
Copyright 2000 IEEE. Published in the Proceedings of 2000 Conference on Software – Methods and Tools, Wollongong, Australia. Personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.

Telephone: + Intl. 732-562-3966.

A Method and Support Environment for Distributed Software Component
Engineering

John Grundy

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract

Engineering component-based software systems is
challenging, and made even more difficult when multiple
developers are involved. A suitable software process for
distributed component engineering is required, along
with appropriate development notations and
collaborative work supporting tools. This paper describes
a component engineering methodology we have been
developing, along with examples of its notations,
development tools and tool collaborative work facilities.
Key characteristics of the process and notations include
their use of multiple perspectives on component
capabilities and the extension of the Unified Modelling
Language to capture these. We have integrated and
extended several software tools to support the use of this
new component engineering method. We have also
provided a range of collaborative work facilities in these
tools to facilitate collaborative component engineering.
We illustrate some of these tools in use during multi-user
development, and briefly discuss the architectural
realisation of these tools and their integration.

Keywords: software components, processes, methods,
aspects, software engineering environments, collaborative
work

1. Introduction

Component-based systems engineering shares
many commonalities with traditional software systems
engineering, and uses many common modelling and
implementation approaches and tools. However, it brings
some new challenges as well as preserving some common
problems relating to managing distributed software
development projects [29, 30, 13, 1]. These include the
use of new, often highly dynamic and weakly defined
software processes, the need to heavily leverage existing

software component designs and implementations in a
consistent way, and while it often allows developers to
work more independently, at various times still requires
developers to tightly collaborate and co-ordinate their
work.

We have been working for some time on
developing flexible, open, internet-based software
engineering environments using component-based
techniques [11, 13, 15]. Recently we have been
developing a new component engineering methodology,
and have been extending our software tools to help
support large-scale component-based systems
engineering with this method [12]. Assembling these
tools into a component engineering environment that
provides various collaborative work capabilities enables
multiple, potentially widely distributed developers, to
incrementally build and assemble complex applications
using component technology. The main features our
method and tools provide include:
• Process modelling and enactment. Software process

management is necessary to both guide developers
and track the work they have done by in a
geographically and temporally distributed fashion.
Even developers working together locally can greatly
benefit from such support to better plan, manage and
co-ordinate their work [1, 5, 11]. We have developed
a basic process model for distributed component
engineering and realised this in a sophisticated
process modelling and enactment environment.
Processes are used to plan, manage and co-ordinate
multiple developers. Software agents can also be
deployed to enhance developers’ work co-ordination.

• Component engineering notations and tools. We
have extended a UML-based CASE tool to better-
support component modelling, particular to
incorporate a notion of horizontal slices of
component functionality (that we call component
“aspects”). A software architecture modelling tool
and run-time component visualisation tool
complement this design and implementation tool’s
functionality.

• Collaborative editing. Developers need to exchange
software development artifacts and collaboratively
edit these in various ways, ranging from fully
synchronous to asynchronous editing [7, 11]. They
also need support to version artifacts and manage
component-based systems configurations made up
from multiplely versioned artifacts [20]. We have
added collaborative editing support to our tools via
plug-in software components.

• Component management. Component-based systems
leverage existing software artifacts (components)
heavily. A shared repository of such artifacts is
necessary to facilitate distributed component-based
systems development [16]. We have developed such
a shared repository for our various modelling and
implementation tools to use.

In the following section we overview related work
in these areas, particularly identifying gaps and
weaknesses in current development methods and tools for
distributed component engineering. We describe a
component engineering environment that includes: a
component analysis, design and implementation tool; a
software process management tool; a software
architecture modelling tool; a component implementation
and testing tool; and various 3rd party tools integrated by
the use of component technology. We describe the
collaborative work support features of these tools,
particularly the recent work we have done enhancing
their distributed usage and tool integration facilities.
These include the integrated process support,
collaborative editing, distributed work co-ordination and
component repository facilities.

2. Related Work

Current component engineering methods, such as
Catalysis [8] and Select Perspective™ [1], take varying
views of what a “component” is, often focusing on
software components as low-level design artifacts. None
adequately characterise component capabilities from
component function-independent perspectives. Similarly,
most current component engineering technologies, such
as DCOM, JavaBeans and CORBA C-IDL [23, 24, 29]
generally focus only on characterising and describing
vertical component provided service functionality (i.e.
interfaces). Aspect-oriented Programming (AOP) [19]
and Adaptive Programming (AP) [22] have become
popular approaches to describing design-level aspects of
programs, and incorporating support for these in object-
oriented programs via code weaving techniques and
component adaptors. Dynamic composition and re-
configuration of systems is difficult in AOP, however,
and component management challenging in AP. In almost
all of these methods and technologies, it is difficult to
design components for a wide variety of reuse situations,

but also very difficult for different developers to share
and talk about component characteristics. We found
during development of several component-based
applications such approaches produce components that
have user interfaces, end user configuration, persistency,
distribution, security and collaborative work capabilities
that are either not adaptable enough or are inappropriate
in some situations the components could be reused. Some
component engineering methods [31] take into account
component interface requirements and system-wide
component properties when designing and deploying
components. Such approaches have, however, typically
only been used for characterising limited forms of
component services.

Many tools have been developed to assist with
component engineering. These include commercial tools
like Rational Rose™ [25], JBuilder™ and Visual Age™,
to a wide variety of research prototypes like Clockworks
[10], MOOSE [9], Escalante [21], Argo/UML [27] and
SYNTHESIS [6]. Most of these tools provide a variety of
modelling notations and implementation support. Most of
this tool support for software component development
heavily focuses on low-level component interface design
and component implementation. There currently exists
very few tools for distributed component engineering that
provide high level modelling and analysis support for
complex component interactions and little support for
distributed component-based system debugging and
visualisation.

A wide variety of work has been done in building
collaboraibve supporting software tools. Tools like
FIELD [26] use a message-based approach to support
some aspects of integration and synchronous or semi-
synchronous work. Such approaches tend to work
reasonably well, though rather restrictive limitations are
imposed on the degree of synchronous support offered,
the extensibility of the environments and the degree of
process co-ordination support possible. Another approach
is to develop synchronous editors for design-level or even
code-level work, examples including Mercury [17] and
ConversationBuilder [18]. Various toolkits to support
building such applications have been developed,
including GroupKit [28], MetaMOOSE [9], and Suite [7].
Unfortunately most collaborative editing tools and
toolkits lack adequate support for process management
and work co-ordination, and often focus heavily on
synchronous work whereas most software development
activity is asynchronous.

Process-centred environments aim to guide or
enforce the use of a codified software process to control
software development. Examples include EPOS [5],
SPADE [2], and Serendipity-II [11]. Many of these
environments do not integrate well with other tools for
performing collaborative software development,
however, though some have had limited collaborative
editing support and tool integration support added [2, 11].

Shared software artifact repositories have been
important in supporting primarily asynchronous work.
These are also needed in order to support component-
based software engineering where a large library of
reusable components need to be shared. Examples of such
systems include document-centric ones like and BSCW
[3] and software component libraries like CodeFinder
[16]. One of the main problems we have found with
many of these existing approaches is their reliance on
either too simple indexing strategies, or use of very
complex and restrictive formal program semantics.

Various systems have taken an integrated
approach to supporting distributed software development,
where one tool supports a wide range of collaborative
work capabilities, or multiple tools are integrated to
provide a sophisticated environment. Those adopting the
former approach include Argo/UML [27], Serendipity-
II/JComposer [13], MOOSE [9], and TeamWave [28].
Unfortunately many of these approaches result in either
monolithic, difficult to maintain and extend
environments, or limit the kinds of tools that can be
added into an environment.

To overcome some of these problems with current
component engineering methods, tools and collaborative
work facilities, we have developed a new method for
engineering component-based systems. We have
extended component engineering tools we have
developed to support this method, and have integrated
these tools to form an integrated development
environment. We have added various collaborative work
facilities in a seamless manner to this environment to
support distributed component engineering.

3. Aspect-oriented Component Engineering

We use an example component-based application
and some of its constituent components to illustrate our
method and tools in this paper. Figure 1 shows a screen
dump from a collaborative travel itinerary planner we
have developed using software components. This
application provides: a tree structure editor component, in
this situation used to view and edit travel itineraries; a
map visualisation component, used to illustrate an
itinerary route; itinerary item property dialogues; a
collaborative text chat; a web browser; and several
collaborative work-supporting notification and task
automation agents (e.g. multi user editing, multiple
cursors, change notifiers etc.). The architecture of this
application consists of these components related in
various ways with reusable components configured to
suit this particular reuse situation.

Different components making up this system
provide services for other components or end users e.g.
User Interface, distribution, persistency, security,
collaborative work and so on. Other components require
these services and thus developers can reason about the
provides/requires relationships between components that
comprise an application. We have been developing
“Aspect-Oriented Component Engineering” (AOCE), a
new methodology for component engineering that
focuses on developing characterisations of the provided
and required “aspects” of components, grouping them by
the systemic aspects that they relate to [12].

Figure 1. Example component-based application.

Figure 3 shows a simple example of such “horizontal
slicing” of a component’s capabilities. In this example,
we are viewing multiple perspectives of the chat
component i.e. its aspect characterisations, illustrating the
different kinds of services such a component provides to
other components and end users, and requires from other
components. With each aspect category are grouped
various “aspect details” e.g. provided panel and
extendable menu, required frame, provided event
generation and actioning, required event transport
mechanism etc. Note some categorisations may overlap,
for example the collaboration aspect also includes some
of the interface and persistency-related services to
support event display and serialisation/deserialisation for
transport.

User Requirements

Reusable component
specifications

Requirements-level
components & aspects

Reusable component
designs & code

Design-level
components in

CASE tool

Component implementation
classes generated by CASE

tool; AspectDetail classes for
aspects

Running components using
aspect objects for information &

de-coupled inter-component
communication

Reusable components
from repository

Feedback…

Figure 2. Basic aspect-oriented component lifecycle.

User Interface Aspects:

Provides: panel
Requires: frame
Provides: extendable
 pop-up menu

Collaboration Aspects:

Provides: event generation
Provides: received event
 actioning
Requires: event transport
Requires: synchronisation

Persistency Aspects:

Provides: data serialisation
Provides: data deserialisation
Requires: data storage
Requires: data retrieval

Chat Component

Properties:
UserName:String
Width:Integer
Height:Integer
…

Methods:
displayPanel()
addMenuItem()
sendMessage()
receiveMessage()
saveChatHistory()
loadChatHistory()
…

Events:
ChatMessage
Resize
…

Figure 3. Chat component’s aspects.

Each aspect detail has a set of “aspect detail
properties” which further characterise it e.g. events
generated before or after the component state is updated,
event transport should be across WAN and support 100
event objects per second and so on. Aspect details and
detail properties provide developers with a mechanism to
specify the provided and required capabilities of
components and allow them to specify both functional
and non-functional characteristics of these capabilities.

AOCE is used throughout a component’s lifecycle
to describe, reason about and guide design and
implementation of components. Figure 2 shows an
example of the basic lifecycle of a component being
engineered using AOCE. Requirements engineers
develop abstract aspect characterisations of components
based on user requirements. Developers may reuse
existing components and aspects, reasoning about
interactions with new component specifications using
aspect details and properties. Refinements of these
components and their aspects are developed to produce
design-level system components and design-level aspects.
Developers use software architecture characteristics and

reusable design-level components and aspects to produce
these designs.

They then have our CASE tool generate
component-implementing classes that are specialised
from a component architecture framework. AspectDetail
class specialisations are also generated for each
component to codify their aspects. Component
implementers use aspect information to guide them in
completing component implementations and interactions.

Some AspectDetail classes provide methods and
interfaces which can be assumed by developers and used
to implement highly de-coupled component interactions
at run-time. Components may thus be coded to interact
with each other directly, or use AspectDetail methods,
Interfaces and/or patterns to support inter-component
relationships. Components can also introspect the
capabilities of other components at run-time, using
AspectDetail methods and/or the capabilities of other
components they can deduce from their publicised
aspects to interact with them.

4. Supporting Notations

When designing software components, we have
found aspects greatly assist developers in identifying
component capabilities and ensuring designers carefully
take into account the possibilities of reuse of components
and necessary component interfaces and support for this.
Aspects help designers to develop general approaches to
providing aspect-based services and to supporting access
by other components to discovering, using and tailoring
such services. This is very important in successfully
leveraging aspect-based approaches in component-based
systems. Unlike aspect-oriented programming, we aim to
avoid doing “code weaving” to distribute aspect-codified
capabilities throughout component implementation code.
Rather, we aim to have component methods implemented
so that their aspect-related properties are handled in such
a way that very general component provision and

requiring of aspect-related services is supported. This is
crucial for COTS-based systems, where source code is
not available or not changeable, and components can only
reconfigure and interact with a component via its well-
publicised interfaces. It also allows us to dynamically
change the way aspect-related services are provided and
used by components, not usually possible without
recompiling aspect-oriented programming systems.

To model and implement components with aspects
we have extended a component-based software
architecture and its implementation framework, called
JViews [13], to incorporate characterisations of
component aspects, including aspect categories, aspect
details and aspect detail properties. Aspects publicise
component capabilities (both required and provided)
according to various aspect categories, and each provided
and required aspect detail has a set of property values
further characterising the component capabilities. We use
a UML-like notation to describe JViews components, and
have augmented this notation to support aspect
description.

Figure 4 shows an example of characterising a
design-level component’s capabilities using aspects,
modelled with the JViews Architecture Description
Language (ADL). This example shows the tree editor
component from the collaborative travel itinerary planner
application, along with some of the other components
that make up this application and provide to or require
from the tree editor aspect-related services. In this
example, the tree editor: provides a user interface frame
and configuration property sheet, may optionally require
another form of structure viewer (e.g. outliner); provides
event generation and actioning capabilities and requires
event transport and synchronisation support; provides
serialisation and deserialisation support but requires data
storage and retrieval capabilities; and provides item
locking and highlighting (for collaborative awareness)
but requires collaboration event propagation between
multiple users.

Text Chat

Label:String
User:String
Chat:List[Messages]
…

showFrame()
hideFrame()
sendMessage()
receiveMessage()
addMenuItem()
addPanelItem()
displayMessage()
addEventListener()
generateEvent()
messageToText()
textToMessage()
…

<<User Interface>>

+frame viewer
+chat panel
+message bar
+extensible menu
+extensible panel
(- other viewer)

<<Aspect>>

+provided aspect detail
- required aspect detail
(- optional required aspect detail)

Component

Properties

Methods

Events

Other Component

bengs-to

uses

<<Distribution>>

+event generation
+event actioning
-event broadcasting

<<Persistency>>

-store data
-retrieve data
+serialise/deserialise data

<<Secutiry>>

+user identification
-authentication
-encryption

Messaging

AddMessagePanel()

Secure RMI
 Broadcaster

SendEvent()
ReceiveEvent()
EncodeData()
DecodeData()

Local File Store

LocateSavedData()
SaveData()
LoadData()

Figure 4. Example chat component aspects.

Aspects and aspect details may relate to one or more
component object functions, and one component object
function may have multiple aspect details that help
characterise it. Thus designing components with aspects
provides a set of multiple, partially overlapping
perspectives onto the capabilities of components, with
each perspective showing a particular systemic view of
the component. These views also capture not only
functional component capabilities, but non-functional
properties as well e.g. performance, expected quality of
service parameters, kind of user interface, integrity needs
and so on.

Figure 5. The basic architecture of our component engineering environment.

5. Development Tools

To support AOCE we have developed a
distributed component engineering environment by
integrating several tools, both our own and 3rd party.
Figure 5 illustrates this environment. The main tools
comprising this composite environment are outlined
below:
• Process management. Software process management

is necessary to both guide developers and track the
work they have done by in a geographically and
temporally distributed fashion. We use our
Serendipity-II process management environment to
provide distributed process modelling and enactment
support, along with user-programmable and
deployable task automation and tool integration
agents [11].

• Software Architecture design. The architectures of
complex component-based systems require careful
design and analysis. SoftArch provides software
architecture modelling and analysis facilities,
including reusable software architecture templates
and analysis agents [15].

• Component design. Software component designs
must be captured, and suitable component
implementations realised. We have extended our
JComposer CASE tool to provide component
specification, design and basic code generation
support [13]. Developers describe components and
their aspects in JComposer, which supports multiple
views of components and aspects, allows both
components and aspects to be inter-related, and
provides some basic aspect-based static checking of
component models. This includes checking all of a
components required aspects have corresponding
provided aspect details from related components and
provided/required aspect detail properties are
consistent.

• Component implementation. Component
implementation and low-level debugging must be
supported, along with higher-level component
visualisation support. We allow developers to use
their own preferred development tools, such as JDK,
Forte or JBuilder. Our component visualisation tool,
JVisualise, can be used to view running components,
and we have added high-level dynamic architecture
analysis tools to SoftArch to support dynamic system
visualisation [15].

• Component storage and retrieval. A component
repository allows multiple developers to share
components in JComposer, and also supports the
sharing Serendipity-II software agent components
[14].

• Other applications. We have integrated these tools
with Argo/UML [27] via XML-based import/export

mechanisms, veral desktop applications (including
Word™ and Netscape™), and a file server (a simple
form of RCS) [13].

In order to effectively develop complex,
component-based applications using our JViews
architecture and framework we built the JComposer
CASE tool [13]. JComposer provides multiple views of
systems using the JViews ADL, and supports
collaborative editing of these views with sophisticated
inconsistency management support. We have extended
JComposer to allow developers to describe component
aspects, aspect details and aspect usage. Basic aspect
properties and constraints can also be specified, and inter-
component aspect usage checks performed. Both
requirements-level aspects and design-level aspects can
be represented, with simple refinement relationships
between each. Basic consistency checking is used when
aspect details are modified. Figure 6 (1) and (2) show
examples of adding aspect information to some JViews
components modelled in JComposer. When design-level
aspect information has been specified and basic aspect
usage checks performed, JViews component
implementation code is generated, including aspect
codification.

Figure 6 (3) shows a SoftArch high-level view of a
system architecture. SoftArch imports OOA-level
component characterisations from JComposer (or
Argo/UML) and supports a developer refining these to
OOD-level component designs, via multiple refinement
steps and views [15]. SoftArch-style models are very
useful for large component-based systems design and
analysis. Figure 6 (4) shows a JVisualise view visualising
JViews component instances and inter-relationships in a
running component-based system.

6. Distributed Work Support

To co-ordinate and support distributed component
engineering we use the Serendipity-II process
management tool, plug-in collaborative editing
components, and a component repository. Figure 7 shows
an example of a simple component engineering process
(top view) and one of the process stages expanded
(middle view) in Serendipity-II. Serendipity-II provides
multiple, visual views of software processes and project
plans which can be collaboratively edited. Process stages
are enacted by each developer collaborating on a project,
with automation of enactment as stages are completed or
by software agents monitoring work done in development
tools. Serendipity-II can monitor software artifact editing
being carried out in tools are store these events (or
synthesised summaries of multiple events) against
process stages, providing a work tracking mechanism.

(1) (2)

(3)
(4)

Figure 6. JComposer, JVisualise and SoftArch in use.

Distributed work co-ordination and tool
integration is necessary when multiple developers need to
be made aware of work others are doing/have been doing,
or when a remote server needs to be used to centralise
data or processing. The bottom view in Figure 7 shows an
example of a task automation agent implementing a
simple notification mechanism. In this example, when
editing events made by user “john” occur while the
process stage “4b. Determine Design ” is enacted, they
are filtered to see if they apply to the component
"CIGItenary", and if so are stored so user “mark” can
review them later.

Developers collaboratively edit views in various
tools in our environment, ranging from Serendipity-II
process models, to SoftArch and JComposer architecture,
analysis and design-level views, to JDK .java source code
files. The only support we provide for source code file
editing is asynchronous editing of different versions of
the source code, checked out of a RCS-based distributed
file management server. This has proved adequate, as
developers almost always edit implementation code
independently. This is particularly true for AOCE, where
use of a component is ideally always via a well-defined,
aspect-characterised interface specification.

Higher-level views of software development, such
as process models, architectures and designs, sometimes
need to be more tightly shared and collaboratively edited.
Our JViews-based tools provide a flexible collaborative
editing mechanism that allows developers to share views
and edit them synchronously or asynchronously [11, 13].

For example, Figure 8 shows a JComposer component
design view being semi-synchronously edited. Changes
made by one user, ‘john’, are displayed as they are made
but not immediately applied to the view (as with
synchronous editing). The user whose view this is will at
some stage select one or more changes and then ask
JComposer to apply them to his/her view incrementally.
Inconsistencies, such as syntactic or semantic errors that
occur, generate error messages that are displayed in
another dialogue. The user can also edit such views
asynchronously, and have JComposer send them to
collaborating developers at some later stage, where they
can be incorporated or further discussed/refined. Whole
views can also be exhanged, creating alternative versions
for developers to edit and merge further changes with.

Figure 7. Serendipity-II process views.

Figure 8. Collaborative editing in JComposer.

We have recently developed a component
repository to allow distributed developers to share
components, particularly commonly reused infrastructure
components for building applications [14]. In order for
developers to effectively share components, a common
language or ontology for characterising and describing
components must be used. We use AOCE component
aspects to do this. Figure 9 shows an example of a
developer searching our repository for a component
supporting event broadcasting over the internet. The
developer formulates a query using aspect, aspect detail
and aspect detail properties of the component they are
searching for. Retrieved components are displayed, and
aspect-organised information about these components can
be browsed by the developer. In this example, the
developer has reused a socket-implementing
collaborative editing component (actually part of the
JViews infrastructure). A validation function has been
run and the component is indicating it currently lacks a
required relationship to another component in order to be
able to function.

Figure 9. Repository query and aspect details.

7. Tool Architecture and Implementation

The basic approach we have taken to developing
an integrated, distributed component management
environment is shown in Figure 10. This illustrates the
architectures of our decentralised software engineering
environments, built using our JViews component-based
framework. JViews provides abstractions for building
tools supporting multiple views, component-based
integration mechanisms, local persistency, and distributed
event and data exchange.

Figure 10. Basic architecture of our decentralised environments.

JViews-implemented tools are integrated on a
developer’s local machine using JViews infrastructure
abstractions (basically component event and data
interchange mechanisms). All data used by these tools is
stored locally, with other users’ tools also storing data
they use locally. Any shared data is replicated on all
machines, producing a decentralised architecture for the
overall system. Such an architecture supports a robust
software development environment, tolerant of network
and machine failure, provides improved security for
private work data, and scales up well to large multi-
person projects [11, 13].

Distributed software development is support
across any internet communications medium (LAN or
WAN) by event and data exchange between users’
environments. This involves tools exchanging events via
JViews event distribution abstractions to reconcile
updated data, notify of interesting events etc. Data can be
exchanged with a version control and configuration
management mechanism used to manage alternate
versions.

Local and remote 3rd party tool access is support
by wrapping tools (e.g. desktop applications like Word™
and Netcape™, or servers like RCS and http) with
JViews components. Local and remote “software agents”
provide both tool integration and task automation
support. These allow the behaviour and composition of
an environment to be extended and configured by
developers as they require.

Our component engineering environment is
supported by collaborative editing facilities plugged into
our JViews-based tools, decentralised work and process
co-ordination tools built and deployed in Serendipity-II, a
component repository, and a distributed document (file)
management tool.

We have implemented local JViews tool data
persistency using the PSE Pro™ object store. This
provides high-performance, robust local data
management. We developed a custom event and data
serialisation mechanism to support information exchange
between JViews environments. Socket-based and RMI-
based event communications are used, RMI more

recently to assist developers in more easily building
distributed environments. CORBA remote object
interfaces are used to access some distributed software
agents and 3rd party tools, though currently extensive use
is made of JViews wrapper components to facilitate most
tool integration.

8. Summary

We have described a methodology and support
tools for engineering distributed component-based
systems. Our methodology, aspect-oriented component
engineering, provides a new approach to characterising
component capabilities and reasoning about component
interactions and provided/required services. Our
JComposer, SoftArch and JVisualise tools support
modelling, implementation and visualisation of complex
component-based systems. We support a variety of
collaborative work mechanisms, including process-based
work co-ordination, collaborative editing and a shared
repository of components.

We are working on a new infrastructure for
building environments like the one described in this
paper, to more readily facilitate their integration and
configuration. We are extending AOCE to provide a
richer range of aspects and aspect details for many
problem domains. We are also further extending the
UML to provide richer notational support for aspect-
based component modelling and analysis.

References

1. Allen, P. and Frost, S., Component-Based Development for
Enterprise Systems: Apply the Select Perspective™, SIGS
Books/Cambridge University Press, 1998.

2. Bandinelli, S. and DiNitto, E. and Fuggetta, A., Supporting
cooperation in the SPADE-1 environment, IEEE
Transactions on Software Engineering, vol. 22, no. 12,
December 1996, 841-865.

3. Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J.
Supporting collaborative information sharing with the
World-Wide Web: The BSCW Shared Workspace system,

in Proceedings of the 4th International WWW Conference,
Boston, MA, December 1995.

4. Brown, A. and Barn, B. Enterprise-Scale CBD: Building
Complex Computer Systems from Components In
Proceedings of the 9th International Workshop on Software
Technology and Engineering Practice, 30 August - 2
September, 1999, Pittsburgh, USA, IEEE CS Press.

5. Conradi, R. Hagaseth, M., Larsen, J., Nguyen, M.N.,
Munch, B.P., Westby, P.H., Zhu, W. and Jaccheri, M.L.,
EPOS: Object Oriented Coopeartive Process Modeling, In
Software Process Modeling & Technology, Finkelstein, A.,
Kramer, J. and Nuseibeh, B. Eds, Research Studies Press,
1994.

6. Dellarocas, C. The SYNTHESIS Environment for
Component-Based Software Development, In Proceedings
of 8th International Workshop on Software Technology
and Engineering Practice, July 14-18 1997, London UK,
IEEE CS Press.

7. Dewan, P. and Choudhary, R. A High-Level and Flexible
Framework for Implementing Multiuser User Interfaces.
ACM TOIS, vol. 10, no. 4, October 1992, ACM Press, 345-
380.

8. D’Souza, D. F. and Wills, A., Objects, Components and
Frameworks with UML: The Catalysis Approach,
Addison-Wesley, 1998.

9. Furguson, R.I., Parrington, N.F., Dunne, P., Archibald,
J.M. and Thompson, J.B. MetaMOOSE – an Object-
oriented Framework for the Construction of CASE Tools,
Proceedings of CoSET’99, Los Angeles, 17-18 May 1999,
University of South Australia, pp. 19-32.

10. Graham, T.C.N., Morton, C.A., and Urnes, T.,
“ClockWorks: Visual Programming of Component-Based
Software Architecture,” Journal of Visual Languages and
Computing, 175-19, July 1996..

11. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

12. Grundy, J.C. Aspect-oriented Requirements Engineering
for Component-based Software Systems, In Proceedings of
the 4th IEEE Symposium on Requirements Engineering,
Limerick, Ireland, June 8-11 1999, IEEE CS Press, pp. 84-
91.

13. Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Constructing component-based software engineering
environments: issues and experiences, Information and
Software Technology, vol. 42, no. 2, January 2000,
Elsevier.

14. Grundy, J.C. Component storage and retrieval using
aspects, In Proceedings of the 2000 Australian Computer
Science Conference, Canberra, Australia, Jan 31-Feb 3
2000, IEEE CS Press.

15. Grundy, J.C. and Hosking, J.G. High-level Static and
Dynamic Visualisation of Software Architectures, In
Proceedings of 2000 IEEE Symposium on Visual
Languages, Seattle, WA, Sep 6-10 2000, IEEE CS Press.

16. Henninger, S. Supporting the Construction and Evolution
of Component Repositories, In Proceedings of the 18th
International Conference on Software Engineering, Berlin,
Germany, 1996, IEEE CS Press, pp. 279-288.

17. Kaiser, G.E., Kaplan, S.M., and Micallef, J. “Multiuser,
Distributed Language-Based Environments,” IEEE
Software, vol. 4, no. pp. 11, 58-67.

18. Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli, C.,
“Flexible, Active Support for Collaborative Work with
ConversationBuilder,” in 1992 ACM Conference on
Computer-Supported Cooperative Work, ACM Press,
1992, pp. 378-385.

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., and Irwin, J. Aspect-oriented
Programming, In Proceedings of the European Conference
on Object-Oriented Programming, Finland. Springer-
Verlag LNCS 1241. June 1997.

20. Magnusson, B. and Asklund, U. and Minör, S. Fine-
grained Revision Control for Collaborative Software
Development, In Proceedings of the1993 ACM SIGSOFT
Conference on Foundations of Software Engineering, LA,
1993, pp. 7-10.

21. McWhirter, J.D. and Nutt, G.J., “Escalante: An
Environment for the Rapid Construction of Visual
Language Applications,” in Proceedings of the 1994 IEEE
Symposium on Visual Languages, IEEE CS Press, 1994.

22. Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play
Components for Evolutionary Software Development,
OOPSLA’98, Vancouver, WA, October 1998, ACM Press,
pp. 97-116.

23. Monson-Haefel, R Enterprise JavaBeans, O'Reilly, 1999.
24. Mowbray, T.J., Ruh, W.A. Inside Corba : Distributed

Object Standards and Applications, Addison-Wesley,
1997.

25. Quatrani, T. Visual Modelling With Rational Rose and
UML, Addison-Wesley, 1998.

26. Reiss, S.P., “Connecting Tools Using Message Passing in
the Field Environment,” IEEE Software, vol. 7, no. 7, 57-
66, July 1990.

27. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July 1998,
261-390.

28. Roseman, M. and Greenberg, S. TeamRooms: Network
Places for Collaboration. In Proceedings of ACM CSCW
96, pp. 325-333, 1996.

29. Sessions, R. COM and DCOM: Microsoft’s vision for
distributed objects, John Wiley & Sons 1998.

30. Szyperski, C.A. Component Software: Beyond Object-
oriented Programming, Addison-Wesley, 1997.

31. Szyperski, C.A. and Vernik, R.J. Establishing system-wide
properties of component-based systems: a case for tiered
component frameworks, OMG/DARPA Workshop on
Compositional Software Architecture, Monterey,
California, Jan 6-8 1998.

