
© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

Managing Consistency between Textual Requirements, Abstract Interactions and
Essential Use Cases

Massila Kamalrudin
Electrical & Computer

Engineering
University of Auckland

Private bag 92019
Auckland 1142
New Zealand

Mkam032@aucklanduni.ac.nz

John Grundy
Swinburne University of

Technology
 Centre for Complex Software,

Systems & Services, PO Box 218,
Hawthorn

Victoria 3122, Australia
jgrundy@swin.edu.au

John Hosking
Dept of Computer Science

University of Auckland

Private bag 92019 Auckland 1142

New Zealand

john@cs.auckland.ac.nz

Abstract— Consistency checking needs to be done from the
earliest phase of requirements capture as requirements
captured by requirement engineers are often vague, error-
prone and inconsistent with users’ needs. To improve such
consistency checking we have applied a traceability approach
with visualization capability. We have embedded this into a
light-weight automated tracing tool in order to allow users to
capture their requirements and generate Essential Use Case
models of these requirements automatically. Our tool supports
inconsistency checking between textual requirements, abstract
interactions that derive from the text and Essential Use Case
models. A preliminary evaluation has been conducted with
target end users and the tool usefulness and ease of use are
evaluated. We describe our motivation for this research, our
prototype tool and results of our evaluation.

Keywords- Automated Tracing Tool, Traceability, Essential
Use Cases, Consistency management, Inconsistency

I. INTRODUCTION
The requirements of a system to be developed need to be

evaluated against the three Cs (Consistency, Completeness
and Correctness) to detect errors such as inconsistency and
incompleteness. However, as stated by Zowghi and Gervasi,
“improving the consistency of the requirements can reduce
the completeness and, thereby again diminishing
correctness” [1]. Therefore, consistency is of great interest
here in order to ensure the requirements are entirely precise
and fulfill the needs of a user. In order to make sure
requirements are consistent and follow the customers’ needs
from the beginning, consistency checking needs to be done
from the earliest stage of the Requirement Engineering
process: Requirements Analysis (RA).

There are several definitions of consistency with respect
to a software requirement specification. These definitions
clarify what consistency is and when it appears in a software
requirement specification. Zowgi and Gervasi [1] state that
consistency requires that no two or more requirements in a
specification contradict each other, where there is no case
that the requirement cannot be compensated at the same
time. They also stress the importance of terminology i.e.
that words and terms always having the same meaning

throughout the requirement specification. Both of these
views entail the need for ways of avoiding reciprocally
exclusive statements and conflicts in terminology [2].
Consistency is referred to as no internal (logical) negation
between specification of a system [3]. A few types of
consistency apply to specifications including the
precondition of a function being satisfied by the function
calls, subtypes that inclusive arguments of functions, and
results of functions subtypes [3]. Some relate to consistency
between various non-functional requirements e.g. that
security, reliability, scalability and platform
requirements can all be met by the requirements as captured.

In order to check and maintain consistency and diminish
inconsistency, many techniques have been used. These
include traceability, formal specifications, semantics
analysis, semi-formal specifications and heuristic
algorithms[4],[5],[6],[7],[8]. In addition, in many projects
consistency and completeness checking is normally
performed manually by “tedious procedure of reading the
requirements documents and looking for linguistic errors”
[9]. Many of these approaches to requirements consistency
checking require heavy-weight formal approaches where
requirements must be expressed in complex formal models.
While these are important in many domains e.g. safety-
critical systems, they have proved challenging to put into
widespread use [10]. Similarly traditional approaches to
using natural language processing and analysis of textually
expressed requirements require the use of complex analysis
algorithms and the complexity of natural language and its
inherent ability to express inconsistent statements makes
this challenging [11]. Translating requirements into semi-
formal models e.g. UML use cases is a common approach
that supports some limited analysis while improving
structuring of natural language expressed requirements.
However, carrying out the translation to these semi-formal
models and checking consistency between the models and
natural language requirements has continued to prove
problematic [12]. We wanted to provide requirements
engineers with an environment to support consistency
checking and traceability between semi-formal models of
requirements and natural language expressed requirements
[13]. However, we wanted to provide requirements

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

engineers with a more light-weight approach than complex
natural language processing techniques or their having to
rely on using complex, mathematical formal models. To this
end we have developed a prototype tool supporting the
extraction of Essential Use Case (EUC) models from natural
language requirements and support for traceability and
consistency management between these requirements
models. Our toolset is built in the Eclipse IDE and allows
requirements engineers, end users, and other developers to
work with both textual natural language and diagrammatic
EUC models of requirements.

This paper is organized as follows. We begin with an
introduction to the concept of consistency in software
requirements specification and follow with the background
and our motivation of traceability between textual and
Essential Use Case diagram requirements in Section 2.
Section 3 illustrates the approach we have taken and in
section 4 we describe our prototype automated tracing tool
by use of an example. Section 5 discusses the architecture
and the implementation of our tool and section 6 discusses
an evaluation of the tool. Section 7 compares and contrasts
our approach to key related work and section 8 presents
conclusions and directions for future research.

II. BACKGROUND AND MOTIVATION

A. Traceability

Traceability is defined as the “ability to describe and
follow the life of an artefact which is developed during
software lifecycle in both forward and backwards
directions’ [14]. Traceability is believed to be an important
approach in managing requirements effectively [15] and a
vital practise in an organisation [16]. Traceability must also
cover all the aspects in terms of scope and coverage
including system level scope and all four types of coverage.
The four types of coverage defined by Bashir et al [17] are
the traceability of origin and requirement inclusive source,
stakeholders and requirements. Next, all requirements are
involved in traceability between requirements and other
requirements. Different requirements are also traced if they
are dealing with the traceability between requirements and
other artefacts, and links and dependencies between
artefacts need to be considered if we are tracing other
artefacts with other artefacts.

Cysneiros and Zisman assert that traceability relations
help in a number of activities in software development [18].
For example the evolution of software systems, compliance
verification of code, requirements validation, aspect
identification, and any design decision. Traceability is often
informally practised in tracing requirements to and from a
software design [16]. Some traceability techniques are
assisted by information retrieval (IR) to support identifying
traceability links although IR is unable to identify all links
[14, 18]. Although traceability is important it is sometimes
not applied in practice as it is too difficult and costly [16]. In
this paper we present an approach which applies traceability
together with Essential use cases (EUC) in an automated
tracing tool, in order to demonstrate that traceability can be

easy to use and that benefits accrue from being able to trace
between different forms of requirements and check
requirements consistency.

B. Consistency

Consistency management between different artefacts in
software engineering has been recognized as crucial for
many years [5],[19],[20]. In requirements engineering,
consistency management between formal requirements
specifications and architecture and design models has been
investigated [7],[4]. Similarly, several approaches have been
developed to try and determine inconsistencies between
natural language descriptions of requirements and
formalized models of requirements [5],[9]. Some techniques
have been developed to support correction of
inconsistencies such as the use of repair operations [21].
Detecting inconsistencies may or may not require immediate
correction. Living with inconsistency allows for the
management of inconsistencies over time where this
provides more flexibility in the development process [22].
Correcting inconsistencies and providing appropriate tool
support to detect, present and manage is challenging [23].

C. Essential Use Cases (EUCs)

In previous work we have developed tools to support
traceability, inconsistency detection and consistency
management between different semi-formal and formal
models of architectures, designs, code and tests [23],[24].
However we did not address the issue of traceability or
consistency management of textual, natural language
requirements and semi-formal or formal models of
requirements. To explore this domain we needed a formal or
semi-formal model to represent requirements derived from
textual, natural language requirements.

An Essential Use Case (EUC) is defined as a “structured
narrative, expressed in a language of the application
domain and of users, comprising a simplified, generalized,
abstract, technology free and independent description of
one task or interaction that is complete, meaningful, and
well-defined from the point of view of users in some role or
roles in relation to a system and that embodies the purpose
or intentions underlying the interaction” [25]. An EUC is
shorter and simpler than conventional use cases, and is in
the form of a dialogue between the user and system which
helps to support better communication between developers
and stakeholders. This technology-free approach assists
better requirements capture as it only allows specific detail
relevant to the design to be captured [26]. An EUC specifies
a sequence of abstract steps and captures the core part of a
requirement [26]. It contains user intentions and system
responsibilities allowing documentation of the interaction
without the need to describe the user interface in detail. The
concept of responsibility in EUC is aimed at identifying
“what the system must do to support the use case” without
being concerned about “how it should be done”[26]. This
concept allows consistency with the role of responsibility in
the design. In addition, using responsibilities in EUCs
permits profitable research on the consistency issue between

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

the requirement and the design and helps to improve
traceability [26]. Figure 1.0 is the example of an EUC
designed by [27] together with the extraction of a natural
language requirement to the Essential Use Case.

Figure 1. An example of an Essential use case (from [28])
Figure 1 shows an example of capturing requirements

from the natural language requirement (left hand side) and
an example of Essential Use Case (right hand side). The
example of the requirement is from [28]. On the left is the
natural language requirement and the important phrases are
extracted (highlighted). A specific key phrase (essential
requirement) is provided based on the extracted phrases and
is shown in the Essential Use case on the right.

We have developed an automated tracing tool [13] to
extract essential interactions from natural language
expressed textual requirements. We have analyzed these
textual requirements with an interaction pattern library and a
tracing engine to provide a set of EUC abstract interactions
automatically. We wanted to extend this work by providing
requirements engineers a diagrammatic essential use case
model of these essential interactions expressed in the source
textual natural language requirements. We wanted to
provide interactive trace-forward and trace-back support
allowing engineers to move between these different forms
of natural language and semi-formal requirements. We
wanted to support consistency management between the
different forms of the requirements to aid engineers in
reviewing and modifying them and keeping them consistent.

III. OUR APPROACH

We have applied traceability techniques to help support
consistency management between textual requirements and
EUCs. This work focuses on managing the essential
interaction requirements which mainly capture the
functional requirements of a system. We have created an
“essential interaction” phrase library from the collection and
categorization of requirements from different domains and
scenarios. Phrases have been extracted and stored in this
library and are used to match against corresponding phrases
in textual natural language requirements. The extracted
phrases are further matched to identify a specific abstract
interaction (essential requirement). Each of the abstract
interactions is classified as to being a user intention or
system responsibility. The derived essential use case
elements can be traced back to their originating natural
language requirement phrases and vice-versa. We now

embed this extraction and tracing support into an Essential
Use Case editing tool that we have developed using the
Marama meta-tool platform [29] . This now provides an
environment in which requirements engineers have the
ability to extract and then have generated candidate
diagrammatic EUCs automatically from requirements
expressed in natural language text. Consistency
management support between these textually expressed
requirements, a derived set of structured abstract interaction
and semi-formal diagrammatic EUCs is then provided.
Requirements engineers can move between the different
requirements forms using the traceability relationships
preserved during the extraction and generation processes.
They can modify any one of the requirements forms from
the informal natural language text to the semi-formal EUC
diagrams and the environment will attempt to update the
other forms and/or indicate resultant inconsistencies.

The framework of extracting the requirement, mapping
the type of interaction and creating the EUC is shown in
Figure 2. Figure 2 (1) illustrates the extraction of a set of
abstract interactions from the textual, natural language
requirements. The library of abstract interaction phrases is
used by a “trace engine” to analyze the text for matches and
a set of candidate abstract interactions generated. A
“mapping engine” then uses a database of Essential Use
Case patterns to structure the interactions into an EUC
model (2). The mapping engine then generates a
diagrammatic representation of the Essential Use Case (3)
which represents the dialogue occurring between the user
and system. The traceability relationships between elements
in the textual natural language requirements model, the
extracted essential interactions model, and the diagrammatic
EUC model are preserved and can be used to support
traceability between the three forms and to check for
inconsistencies between the three forms (e.g. elements in
one but not in another; inconsistent naming, ordering or
properties of elements; and duplicated or partially
duplicated phrases or elements).

IV. TOOL SUPPORT

Based on the framework outlined above we have
developed an automated tracing tool, Marama AI, together
with an EUC diagram editor, Marama Essential. This work
provides support to EUC users and requirements engineers
for designing and generating EUCs automatically,
minimizing the time to develop them from source textual
requirements and increasing the correctness of the abstract
interactions produced. In addition this automated tool helps
to lessen the need for manual checking of software
requirements consistency. The tool provides consistency
checking and notification support allowing requirements
engineers to modify any of the three forms of requirements
in the tool. We used the Marama meta-toolset, a set of
Eclipse IDE plug-ins, to develop our Marama AI prototype.
Marama AI allows traceability between the textual
requirements, abstract interaction and EUCs to be
interactively visualized. In addition, any requirements that
are incomplete and inconsistent can be highlighted to the

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

user. The tool also comprises a glossary and set of
guidelines to assist users to write correct and complete

EUC-based requirements.

Figure 2. Framework for extracting requirement (1) mapping interactions (2) and creating the EUC automatically (3)

We have conducted a study on the accuracy in terms of
correctness of the abstract interactions provided by our
automated extraction feature using the interaction patterns
provided by the library based on the collection of patterns
from Constantine and Lockwood [28], Biddle et al. [30],
and patterns developed by us. The results show that the
incorrectness and incompleteness of the textual requirement
seriously impact the ability to produce correct abstract
interactions to structure requirements.

Our automated extraction and tracing tool is shown in
Figure 3. Consider the scenario of a voter registration use
case by [31] by way of illustration. We use this scenario as a
case study to show the benefits and the flow of the
consistency checking process. A set of requirements for this
voter registration system are expressed in natural language
and are open in an Eclipse text editor (1). The natural
language requirements do not have to be structured as a list
or use a structured layout as shown in this example. The
requirements engineer has then had the tool analyze these

requirements and a set of “essential interactions” has been
deduced from these textual requirements. These essential
interactions are then represented as a vertical list (2). Our
tracing engine uses a library of phrases and regular
expressions to deduce and extract candidate essential
interactions. From the essential interaction list extracted our
mapping engine generates an EUC diagram (3) using a set
of patterns and EUC diagram heuristics. The user can
interact with these three representations of requirements: the
natural language expressed textual requirements, abstracted
essential interactions, and diagrammatic EUC model. One
interaction is to select items in one view and see the related
items in others i.e. the traceability links.

Figure 3 (1) shows the selected phrase – “select voter
registration option” is traced to a particular abstract
interaction – “select option” (2). This has then been mapped
to the EUC diagram and falls under the “user intention”
category (3) and select option interaction.

Figure 3. Tracing the abstract interaction from textual requirement and mapping to the Marama Essential

1
2 3

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

When the user selects the textual phrase the related
interactions/categories are highlighted. Figure 4 shows the
process of “tracing back” from the EUC diagram. The user
selects a “provide identification” item (5). This highlights
the related essential interaction(s) in the interactions list, in
this case “provide identification” abstract interaction (4).
The traceability between these items is shown by the visual
link (red arrow). The corresponding textual natural language
phrases are then highlighted and the matched abstract
interaction will change color to purple in (4) and the
matched phrases are quoted with *…* (6).The existence of
these traceability links allows the consistency between these
three items to be maintained. It is also possible for the tool
to inform the requirements engineer if there is any item that
appears to be incomplete or incorrect. The requirements
engineer may modify any one of these requirements views
and the tool will check the resulting models both for internal
model consistency (the essential use case and EUC diagram
views) and inter-model consistency (all three views). If any
inconsistency occurs due to a change made by user, for
example if there is a change of order, name or type for any

of the abstract interaction or EUC diagram elements, an
inconsistency warning will occur. If an item or phrase has
been added and the new item cannot be matched to a textual
requirement phrase or abstract interaction by the tracing
engine an inconsistency warning will occur. If traceability
relationships do not exist between phrases and items this
indicates a potential incompleteness or inconsistency and no
tracing result will be shown to the engineer. The tool can
highlight items in one view that do not appear to be related
to items in another for the engineer to investigate.

In figure 5, item (7) and (8) shows an example change of
sequence to an abstract interaction - “select option”. The
requirements engineer has decided this should be in a
different position in the set of abstract interactions. The tool
has highlighted the potential inconsistency (7). This change
leads also to a change of sequence and position in the EUC
diagram - “select option” to the bottom. The red arrows
show the change of sequence from the original position to
the new one at the bottom. This produces an inconsistency
in the requirements and the tool detects this and provides a
warning about the inconsistency.

Figure 4. Trace back from Marama Essential to the abstract interaction and textual requirement

Figure 5. Inconsistency occurring: change of the sequence of the abstract interaction and EUC diagram

7 8

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

Figure 6: Inconsistency occurring: adding new item to abstract

interaction adding new component in EUC diagram

Figure 6. shows a potential inconsistency that happens
when a new item is added to either the abstract interaction or
EUC diagram views. In figure 6., item (9) and (10), a new
abstract interaction has been inserted into the essential
interaction view (9) and this result in a new component in the
EUC diagram (10). The tool detects an inconsistency with
the textual requirements and so an inconsistency warning
appears and informs the requirements engineer where the
inconsistency occurs. These inconsistency warnings shown
in both figures illustrate the dependencies that occur between
the textual requirement, abstract interaction and EUC
diagram. In addition to this example usage scenario, we are
also testing the tool in several other domains such as e-
mobile, library system and online booking, with early
positive results.

V. ARCHITECTURE AND IMPLEMENTATION

Figure 7 illustrates the architecture of Marama AI which
consists of a textual requirement, abstract interaction and
Marama (EUC diagram) editors. Marama AI is realized
based on Marama which is built in the Java –Eclipse

platform (1-2). Tools are specified using shape, meta-model
and view tools and then implemented by interpretation of the
specifications using a set of Marama plug-ins (4).

Figure 7. Marama AI Architecture

The process of extracting and mapping is assisted by
event handlers (3). The event handlers help to maintain the
consistency between textual requirement, abstract interaction
and Marama Essential. The description of each of the event
handlers is as follows. The event handler for tracing the
textual requirement to the abstract interaction is called Trace.
Here, the tracing engine will extract the key phrases which
will be analyzed by the interaction pattern library to match
with the keyword (abstract interaction). If the key phrases
match with the keywords, the abstract interaction will be
displayed. If there are no results displayed, it is observed that
the textual requirement is normally incorrect or incomplete
based on the interaction pattern. To trace back from the
abstract interaction or EUC component to where it comes
from, we used the help of the Trace event handler. This event
handler also works together with the tracing engine. The
selected abstract interaction or EUC component is analyzed
by the tracing engine and then matched with the matching
key phrases in the interaction pattern library. If we try to
trace back the abstract interaction, the tool will show where
the key phrases for that particular abstract interaction come
from. If we trace back the EUC component, the system will
show which abstract interaction matches with it together with
the matching key phrases in the textual requirement. If no
result appears, it is assumed that the requirement is either
incorrect or incomplete. The requirement also is inconsistent
if the users try to change the requirement by adding new
abstract interactions or EUC components as shown in figure
6. The trace back event handler will not be able to trace the
key phrases in the textual requirement as the new component
is added without updating the textual requirement. This will
also trigger the inconsistency warning to occur. The event
handler for mapping the abstract interaction to Marama
Essential, “Mapped to EUC”, helps to generate the Essential
Use Cases automatically. The event handler works with the
mapping engine to map the abstract interaction to the EUC
diagram. The mapping engine analyzes and matches the
selected abstract interaction with the property in the
interaction pattern library. Then, the abstract interaction is

Eclipse IDE

10

9

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

mapped automatically to the EUC together with it category,
either user intention or system responsibility. The event
handler will not map the newly added abstract interaction to
the EUC component if it does not exist in the pattern library
and the textual requirement is not updated in this case. This
action also will trigger the inconsistency warning to inform
what the inconsistency error is. The event handler Index
Checker acts as a checker for the consistency of the sequence
for both abstract interaction and Marama Essential. The
index checker checks the index and location for each abstract
interaction and EUC component. Both need to be in
sequence with ordering consistent with the textual
requirements. If there is any change of the sequence or
location for both, the event handler provides a warning about
the inconsistency that has occurred.

VI. EVALUATION

We have conducted a preliminary evaluation of the
usefulness and the ease of use of Marama AI with 8 software
engineering post-graduate students, several of whom had
previously worked in industry as developers and/or
requirements engineers. All were familiar with the EUC
modeling approach. Each participant was given a brief
tutorial on how to use the tool and some examples of how
the EUC model is derived from the textual language
requirements. The participants were asked to input their
textual requirements and then use the automated tracing tool
to retrieve the abstract interaction and also allow them to
explore the event handler by mapping the abstract interaction
to the Marama Essential, and also allow them to use the trace
back facility. The participants rated the usefulness and the
usability of the tool together with its inconsistency detection.
They also rated the consistency between textual requirement,
abstract interaction and essential use cases. Our evaluation
was conducted using a standard evaluation method – a Likert
scale with a five part scale was used and responses analyzed
in order to determine the results shown in Figure 8 and
Figure 9.

Figure 8 describes the evaluation result on the usefulness
aspect of the tool. This shows that almost all of the
participants agree that the automated tracing tool is useful for
finding the abstract interaction, capturing requirements using
the EUC model and also checking the inconsistency of the
requirements. Overall the usefulness of finding abstract
interactions by using our tool is almost 94%, where 69%
identified it as very useful and 25% identified it as always
useful. A further 6% of the participants felt that it was
sometimes useful to extract the abstract interaction
automatically primarily because the tool might be
constrained by the domains available in the interaction
pattern library. It was identified in the evaluation that
approximately 94% of participants agree that using the
Marama AI using the Marama Essential model is useful in
capturing requirements. About 59% identified it as very
useful and another 34% identified it as always useful. A
further 6% of participants thought it is sometimes useful to
use it as a tool in capturing requirement as they are more
familiar with using UML diagrams compared to Essential
Use case diagrams. For the consistency management support,

approximately 94% agree that the tool provides useful
inconsistency checking and maintaining the consistency of
the requirements. About 56% of participants thought it very
useful and around 38 % felt that the tool is always useful in
managing the consistency. Another 6% of participants felt it
is only sometimes useful in managing the consistency as they
would like to have more complex consistency checking by
the tool. All participants agree that the tool assists them in
saving their time for capturing requirements and manage the
consistency issue between the requirements.

Figure 8. Result of Marama AI usefulness

Figure 9. Result of ease of use of the Marama AI

The ease of use of the automated tool was also evaluated
and the results are presented in Figure 9. Both tracing and
inconsistency checking features were evaluated. All of the
participants agree that both components are user friendly and
easy to use on the example tasks performed. For the
automated tracing tool, approximate 96% agree that the tool
is easy to use, where about 58% agree that the tool is very
easy to use and almost 38% agree that the tool is always easy
to be used. Only about 4% feel it is only sometimes easy to
use. This small percentage occurs because of the difficulty
they had with understanding the layout used by Marama AI.
For inconsistency checking of the requirements almost 96%
agree that it is easy to be handled and understand.
Approximate 58% agree it is very easy to be handled and
another 38% agree it is always easy to be handled. Again,
only 4% of the participants thought it is sometimes easy to
check the inconsistency, because the tool currently just
provides warning on the detected inconsistency and no way
of resolving it automatically. This minority group also
wanted the tool to have an inconsistency warning together
with the feedback.

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

VII. RELATED WORK

Many varied approaches have been proposed to maintain
consistency and check the inconsistency. Olsson and Grundy
developed a Web based tool to summarize the artefact data
and to support basic explicit linking of element in different
representational models [24]. The method uses traceability
and manages fuzzy relationships between high-level
software artefacts (requirement), use case model and black
box test plans. The aim of this tool is to assist the
inconsistency management for all changes made to artefacts.
However automation is impossible and it is needed to create
a relation. Besides, “high level natural language often lack of
well-defined formal abstraction for all software artefacts
representation”[18]. Cysneiro and Zisman implemented the
automation generation of traceability relations among
various types of models generated during the development of
agent oriented systems and identification of missing
elements in Promethus model and JACK code specification
[18] to check completeness in order to make sure the
consistency between model and code specification is
maintain especially in a huge and complex system which
involved different stakeholders. Rule based approaches and
Promethus methodology is used with the extended version of
XQuery to represents rules in traceability. Though, this is
still preliminary work and completeness verification is
needed for a more complete set. Another method to reduce
the inconsistencies between product number is developed by
[32]. XtraQue supports the generation of traceability
relations in different type of documents that capable in
representing different level of development lifecycle of a
product line. It can define the semantics between the
artefacts being compared and can also be used to bridge
various activities and stakeholders taking part in the product
line engineering. It generates nine traceability relations such
as satisfiable, ability, dependency, overlaps, evolutions,
implements, refinements, containment, similar and different
feature based on OO documents created during development.
The extension of XQuery is used to represent the traceability
rules and consider the semantic of documents, traceability
relation of various type of traceability with the product line
domain and the grammatical roles of the words in textual
parts of document together with the synonyms and distance
of words being compared. A Rule based approach is also
applied to generate automatically the traceability relations
between elements of documents that are created during the
development of product line system. Nevertheless, the
“existing rules failed to identify between requirements and
object- oriented specification, besides changes in the
documents require the traceability to be re-executed”[32].
There is also “method to recover traceability links between
source code and free text documentation”[33] using
information retrieval which apply both the IR method
namely as probabilistic and vector space. This method is
applied to trace C++ and java source classes to manual pages
as well as the functional requirements. However, the
effectiveness of this method becoming less prominent when
the number of familiar words between the source code

component identifiers and the documentation item has
decreases [33].

There are efforts devoted to checking inconsistency using
formal and semi formal specifications. Nenwitch et al
present a lightweight framework called Xlinkit in order to
check consistency of distributed and heterogeneous
documents using first order logic and lightweight
mechanisms [7]. The main contribution of this framework is
the definition of an extended semantics of first order- logic
and producing the hyperlinks which diagnose well the
inconsistency across the specification compared to the
Boolean result. The incremental checking technique used is
also able to decrease the checking time. However, XLinkit
limitation is a lack of discovery of problems if the
inconsistencies are recognized no action is taken in if the
inconsistency problem becomes complex.

Egyed implemented a UML-based transformation
framework to check the inconsistency and help in
comparison. The author introduced an automated checking
tool called as VIEWINTEGRA which used the consistent
transformation to translate diagrams into interpretations and
used the consistency comparison to compare those
interpretations to other diagrams [4]. This method can check
inconsistencies without the help of third party or
intermediate languages. The limitation of this tool exist when
checking the consistency between object diagram and state
chart diagram or vice versa, as they couldn’t be transformed
directly and need to be changed to a class diagram first in
order to obtain the consistency results [4].

All the literature referenced mentions the use of
traceability, formal and semi formal specification in
managing the consistency between different representation
models, code level and documents. Almost none of the
works stressed the use of traceability in managing
consistency between the textual requirement and model
representation especially between textual requirements and
an Essential Use Case model. The traceability elaborated
also does not apply any visualization approach or tool to
visualize the traceability and the consistency between these
components.

VIII. SUMMARY

We have discussed the advantages of using a traceability
approach in managing consistency between textual
requirements, abstract interactions and Essential Use Cases
(EUCs). Traceability and consistency between these
artefacts are visualized with the support of Marama. We
described a proof of concept support environment, Marama
AI that generates tracing and mapping between textual
requirements, abstract interactions and EUCs. This tool also
assists users and requirements engineers in capturing
requirements and generates EUCs automatically. MaramaAI
is able to minimize human intervention in checking
consistency. A preliminary evaluation was conducted
showing promising results for usefulness and ease of use.
Key future work involves extending our tool to check higher
level consistency between textual requirements, abstract
interactions and EUCs. We will use Essential Use Case
patterns to compare the generated EUC models against to try

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

and detect where they diverge from accepted patterns of use.
This will allow us to identify further examples of
incompleteness and inconsistency in their originating textual.
Visualisation in Marama essential will be further improved
and the interaction pattern library will be further enhanced to
support wider domains. Further evaluation in the aspect of
efficacy and performance of the tool will also be done with a
larger group of participants. We would like to assess not only
the impact of our tool both in terms of improving the
adoption and use of the Essential Use Case method, but also
its impact on improving the efficacy of the method itself.
This may include integration with other requirements and
design modelling views.

ACKNOWLEDGMENT
Kamalrudin is funded by the Malaysia ministry of Higher

Education (MOHE) and the University of Auckland.

REFERENCES
[1] D. Zowghi and V. Gervasi, "On the interplay between

consistency, completeness, and correctness in
requirements evolution," Information and Software
Technology, vol. 45, 2003, pp. 993-1009.

[2] C. Denger, D. M. Berry, and E. Kamsties, "Higher
Quality Requirements Specifications through Natural
Language Patterns," in Proceedings of the IEEE
International Conference on Software-Science,
Technology & Engineering: IEEE Computer Society,
2003, pp. 80

[3] A. Satyajit, M. Hrushikesha, and C. George, "Domain
consistency in requirements specification," in Quality
Software, 2005. (QSIC 2005). Fifth International
Conference on, 2005, pp. 231-238.

[4] A. Egyed, "Scalable Consistency Checking Between
Diagrams-The ViewIntegra Approach," in Proceedings
of the 16th IEEE international conference on
Automated software engineering: IEEE Computer
Society, 2001, p. 387.

[5] A. Kozlenkov and A. Zisman, "Are their design
specifications consistent with our requirements?," in
Requirements Engineering, 2002. Proceedings. IEEE
Joint International Conference on, 2002, pp. 145-154.

[6] A. Egyed, "Instant consistency checking for the
UML," in Proceedings of the 28th international
conference on Software engineering Shanghai, China:
ACM, 2006, pp. 381-390.

[7] C. Nentwich, W. Emmerich, A. Finkelstein, and E.
Ellmer, "Flexible consistency checking," ACM Trans.
Softw. Eng. Methodol., vol. 12, pp. 28-63, 2003.

[8] V. Gervasi and D. Zowghi, "Reasoning about
inconsistencies in natural language requirements,"
ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 277-
330, 2005.

[9] L. G. Gnesi S, Trentanni G, Fabbrini F, Fusani M, "An
automatic tool for the analysis of natural language
requirements," International Journal of Computer

Systems Science & Engineering, vol. 20, pp. 53-61,
2005.

[10] J. Bowen and V. Stavridou, "Safety-critical systems,
formal methods and standards," Software Engineering
Journal, vol. 8, pp. 189-209, 1993.

[11] K. Haruhiko and S. Motoshi, "Ontology Based
Requirements Analysis: Lightweight Semantic
Processing Approach," in Proceedings of the Fifth
International Conference on Quality Software: IEEE
Computer Society, 2005.

[12] F. Meziane, N. Athanasakis, and S. Ananiadou,
"Generating Natural Language specifications from
UML class diagrams," Requirements Engineering, vol.
13, pp. 1-18, 2008.

[13] M. Kamalrudin, "Automated Software Tool Support
for Checking the Inconsistency of Requirements," in
24th IEEE/ACM International Conference on
Automated Software Engineering, Auckland, New
Zealand, 2009.

[14] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora,
"Recovering traceability links in software artifact
management systems using information retrieval
methods," ACM Trans. Softw. Eng. Methodol., vol.
16, p. 13, 2007.

[15] I. S. Gerald Kotonya, Requirement Engineering
Process and Techniques. West Sussex,England: John
Wiley & Sons Ltd, 1998.

[16] O.M. ÄÄLINOJA Juho "Software requirements
implementation and management," Software &
systems engineering and their applications vol. vol.
vol.1 à 3, , pp. pp. 1.1-1.8Note(s) 2004

[17] M. F. Bashir and M. A. Qadir, "Traceability
Techniques: A Critical Study," in Multitopic
Conference, 2006. INMIC '06. IEEE, 2006, pp. 265-
268.

[18] G. Cysneiros and A. Zisman, "Traceability and
completeness checking for agent-oriented systems," in
Proceedings of the 2008 ACM symposium on Applied
computing Fortaleza, Ceara, Brazil: ACM, 2008, pp.
71-77.

[19] W. L. Poon and A. Finkelstein, "Consistency
management for multiple perspective software
development," in Joint proceedings of the second
international software architecture workshop (ISAW-
2) and international workshop on multiple perspectives
in software development (Viewpoints '96) on
SIGSOFT '96 workshops San Francisco, California,
United States: ACM, 1996, pp. 192-196.

[20] A. Finkelstein, "A Foolish Consistency: Technical
Challenges in Consistency Management," in Database
and Expert Systems Applications, 2000, pp. 1-5.

[21] N. Christian, E. Wolfgang, and F. Anthony,
"Consistency management with repair actions," in
Proceedings of the 25th International Conference on
Software Engineering Portland, Oregon: IEEE
Computer Society, 2003.

© IEEE 2010. In Proceedings of the 2010 IEEE International Conference on Computer Software and Applications
(COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS Press.

[22] B. Nuseibeh, S. Easterbrook, and A. Russo,
"Leveraging Inconsistency in Software Development,"
Computer, vol. 33, pp. 24-29, 2000.

[23] J. Grundy, J. Hosking, and W. B. Mugridge,
"Inconsistency management for multiple-view
software development environments," Software
Engineering, IEEE Transactions on, vol. 24, pp. 960-
981, 1998.

[24] T.a. Olson, J.Grundy, "Supporting Traceability and
Inconsistency Management Between Software
Artefacts," in Proceedings of the IASTED
International Conference on Software Engineering and
Applications, ,Boston, MA, November 2002.

[25] L. L. Constantine, "Essential modeling: use cases for
user interfaces," interactions, vol. 2, pp. 34-46, 1995.

[26] R. Biddle, J. Noble, and E. Tempero, "Essential use
cases and responsibility in object-oriented
development," Aust. Comput. Sci. Commun., vol. 24,
pp. 7-16, 2002.

[27] L. L. Constantine and A. D. L. Lockwood, "Structure
and style in use cases for user interface design," in
Object modeling and user interface design: designing
interactive systems: Addison-Wesley Longman
Publishing Co., Inc., 2001, pp. 245-279.

[28] A. D. L. Lockwood. and L. L. Constantine, Software
For Use: A Pactical Guide to the Models and Methods
of Usage- Centered Design: Addison Wesley
Longman,Inc, 1999.

[29] J. C. Grundy, J.G Hosking, J.Huh, and N.Li, "Marama:
an Eclipse meta-toolset for generating multi-view
environments," in 2008 IEEE/ACM International
Conference on Software Engineering, Liepzig,
Germany, May 2008,.

[30] J. Noble. R.Biddle, E. Tempero, "Pattern for Essential
Use Cases," Victoria University of Wellington,
Wellington,New Zealand April 2000.

[31] S. S. Some, "Use cases based requirements validation
with scenarios," in Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on,
2005, pp. 465-466.

[32] W. J. a. A. Zisman, "XTraQue: traceability for product
line systems," Software and Systems Modeling,
September 05, 2007.

[33] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, "Recovering traceability links between code
and documentation," Software Engineering, IEEE
Transactions on, vol. 28, pp. 970-983, 2002.

