-
eral options:

• Guess the bucket count.

• Compute collisions that work for several dif-
ferent bucket counts.

• Send several streams of attack data, where
each stream is designed to collide for one par-
ticular bucket count.

Computing collisions that work for multiple bucket
counts is not practical; the search space grows pro-
portionally to the least common multiple of the can-
didate bucket counts. This can easily exceed the
32-bit space of hash values, making hash collisions
more attractive to compute than bucket collisions.

However, if the number of candidate bucket counts
(c) is small enough, then the attacker can com-
pute separate attack streams focused on each po-
tential bucket count. If the attacker sendsn ob-
jects of attack data, then most of the attack data(
n
(
1− 1

c

))
will be distributed throughout the hash

table, with an expectedO(1) insert per object. The
remaining n

c objects, however, will cause an ex-

pectedO
((

n
c

)2
)

total running time. Furthermore,

if the hash table happens to be resized and one of
the attack streams corresponds to the new bucket
count, then the resulting hash table will still exhibit
quadratic performance problems.

For simplicity, the remainder of this paper focuses
on computing hash collisions. Later, when we de-
scribe attacks against an actual IDS (see Section 4),
we will show that 216 collisions in one bucket are
more than sufficient to mount an effective attack.

2.1.2 Efficiently deriving hash collisions

The hash functions used by typical programs for
their hash tables are generally not cryptographically
strong functions like MD5 or SHA-1. Instead, they
tend to be functions with 32 bits of internal state,
designed primarily for speed. Because this state is
limited, we need only find inputs such that the in-
ternal state after hashing is the same as the initial
state.

Consider a hash function with the initial state of
0. Imagine we can findgenerators, or inputs
k1,k2, . . .ki such that 0= Hash(k1) = Hash(k2) =
. . . = Hash(ki). Then the concatenation of any num-
ber of these generators in any combination and any
order also hashes to 0. So,k1k2 also hashes to 0,
as will k1k1 or k2k1k3k2. Thus, by finding three in-
putsk1, k2, k3 via exhaustive search and concatenat-
ing them combinatorially, we can generate a large
number of collisions without requiring any addi-
tional searching. The number of possible collisions
is bounded only by the maximum length to which
we are willing to allow concatenated generators to
grow. This process can be generalized by finding



a set of generators closed over a small number of
hash states (i.e., searching for generators that take
hash states less than a small integer to other hash
states less than the same small integer).

In simple tests, attacking the Perl 5.6.1 hash func-
tions on a 450MHz Pentium-2 processor, 30 min-
utes of CPU time enumerating and hashing all 8
character alphabetic strings was sufficient to find
46 generators that hash to zero. By concatenating
three of them combinatorially, we derive 463 (97k)
alphabetic inputs, 24 characters long, that will all
hash to the same 32-bit hash value.

Hash collisions can be efficiently computed for a
number of other common applications. The Linux
protocol stack and the Bro intrusion detection sys-
tem simply XOR their input together, 32 bits at a
time. Thus, collisions may be directly computed
from the algebraic structure of the hash function.

2.2 Application limits on hash tables

Many applications are sensitive about their over-
all memory usage, and thus have limits designed
to control how large their hash tables might grow.
If a hash table can never have enough elements in it
for the worst-caseO(n2) behavior to dominate, then
our attack will fail.

2.2.1 Explicit limits

Some applications have explicit limits on their hash
tables. We first consider the Linux IP fragment re-
assembly code. In response to earlier attacks, Linux
currently allows at most 256 kbytes of storage to-
ward reassembling incomplete packets. If we wish
to attack the hash table being used to store these
packet fragments, the longest hash chain we can in-
duce will still be under 256 kbytes in total. We can
still force Linux to repeatedly scan this chain, in-
creasing the CPU load on the kernel, but we are
unsure whether we can cause enough slowdown to
be interesting.

(Florian Weimer reports that he found an ex-
ploitable hashing vulnerability in the Linux route
cache, allowing 400 packets per second from an at-
tacker to overload a quad-processor Pentium Xeon
server, despite the size limits present in the route
cache’s hash table [20].)

The Apache web server collects fields from HTTP
request headers into a vector (auto-sizing array). If
there are multiple header fields with the same type,
Apache concatenates them with anO(n2) opera-
tion. This was a target for attack [19], however
Apache now imposes a limit on the number of fields
that can appear in an HTTP request (100 fields, by
default). Even with 100 entries naming the same
field, aO(n2) worst-case running time will still be
small, becausen is too small for the quadratic per-
formance to become noticeable.

2.2.2 Implicit limits

There are many other places where there are lim-
its on the attacker’s ability to influence a hash ta-
ble. For instance, as discussed in Section 2.1.1, the
freedom of an attacker to construct arbitrary inputs
may be limited. In the case of network packets in-
tended to attack a network sniffer, the attacker is
limited both by the packet fields being watched by
the sniffer, and by the packet headers necessary to
route the packet toward the targeted machine. More
generally, many applications operate on restricted
data types, or otherwise place limits on an attacker’s
ability to generate arbitrary input for the targeted
hash table. In some sense, these applications are
lucky, but they could be vulnerable to attack in the
future if their environment changes (e.g., moving
from IPv4 to IPv6 will increase the size of IP ad-
dresses, giving more freedom to attack tables that
hash IP addresses).



3 Application analysis: Squid, DJBDNS,
and Perl

We did a short analysis of three programs to ana-
lyze how vulnerable they are to attack. We analyzed
and attacked the hash tables used by two versions
of the the Perl interpreter. We also analyzed and at-
tacked the Squid web proxy cache. We investigated
the DJB DNS cache and found it less vulnerable to
these attacks.

3.1 Squid

The Squid Internet object cache [14] is intended to
reduce network bandwidth by caching frequently
used objects [7]. We analyzed the hash tables used
within version 2.5STABLE1.

While we have not performed an exhaustive audit
of Squid, we did discover a hash table used to track
objects cached in memory. The hash table is keyed
with an integer counter, the HTTP request method
(i.e., GET, HEAD, etc.), and the URL in question.
When Squid is operating as part of a caching clus-
ter, it omits the integer counter and only hashes the
HTTP request method and URL. (For reasons that
escape us, Squid calls this “private key” vs. “pub-
lic key” mode; this seems to have nothing to do
with the traditional cryptographic senses of those
terms.) An MD5 cryptographic checksum is per-
formed over these values, and the resulting 128-bit
value is truncated to 13 bits, identifying the hash
bucket.

As an attacker, we cannot necessarily predict the
value of the counter, making it difficult to compute
hash collisions. However, Squid can be tricked into
believing that it is part of a cluster by sending it
a single UDP packet, an Internet Caching Proto-
col (ICP) MISSNO FETCH message [21]. This
packet is accepted by the default configuration, and
it’s unclear whether this packet could be easily fil-
tered, even using Squid’s access control features.
Regardless, any Squid cluster would already be for-
going the use of the “private key” mode, and thus

would be vulnerable to attack.

A full benchmarking environment for Squid would
require multiple web servers and clients to simulate
the load experienced by the Squid web cache. To
simplify things, we ran Squid on a stand-alone ma-
chine, where the URL requests were parsed from a
local file and were satisfied with constant-sized web
page results, served by a local proxy server. This
environment is undeniably not suitable for mak-
ing general remarks about Squid’s general-purpose
throughput, but it allows us to place pressure on this
particular hash table and observe the effects.

We measured the wall-clock time necessary for
Squid, in our restrictive configuration, to load ap-
proximately 143k URLs. We compared the per-
formance of loading randomly chosen URLs with
URLs carefully chosen to collide with Squid’s hash
function. Squid took 14.57 minutes to process the
attack URLs versus 10.55 minutes to process the
randomly chosen URLs. Thus, our attack added,
on average, approximately 1.7ms of latency to each
request serviced by the Squid cache.

This attack does not represent a “smoking gun” for
algorithmic complexity attacks, but it does illus-
trate how common network services may be sen-
sitive to these attacks. Furthermore, this attack
demonstrates how seemingly innocuous features
(e.g., Squid’s “private key” mechanism, whatever
it actually does) may have an effect on an applica-
tion’s resistance to these attacks.

3.2 DJBDNS

Dan Bernstein’s DNS server is designed to have
several independent programs serving different du-
ties. His DNS cache is one program in this collec-
tion. If we can pollute the cache with requests for
domains under our control (e.g., “x1.attacker.org”,
“x2.attacker.org”, etc.), we may be able to mount
an algorithmic complexity attack against the DNS
cache’s hash table.

Upon code inspection, DJBDNS uses a determin-



istic hash function in its implementation of a DNS
cache. Interestingly, the lookup code has an explicit
check for being subject to “hash flooding;” after
following a chain for 100 entries, it gives up and
treats the request as a cache miss. We presume this
design is intended to prevent the DNS cache from
burning an excessive amount of CPU on any given
request. Bernstein essentially anticipated a version
of our attack, although, as we discuss in Section 5,
his fix could be improved.

3.3 Perl

Perl is a widely-used programming language with
built-in support for hash tables (called “associative
arrays”). While attacking a large number of Perl
scripts is behind the scope of this paper, we expect
that many deployed Perl scripts take untrusted in-
put and store it directly in associative arrays. We
demonstrate attacks against the associative arrays
in Perl, versions 5.6.1 and 5.8.0; the hash function
was changed between these two versions.

The hash functions in both versions of Perl form
state machines. The internal state is the 32 bit ac-
cumulated hash value. The input being hashed is
mixed in, one byte at a time, using a combination of
addition, multiplication, and shift operations. The
structure of the hash functions in both Perl 5.6.1
and 5.8.0 allow us to efficiently compute generators
(see Section 2.1.2). Spending around one CPU hour
attacking both hash functions, we were able to find
46 generators for Perl 5.6.1 and 48 generators for
Perl 5.8.0, yielding 97k-110k colliding inputs of 24
characters in length. We then loaded these strings
directly into associative arrays in both interpreters.
The results are presented in Table 1. When an in-
terpreter is fed the input designed to collide with its
hash function, the running time was three orders of
magnitude worse (2 seconds vs. almost two hours)
than when fed the data designed to attack the other
Perl version. This represents how devastating an al-
gorithmic complexity attack can be. One hour of
pre-computed CPU work, on the client, can cause
almost two hours of online work for a server. Dou-
bling the number of inputs by either finding new

Perl 5.6.1 Perl 5.8.0
File version program program
Perl 5.6.1 6506 seconds <2 seconds
Perl 5.8.0 <2 seconds 6838 seconds

Table 1: CPU time inserting 90k short attack strings
into two versions of Perl.

generators or using longer inputs would quadruple
the victim’s work. The exponent in the victim’s
O(n2) worst-case behavior is clearly dominant.

4 Application analysis: Bro

Bro [15] is a general-purpose network intrusion de-
tection system (IDS) that can be configured to scan
for a wide variety of possible attacks. Bro is open-
source and is used in production at a number of
commercial and academic sites. This makes it an
attractive target, particularly because we can di-
rectly study its source code. Also, given that Bro’s
job is to scan and record network packets, correlat-
ing events in real time to detect attacks, we imag-
ine it has numerous large hash tables with which it
tracks these events. If we could peg Bro’s CPU us-
age, we potentially knock the IDS off the air, clear-
ing the way for other attacks to go undetected.

In order to keep up with traffic, Bro uses packet fil-
ters [13] to select and capture desired packets, as
a function of its configuration. Following this, Bro
implements an event-based architecture. New pack-
ets raise events to be processed. Synthetic events
can also be timed to occur in the future, for exam-
ple, to track the various time-outs that occur in the
TCP/IP protocol. A number of Bro modules ex-
ist to process specific protocols, such as FTP, DNS,
SMTP, Finger, HTTP, and NTP.

4.1 Analysis

Bro contains approximately 67,000 lines of C++
code that implement low-level mechanisms to ob-



serve network traffic and generate events. Bro also
provides a wide selection of scripts, comprising ap-
proximately 9000 lines of code in its own inter-
preted language that use the low-level mechanisms
to observe network behavior and react appropri-
ately. While we have not exhaustively studied the
source code to Bro, we did observe that Bro uses
a simple hash table whose hash function simply
XORs together its inputs. This makes collisions ex-
ceptionally straightforward to derive. The remain-
ing issue for an attack any is to determine how and
when incoming network packets are manipulated
before hash table entries are generated.

We decided to focus our efforts on Bro’s port
scanning detector, primarily due to its simplicity.
For each source IP address, Bro needs to track
how many distinct destination ports have been con-
tacted. It uses a hash table to track, for each tuple
of 〈source IP address, destination port〉, whether
any internal machine has been probed on a given
port from that particular source address. To attack
this hash table, we observe that the attacker has 48-
bits of freedom: a 32-bit source IP address and a
16-bit destination port number. (We’re now assum-
ing the attacker has the freedom to forge arbitrary
source IP addresses.) If our goal is to compute
32-bit hash collisions (i.e., before the modulo op-
eration to determine the hash bucket), then for any
good hash function, we would expect there to be
approximately 216 possible collisions we might be
able to find for any given 32-bit hash value. In a hy-
pothetical IPv6 implementation of Bro, there would
be significantly more possible collisions, given the
larger space of source IP addresses.

Deriving these collisions with Bro’s XOR-based
hash function requires understanding the precise
way that Bro implements its hash function. In this
case, the hash function is the source IP address,
in network byte order, XORed with the destination
port number, in host order. This means that on a
little-endian computer, such as an x86 architecture
CPU, the high-order 16 bits of the hash value are
taken straight from the last two octets of the IP ad-
dress, while the low-order 16 bits of the hash value
result from the first two octets of the IP address and
the port number. Hash collisions can be derived

by flipping bits in the first two octets of the IP ad-
dress in concert with the matching bits of the port
number. This allows us, for every 32-bit target hash
value, to derive precisely 216 input packets that will
hash to the same value.

We could also have attempted to derive bucket colli-
sions directly, which would allow us to derive more
than 216 collisions in a single hash bucket. While
we could guess the bucket count, or even gener-
ate parallel streams designed to collide in a num-
ber of different bucket counts as discussed in Sec-
tion 2.1.1, this would require sending a significant
amount of additional traffic to the Bro server. If the
216 hash collisions are sufficient to cause an notica-
ble quadratic explosion inside Bro, then this would
be the preferable attack.

4.2 Attack implementation

We have designed attack traffic that can make Bro
saturate the CPU and begin to drop traffic within
30 seconds during a 160kb/s, 500 packets/second
flood, and within 7 minutes with a 16kb/s flood.

Our experiments were run over an idle Ethernet,
with a laptop computer transmitting the packets to
a Bro server, version 0.8a20, running on a dual-
CPU Pentium-2 machine, running at 450MHz, with
768MB of RAM, and running the Linux 2.4.18 ker-
nel. Bro only uses a single thread, allowing other
processes to use the second CPU. For our experi-
ments, we configured Bro exclusively to track port
scanning activity. In a production Bro server, where
it might be tracking many different forms of net-
work misbehavior, the memory and CPU consump-
tion would be strictly higher than we observed in
our experiments.

4.3 Attack results

We first present the performance of Bro, operating
in an off-line mode, consuming packets only as fast
as it can process them. We then present the latency
and drop-rate of Bro, operating online, digesting



Attack Random
Total CPU time 44.50 min .86 min
Hash table time 43.78 min .02 min

Table 2: Total CPU time and CPU time spent in
hash table code during an offline processing run of
64k attack and 64k random SYN packets.

packets at a variety of different bandwidths.

4.3.1 Offline CPU consumption

Normally, on this hardware, Bro can digest about
1200 SYN packets per second. We note that this
is only 400kb/s, so Bro would already be vulnera-
ble to a simple flood of arbitrary SYN packets. We
also note that Bro appears to use about 500 bytes of
memory per packet when subject to random SYN
packets. At a rate of 400kb/s, our Bro system, even
if it had 4GB of RAM, would run out of memory
within two hours.

We have measured the offline running time for Bro
to consume 64k randomly chosen SYN packets.
We then measured the time for Bro to consume
the same 64k randomly chosen packets, to warm
up the hash table, followed by 64k attack packets.
This minimizes rehashing activity during the attack
packets and more closely simulates the load that
Bro might observe had it been running for a long
time and experienced a sudden burst of attack pack-
ets. The CPU times given in Table 2 present the re-
sults of benchmarking Bro under this attack. The
results show that the attack packets introduce two
orders of magnitude of overhead to Bro, overall,
and three orders of magnitude of overhead specif-
ically in Bro’s hash table code. Under this attack,
Bro can only process 24 packets per second instead
of its normal rate of 1200 packets per second.

In the event that Bro was used to process an ex-
tended amount of data, perhaps captured for later
offline analysis, then an hour of very low bandwidth
attack traffic (16kb/s, 144k packets, 5.8Mbytes of

Packet rate Packets sent Drop rate
16kb/s 192k 31%
16kb/s (clever) 128k 71%
64kb/s 320k 75%

160kb/s 320k 78%

Table 3: Overall drop rates for the different attack
scenarios.

traffic) would take Bro 1.6 hours to analyze instead
of 3 minutes. An hour of T1-level traffic (1.5Mb/s)
would take a week instead of 5 hours, assuming that
Bro didn’t first run out of memory.

4.3.2 Online latency and drop-rate

As described above, our attack packets cannot be
processed by Bro in real-time, even with very mod-
est transmission rates. For offline analysis, this sim-
ply means that Bro will take a while to execute.
For online analysis, it means that Bro will fall be-
hind. The kernel’s packet queues will fill because
Bro isn’t reading the data, and eventually the kernel
will start dropping the packets. To measure this, we
constructed several different attack scenarios. In all
cases, we warmed up Bro’s hash table with approx-
imately 130k random SYN packets. We then trans-
mitted the attack packets at any one of three differ-
ent bandwidths (16kb/s, 64kb/s, and 160kb/s). We
constructed attacks that transmitted all 216 attack
packets sequentially, multiple times. We also con-
structed a “clever” attack scenario, where we first
sent 3/4 of our attack packets and then repeated
the remaining 1/4 of the packets. The clever at-
tack forces more of the chain to be scanned before
the hash table discovered the new value is already
present in the hash chain.

Table 3 shows the approximate drop rates for four
attack scenarios. We observe that an attacker with
even a fraction of a modem’s bandwidth, transmit-
ting for less than an hour, can cause Bro to drop,
on average, 71% of its incoming traffic. This would
make an excellent precursor to another network at-
tack that the perpetrator did not wish to be detected.
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Figure 3: Packet processing latency, 16kb/s.
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Figure 4: Cumulative dropped packets, 16kb/s.

Bro’s drop rate is not constant. In fact, Bro mani-
fests interesting oscillations in its drop rate, which
are visible in Figures 3 through 6. These graphs
present Bro’s packet processing latency and cu-
mulative packet drop rate for attack packets being
transmitted at 16 kb/sec and 64 kb/sec.

At time A, the latency (time between packet ar-
rival and packet processing) starts increasing as to-
tal processing cost per packet begins to exceed the
packet inter-arrival time.

At time B, Bro is sufficiently back-logged that the
kernel has begun to drop packets. As a result, Bro
starts catching up on its backlogged packets. Dur-
ing this phase, the Bro server is dropping virtually
all of its incoming traffic.

At time C, Bro has caught up on its backlog, and
the kernel is no longer dropping packets. The cycle
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Figure 5: Packet processing latency, 64kb/s.
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Figure 6: Cumulative dropped packets, 64kb/s.

can now start again. However, the hash chain under
attack is now larger then it was at timeA. This will
cause subsequent latencies to rise even higher than
they were at timeB.

This cyclic behavior occurs because Bro only adds
entries to this hash table after it has determined
there will be no response to the SYN packet. Bro
normally uses a five minute timeout. We reduced
this to 30 seconds to reduce our testing time and
make it easier to illustrate our attacks. We antic-
ipate that, if we were to run with the default 5-
minute timeout, the latency swings would have a
longer period and a greater amplitude, do to the ten
times larger queues of unprocessed events which
would be accumulated.



4.4 Discussion

Our attack on Bro has focused on its port scanning
detector. Bro and other IDS systems almost cer-
tainly have other hash tables which may grow large
enough to be vulnerable to algorithmic complexity
attacks. For example, Bro has a module to detect
network scans, determining how many destination
hosts have been sent packets by a given source host.
This module gives 32+h bits of freedom, whereh
is the number of host bits in the destination network
monitored by the IDS.h is unlikely to be greater
than 16 except for a handful of sites. However, in
an IPv6 network, the sky is the limit. For that mat-
ter, IPv6 gives the attacker a huge amount of free-
dom for any attack where IP addresses are part of
the values being hashed.

Part of any hash table design is the need to ex-
pand the bucket count when the table occupancy
exceeds some threshold. When the hash table has
a large number of objects which hash to the same
bucket after the rehashing operation, then the re-
hashing operation could be as bad asO(n2), if the
hash table were using its normal insertion opera-
tion that checks for duplicates. As it turns out,
Bro does exactly this. In our regular experimen-
tal runs, we “warmed up” the hash tables to pre-
vent any rehashing during the experiment. Before
we changed our experimental setup to do this, we
saw large spikes in our latency measurements that
indicated rehashing was occurring. When rehash-
ing, Bro takes 4 minutes to process a table with 32k
attack entries. Bro takes 20 minutes to process a
table with 64k attack entries. Without IPv6 or us-
ing bucket collisions, we cannot create more colli-
sions than this, although making the IDS server un-
responsive for 20 minutes is certainly an effective
attack.

Although rehashing attacks are extremely potent,
they are not necessarily easy to use; attackers can-
not exploit this window of opportunity unless they
know exactly when it is occurring. Furthermore,
Bro’s hash table will rehash itself at most 12 times
as it grows from 32k entries to 64M entries.

5 Solving algorithmic complexity attacks

When analyzing algorithmic complexity attacks,
we must assume the attacker has access to the
source code of the application, so security through
obscurity is not acceptable. Instead, either the ap-
plication must use algorithms that do not have pre-
dictable worst-case inputs, or the application must
be able to detect when it is experiencing worst-case
behavior and take corrective action.

5.1 Eliminating worst-case performance

A complete survey of algorithms used in common
systems is beyond the scope of this paper. We focus
our attention on binary trees and on hash tables.

While binary trees are trivial for an attacker to gen-
erate worst-case input, many many other data struc-
tures like red-black trees [11] and splay trees [18]
have runtime bounds that areguaranteed, regard-
less of their input. A weaker but sufficient condition
is to use an algorithm that does not havepredictable
worst-case inputs. For example, treaps [17] are
trees where all nodes are assigned a randomly cho-
sen number upon creation. The tree nodes are ro-
tated such that atree propertyis preserved on the
input data, as would be expected of any tree, but
a heap propertyis also maintained on the random
numbers, yielding a tree that is probabilistically
balanced. So long as the program is designed to
prevent the attacker from predicting the random
numbers (i.e., the pseudo-random number genera-
tor is “secure” and is properly initialized), the at-
tacker cannot determine what inputs would cause
the treap to exhibit worst-case behavior.

When attacking hash tables, an attacker’s goal is to
efficiently computesecond pre-imagesto the hash
function, i.e., ifx hashes toh(x) andy 6= x, it should
be infeasible for the attacker to derivey such that
h(y) = h(x). Cryptographically strong hash func-
tions like MD5 and SHA-1 are resistant, in general,
to such attacks. However, when used in hash ta-
bles, the 128 or 160 bits of output from MD5 or



SHA-1 must eventually be reduced to the bucket
count, making it feasible for an attacker to mount
a brute force search on the hash function to find
bucket collisions. Some simple benchmarking on
a 450MHz Pentium-2 allowed us to compute ap-
proximately five such collisions per second in a
hash table with 512k buckets. This weakness can
be addressed by using keyed versions of MD5 or
SHA-1 (e.g., HMAC [12]). The key, chosen ran-
domly when the program is initialized, will not
be predictable by an attacker; as a result, the at-
tacker will not be able to predict the hash values
used when the program is actually running. When
keyed, MD5 and SHA-1 becomepseudo-random
functions, which, like treaps, become unpredictable
for the attacker. When unkeyed, MD5 and SHA-1
are deterministic functions and subject to bucket
collisions.

5.2 Universal hashing

Replacing deterministic hash functions with
pseudo-random functions gives probabilistic guar-
antees of security. However, a stronger solution,
which can also execute more efficiently, is avail-
able. Universal hash functionswere introduced
in 1979 [5] and are cited by common algorithm
textbooks (e.g., Cormen, Leiserson, and Rivest [6])
as a solution suitable for adversarial environments.
It has not been standard practice to follow this
advice, but it should be.

Where MD5 and SHA-1 are designed to be resistant
to the computation of second pre-images, universal
hash functions are families of functions (with the
specific function specified by a key) with the prop-
erty that, for any two arbitrary messagesM andM′,
the odds ofh(M) = h(M′) are less than some small
valueε. This property is sufficient for our needs,
because an attacker who does not know the specific
hash function has guaranteed low odds of comput-
ing hash collisions.

Carter and Wegman’s original construction of a uni-
versal hash function computes the sum of a fixed
chosen constant with the dot product of a fixed cho-

sen vector with the input, modulo a large prime
number. The fixed chosen constant and vectors
are chosen, randomly, at the beginning, typically
pre-computed using a keyed pseudo-random func-
tion, and reused for every string being hashed. The
only performance issue is that this vector must ei-
ther be pre-computed up to the maximum expected
input length, or it must be recomputed when it
is used, causing a noticeable performance penalty.
More recent constructions, including UMAC [4]
and hash127 [3] use a fixed space despite support-
ing arbitrary-length arguments. UMAC, in partic-
ular, is carefully engineered to run fast on modern
processors, using adds, multiplies, and SIMD mul-
timedia instructions for increased performance.

5.2.1 Universal hash designs

Some software designers are unwilling to use uni-
versal hashing, afraid that it will introduce unac-
ceptable performance overheads in critical regions
of their code. Other software designers simply
need a fast, easy-to-integrate library to solve their
hashing needs. Borrowing code from UMAC and
adding variants hand-optimized for small, fixed-
length inputs, we have implemented a portable C
library suitable for virtually any program’s needs.

Our library includes two different universal hash
functions: the UHASH function, submitted as part
of the (currently expired) UMAC Internet draft
standard [4], and the Carter-Wegman dot-product
construction. We also include a hand-tuned vari-
ant of the Carter-Wegman construction, optimized
to support fixed-length, short inputs, as well as an
additionally tuned version that only yields a 20 bit
result, rather than the usual 32 bits. This may be
appropriate for smaller hash tables, such as used in
Squid (see Section 3.1).

Our Carter-Wegman construction processes the
value to be hashed one byte at a time. These bytes
are multiplied by 32 bits from the fixed vector,
yielding 40 bit intermediate values that are accumu-
lated in a 64 bit counter. One 64-by-32 bit modulo
operation is used at the end to yield the 32 bit hash



value. This construction supports inputs of length
up to 224 bytes. (A maximum length is declared
by the programmer when a hashing context is al-
located, causing the fixed vector to be initialized by
AES in counter mode, keyed from/dev/random .
Hash inputs longer than this are rejected.)

Our initial tests showed that UHASH significantly
outperformed the Carter-Wegman construction for
long inputs, but Carter-Wegman worked well for
short inputs. Since many software applications of
hash functions know, apriori, that their inputs are
small and of fixed length (e.g., in-kernel network
stacks that hash portions of IP headers), we wished
to provide carefully tuned functions to make such
hashing faster. By fixing the length of the input, we
could fully unroll the internal loop and avoid any
function calls. GCC inlines our hand-tuned func-
tion. Furthermore, the Carter-Wegman construc-
tion can be implemented with a smaller accumu-
lator. Without changing the mathematics of Carter-
Wegman, we can multiply 8 bit values with 20 bit
entries in the fixed vector and use a 32 bit accumu-
lator. For inputs less than 16-bytes, the accumulator
will not overflow, and we get a 20 bit hash value as
a result. The inputs are passed as separate formal
arguments, rather than in an array. This gives the
compiler ample opportunity for inlining and spe-
cializing the function.

5.2.2 Universal hash microbenchmarks

We performed our microbenchmarking on a Pen-
tium 2, 450MHz computer. Because hash tables
tend to use a large amount of data, but only read
it once, working set size and its resultant impact
on cache miss rates cannot be ignored. Our mi-
crobenchmark is designed to let us measure the ef-
fects of hitting or missing in the cache. We pick
an array size, then fill it with random data. We then
hash a random sub-range of it. Depending on the ar-
ray size chosen and whether it fits in the L1 cache,
L2 cache, or not, the performance can vary signifi-
cantly.

In our tests, the we microbenchmarked two con-

ventional algorithms, four universal hashing al-
gorithms, and one cryptographic hash algorithm:
Perl Perl 5.8.0 hash function
MD5 cryptographic hash function
UHASH UMAC universal hash function
CW Carter-Wegman, one byte process-

ing, variable-length input, 64 bit
accumulator, 32 bit output

CW12 Carter-Wegman, two byte process-
ing, 12-byte fixed input, 64 bit ac-
cumulator, 32 bit output

CW12-20 Carter-Wegman, one byte process-
ing, 12-byte fixed input, 32 bit ac-
cumulator, 20 bit output

XOR12 four byte processing, 12-byte fixed
input, 32 bit output

In addition to Perl, MD5, UHASH, and three vari-
ants of the Carter-Wegman construction, we also
include a specialized function that simply XORs
its input together, four bytes at a time. This sim-
ulates the sort of hash function used by many
performance-paranoid systems.

Figure 7 shows the effects of changing the work-
ing set size on hash performance. All the hash
functions are shown hashing 12-byte inputs, cho-
sen from an array whose sizes have been chosen to
fit within the L1 cache, within the L2 cache, and to
miss both caches. The largest size simulates the ef-
fect that will be seen when the data being hashed is
freshly read from a network buffer or has otherwise
not yet been processed. We believe this most ac-
curately represents the caching throughput that will
be observed in practice, as hash values are typically
only computed once, and then written into an ob-
ject’s internal field, somewhere, for later compari-
son.

As one would expect, the simplistic XOR12 hash
function radically outperforms its rivals, but the ra-
tio shrinks as the working set size increases. With
a 6MB working set, XOR12’s throughput is 50
MB/sec, whereas CW12-20 is 33 MB/sec. This rel-
atively modest difference says that universal hash-
ing, with its strong security guarantees, can ap-
proach the performance of even the weakest hash
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functions. We can also see that universal hashing is
competitive with Perl’s hash function and radically
outperforms MD5.

As the cache hit rate increases with a smaller work-
ing set, XOR12 radically outperforms its competi-
tion. We argue that this case is unlikely to occur
in practice, as the data being hashed is likely to
incur cache misses while it’s being read from the
network hardware into main memory and then the
CPU. Secondly, we are microbenchmarking hash
function performance, a hash function is only a per-
centage of overall hash table runtime which is only
a percentage of application runtime. Of course, in-
dividual application designers will need to try uni-
versal hashing out to see how it impacts their own
systems.

Some applications hash longer strings and require
general-purpose hash functions. Figure 8 uses the
6MB working set and varies the length of the input
to be hashed. We can no longer use the special-
ized 12-byte functions, but the other functions are
shown. (We did not implement a generalization of
our XOR12 hash function, although such a function
would be expected to beat the other hash functions
in the graph.) With short strings, we see the Perl
hash function outperforms its peers. However, with
strings longer than around 44-bytes, UHASH dom-
inates all the other hash functions, due in no small
part to its extensive performance tuning and hand-
coded assembly routines.
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We have some preliminary benchmarks with in-
tegrating universal hashing into Perl. We bench-
marked the change with two perl scripts, both of
which do little other than hash table operations. The
first script is a histogramming program, the second
just inserts text into a hash table. Our results in-
dicate that the application performance difference
between UHASH and Perl’s default hash function
is plus or minus 10%.

We conclude that our customized Carter-Wegman
construction, for short fixed-length strings, and
UHASH, for arbitrary strings, are sufficiently high
performance that there is no excuse for them not to
be used, or at least benchmarked, in production sys-
tems. Our code is available online with a BSD-style



license2.

6 Conclusions and future work

We have presented algorithmic complexity attacks,
a new class of low-bandwidth denial of service
attacks. Where traditional DoS attacks focus on
small implementation bugs, such as buffer over-
flows, these attacks focus on inefficiencies in the
worst-case performance of algorithms used in many
mainstream applications. We have analyzed a va-
riety of common applications, finding weaknesses
which vary from increasing an applications work-
load by a small constant factor to causing the appli-
cation to completely collapse under the load cause
by its algorithm’s unexpectedly bad behavior.

Algorithmic complexity attacks against hash table,
in particular, count on the attacker having suffi-
cient freedom over the space of possible inputs to
find a sufficient number of hash collisions to in-
duce worst-case behavior in an application’s hash
table. When the targeted system is processing net-
work packets, the limited address space of IPv4 of-
fers some limited protection against these attacks,
but future IPv6 systems will greatly expand an at-
tacker’s ability to find collisions. As such, we
strongly recommend that network packet process-
ing code be audited for these vulnerabilities.

Common applications often choose algorithms
based on their common-case behavior, expecting
the worst-case to never occur in practice. This pa-
per shows that such design choices introduce vul-
nerabilities that can and should be patched by using
more robust algorithms. We showed how univer-
sal hashing demonstrates impressive performance,
suitable for use in virtually any application.

While this paper has focused on a handful of soft-
ware systems, an interesting area for future research
will be to study the algorithms used by embed-
ded systems, such as routers, firewalls, and other
networking devices. For example, many “stateful”

2http://www.cs.rice.edu/˜scrosby/hash/

firewalls likely use simple data structures to store
this state. Anyone who can learn the firewall’s al-
gorithms may be able to mount DoS attacks against
those systems.
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