
Tool Support for Essential Use Cases to Better Capture
Software Requirements

Massila Kamalrudin

Department of Electrical and
Computer Engineering,
 University of Auckland

Private Bag 92019, Auckland,
New Zealand

(64 9)373-7599 ext 89427

mkam032@aucklanduni.ac.nz

John Grundy
Centre for Complex Software

Systems and Services,
 Swinburne University of Technology
PO Box 218, Hawthorn, Victoria 3122,

Australia
+61 3 9214 8731

jgrundy@swin.edu.au

John Hosking
Department of Computer Science,

University of Auckland
Private Bag 92019, Auckland,

 New Zealand
(64 9)373-7599 ext 88297

john@cs.auckland.ac.nz

ABSTRACT
Capturing software requirements from clients often leads to error
prone and vague requirements documents. To surmount this issue,
requirements engineers often choose to use UML models to
capture their requirements. In this paper we discuss the use of
Essential Use Cases (EUCs) as an alternative, user-centric
representation which was developed to ease the process of
capturing and describing requirements. However, EUCs are not
commonly used in practice because, to our knowledge, no suitable
tool support has been developed. In addition, requirements
engineers face difficulties in finding the correct “essential”
requirements (abstract interactions) in a time efficient manner. In
order to overcome these problems, we have developed a prototype
tool for automated tracing of abstract interactions. We describe
the tool and compare the performance and correctness of the
results provided by it to that of manual essential use case
extraction efforts by a group of requirements engineers. The
results of an end user study of the tool’s usefulness and ease of
use are also discussed.

Categories and Subject Descriptors
D.2.1 Requirements/Specifications; D.2.2 Design Tools and
Techniques; D.2.6 Programming Environments

General Terms
Design; Human Factors

Keywords
Requirements Extraction, Essential Use Cases, Automated
Tracing Tool.

1. INTRODUCTION
When capturing software requirements from clients, requirements
engineers often use some form of natural language, written either
by clients or themselves. These form a human-centric
representation of the requirements accessible to both engineer and
client. However, due to both the ambiguities and complexities of
natural language and the process of capture, these requirements
often have inconsistencies, redundancy, incompleteness and
omissions. Engineers thus often use models to represent these
informally expressed requirements which allow for better
checking, analysis and structured representations, ideally leading
to higher quality systems engineered from them.

There are many ways of representing software requirements. Most
common practices use some form of structured model. Models for
our purpose can be defined as “simplified representations of a
complex reality and actually are forms of abstraction” [1] where
the act of abstraction is a “process of focusing on those features
that are essential for the task at hand and ignoring those that are
not” [1]. UML models are a common way of capturing software
requirements [2] especially use case diagrams which are widely
used by developers and requirements engineers to elicit and
capture requirements. UML use cases capture functional
requirements and, as applied in software engineering, deal with
actor/system interaction [2]. Various studies have determined that
eliciting requirements and extracting their use cases can be
arduous and can lead to rather imprecise analysis [3],[4],[5],[6].
Due to these deficiencies, Constantine and Lockwood [2] were
motivated to develop the Essential Use Case (EUC) modeling
approach to overcome some of these problems. Although the
usage of EUCs is not as widespread as are conventional use cases,
several researchers have recommended their adoption as their use
helps in integrating the requirement engineering and interaction
design processes [3],[7],[8]. Some of the main reasons EUCs are
not commonly used are: a lack of tool support; engineers’ lack of
experience in extracting essential interactions from requirements;
and a lack of integration with other modeling approaches [3],[7].

This motivated us to (1) conduct a user study to gauge
requirements engineers’ ability to use the EUC modeling
approach to extract structured requirements from natural
language; (2) develop a tool to support them to do EUC modeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

255

and (3) evaluate the tool to demonstrate that it enhances their
ability to us EUCs effectively. In this paper, we begin by
describing the initial user study with requirements engineers using
the EUC approach to extract requirements and comment on some
surprising findings. Then we present our prototype extraction tool
and describe an experiment comparing its performance in
extracting EUC models from the same requirements sample. We
discuss implications of these studies and prototype and discuss
our intended future work extending the tool.

2. BACKGROUND
2.1 Essential Use Cases
The EUC approach is defined by its creators Constantine and
Lockwood as a “structured narrative, expressed in a language of
the application domain and of users, comprising a simplified,
generalized, abstract, technology free and independent
description of one task or interaction that is complete,
meaningful, and well-defined from the point of view of users in
some role or roles in relation to a system and that embodies the
purpose or intentions underlying the interaction” [9]. An EUC
takes the form of a dialogue between the user and the system. The
aim is to support better communication between the developers
and the stakeholders via a technology-free model and to assist
better requirements capture. This is achieved by only allowing
specific detail that is relevant to the intended design to be
captured [7] . Compared to a conventional UML use case an
equivalent EUC description is generally shorter and simpler as it
only comprises the essential steps (core requirements) of intrinsic
user interest. It contains user intentions and system
responsibilities to document the user/system interaction without
the need to describe a user interface in detail. The abstractions
used are more focused towards the steps of the use case rather
than narrating the use case as a whole. A set of essential
interactions between user and system are organized into an
interaction sequence. Consequently, an EUC specifies the
sequence of the abstract steps and captures the core part of the
requirements [7]. Furthermore, the concept of responsibility in
EUC aims to identify “what the system must do to support the use
case” without being concerned about “how it should be done” [7].
By exploiting the EUC concept of responsibility, a fruitful
research area on the consistency issues between responsibility
concepts in requirements and their related designs is opened
which can potentially be used to improve traceability support.
EUCs also benefit the development process as they fit a ”problem-
oriented rather than solution–oriented” approach and thus
potentially allow the designers and implementers of the user
interface to explore more possibilities [9]. It also allows more
rapid development to happen as by using EUC it is not necessary
to design an actual user interface [7].

Figure 1 shows an example natural language requirement (left
hand side) and an example Essential Use Case (right hand side)
capturing this requirement (adapted from [10]). On the left is the
natural language requirement from which important phrases are
extracted (highlighted). From each of these, a specific key phrase
(essential requirement) is abstracted and is shown in the Essential
Use case on the right as user intentions and system
responsibilities. These abstract away from specific technologies,
such as typing in login information, to a more abstract expression
of each requirement, such as “identify self”. This opens up the
possibility of alternative designs, such as using biometrics as an
identification method, that still meet the “essential” requirements.

Although EUCs simplify captured requirements compared to
conventional UML use cases, requirements engineers still face the
problem of “finding the correct level of abstraction, which also
takes time and effort” [3]. Requirements engineers need to
abstract the essential requirements (using the EUC concept of
abstract interactions) manually. This means dealing with
understanding the natural language requirements and then
extracting an appropriately abstract essential requirement
embedded in an appropriate interaction sequence. To understand
better the difficulty in achieving this, we have conducted a user
study of postgraduate students experienced in requirements
elicitation and observed both their correctness and time duration
in undertaking Essential Use Case analyses manually.

Figure 1. (Left) Example natural language requirements and

(right) example Essential Use Cases.

2.2 Applying Essential Use Cases: A Study
Previous research on the EUC approach and practice in their use
to model software requirements have indicated that requirements
engineers have some challenges in identifying the “abstract
interactions” used by EUCs and their sequencing [3]. This
observation, while intuitive, is anecdotal, so to obtain a more
rigorous understanding of these difficulties, we decided to
conduct a user study of several requirements engineers carrying
out the extraction of an EUC model from a set of requirements
specified in natural language in order to observe their
performance and experiences in using EUCs. We used the same
requirements as described in [10] and compared the abstracted
EUCs in that work to the results developed by our EUC model
developers.

The study participants were 11 post-graduate software
engineering students, several of whom had previously worked in
industry as developers and/or requirements engineers. All were
familiar with UML use case modeling and most had used UML
use cases to model requirements previously. None were familiar
with the EUC modeling approach. Each participant was given a
brief tutorial on the EUC approach and some examples of natural
language requirements and derived EUC models. The participants
were asked to develop an EUC model from the Natural Language
requirements and we tracked their time taken and analyzed the
correctness of their resulting models. The particular scenario we
gave them to analyze in this evaluation was Constantine and
Lockwood’s “getting cash” scenario. This is a common template
of user/system interactions common in many web-based systems
as well as ATMs and other kiosk-like systems. Intuitively, the
extraction of a set of essential user/system interactions from this

256

example to form an essential use case structured model of the
requirements should be straightforward.
Table 1 summarizes the results of our study. The correctness (Y
for correct, x for incorrect) and time taken was recorded for each
person. A correct answer (Y) means that the answer provided by
the participant is same or very similar to the interaction pattern
provided by a library pattern that we obtained from Constantine
and Lockwood [9]. Summarizing these results:

1. The number of correct interactions identified (Y) = 31 out
of 66 total correct interactions or 47% (i.e. 53% were
incorrect).

2. The number of completely correct EUC interactions (all
Ys) = 1 out of 11 or 9.1%

3. The average time taken to accomplish the EUC
development task was 11.2 minutes. The longest time taken
was about 25 minutes and the shortest time taken was
about 5 minutes, so there was significant variability in the
time taken.

Table 1. EUC extraction study results

Based on these results, participants were more likely to generate
incorrect EUC interactions than correct ones, and very unlikely
(9.1%) to produce a completely correct EUC. All except one of
the participants failed to identify some of the essential interactions
present in the natural language requirements; many failed to
assemble these into an appropriate interaction sequence; and only
one (participant 7) managed to obtain a solution the same as or
very similar to the model answer of the “getting cash” scenario of
Constantine and Lockwood. The root cause of most problems was
that participants tended to incorrectly determine the required level
of abstraction for their essential interactions (the user intentions
and system responsibilities of the EUC model). The study also
demonstrates that it is quite time consuming for participants as
they need to figure out appropriate keywords that describe each
abstract interaction and to organize these into an appropriate
sequence of user intentions and system responsibilities. We can
see that there is considerable variation in time taken and the
longest time taken also does not ensure the correctness of the

answer. For example the participant who took the longest (25
minutes) to accomplish the task only provided 1 correct essential
interaction characterization out of 6, a poor result, while one of
the better participants took only 5 minutes to produce 4 out 6
correct interactions. Our survey thus supports the anecdotal
findings reported in [3] with more quantitative evidence.

3. OUR APPROACH
We were quite surprised by the results in section 2. Many of the
participants were experienced industry and academic requirements
modelers and all were familiar with and most experienced with
using UML use case modeling. Given this background, we
expected much more accurate modeling of the example
requirements using the EUC technique. This study, while being
quite small in nature, does support previous claims about the
challenges in extracting natural language requirements into EUC
models [3]. This has provided us with the motivation to develop
an approach and supporting tool with which to enable
requirements engineers to extract accurate EUC abstract
interactions automatically from textual natural language
requirements.
Key research questions we had included:

• Existing Natural Language Processing (NLP)-based tools to
convert textual requirements into models are often limited in
terms of interactivity, the structure of the derivative models
produced and the quality of the extracted models. Can a
lighter-weight extraction process be adopted that considers
the target EUC-based requirements representation model
and/or requirements domain to provide an accurate
abstraction of text requirements to essential interactions?

• Can this extraction technique be embodied in a tool that
allows requirements engineers to extract essential
interactions from textual requirements quickly and
accurately, refine the extracted interactions, visualize the
interactions as EUC models, and make changes to the
models and/or textual requirements, keeping these
consistent?

• Do target users evaluating this EUC requirements extraction
tool find it assists the extraction of EUC models and the
improvement in quality of both the extracted models and the
textual natural language requirements?

In determining our approach to this, we decided NOT to use a
heavy-weight Natural Language Processing (NLP) tool and
formal method technique to do this extraction. This is based on a
number of studies showing both the difficulty in doing this is and
that the results of such an approach are often imprecise and
inconsistent [11],[12],[13]. While our approach described here
does not itself employ heavy-weight NLP it also does not preclude
using such techniques to augment our tool in future.
Instead of using conventional NLP-based approaches we adopted
a more domain specific approach. Extracting EUC essential
interactions from natural language text constrains the problem
domain to a set of suitable interaction descriptions. This meant we
chose to develop a library of “proven” essential interactions
expressed as textual phrases, phrase variants and limited regular
expressions. This library of abstract interaction patterns was
developed from a collection of such patterns previously identified
by Constantine and Lockwood [9], Biddle et.al. [3] and also
patterns that were developed by us and which together are
applicable across various domains.

Answers Can
dida
te Identif

y user
Verify
identit

y

Offer
choices

Choos
e

Dispen
se

cash

Take
cash

Time
taken
(minu
tes)

1 x x x Y Y Y 9

2 Y x Y Y Y x 5

3 x x y x Y x 10

4 x x x Y Y x 7

5 x Y x x Y x 10

6 x x x Y Y x 7

7 Y Y Y Y Y Y 20

8 Y x x Y Y x 10

9 Y Y Y x x x 10

10. x x x x Y x 25

11. Y Y x x x Y 10

 5 6 4 7 4 7 6 5 9 2 3 8 123

Average time:123/11=11.2

257

Each essential interaction pattern in the library was also
associated with a collection of alternative sequences of textual
requirement phrases that could match to the pattern. Each of these
sequences relates to a more concrete version of the abstract
interaction pattern. The textual natural language requirements
were then analyzed by matching against the concrete versions
looking for a good match. Abstraction could then be undertaken
by instantiating an instance of the more abstract interaction
pattern associated with the concrete one. The matching process
used is similar to the process of keyword searching. Collectively
this provides a more lightweight approach to analyze the natural
language requirements than NLP approaches but which is able to
provide a set of meaningful abstract interactions to the
requirements engineer. The abstract interaction patterns can be
added to in order to improve our ability to recognize essential
interactions in textual natural language requirements. We can also
segment the library into different patterns for different application
domains as patterns are also commonly used for expressing
reusable design. By using the patterns, the user will be more likely
to get the outcomes right and sensible EUCs. This is as opposed to
the results from the preliminary study reported in Section 2. where
most users tend to provide wrong answers rather than right
answers.
After extracting a set of candidate essential interaction phrases
and assembling these into a candidate sequence of abstract
interactions, the requirements engineer is presented with this list
of interactions with the original textual natural requirements
juxtaposed on the screen. The engineer can then select abstract
interactions and see the natural language text these were derived
from or vice versa. The engineer can move interactions and add or
delete interactions. Limited update of the natural language text is
also supported: the engineer can modify the natural language text
and see the impact on the re-extracted essential interactions. An
Essential Use Case visualization is also provided conforming to
Constantine and Lockwood’s approach. It can also be edited with
limited update of the essential interactions it is derived from and
consequently the natural language text phrases. Update of the
natural language text results in update of the extracted essential
interactions and Essential Use Case models.

3

N atura l La nguage
Requirem ents

Essent ia l u se
ca se

Requireme nts

Librar y –
essen tia l u se

cases

Ext ract ion

Highligh t;
change

2

4

1

Figure 2. Our essential interaction extraction approach.

Figure 2 illustrates this extraction/trace-forward/trace-back
process that we provide to requirements engineers. Natural
language expressed requirements (1) are fed through an
extraction process (2) which uses a library of essential interaction
phrases and expressions, producing a sequence of EUC essential
interactions (3). The engineer can select items in textual natural
language requirements of EUC interactions and see corresponding
items (4). We plan to add further analysis of the EUC

requirements using Essential Use Case patterns and support
mapping of the EUC models to other requirements models in the
next stage of our research.

4. TOOL SUPPORT
We have developed a prototype EUC essential interaction
extraction tool based on the approach we outlined in the previous
section. The idea is for requirements engineers to use the tool to
do an initial essential interaction extraction from textual natural
language requirements, producing an initial EUC model. Selecting
phrases in the textual requirements shows the resulting extracted
essential interactions. Selecting essential interaction(s) shows the
textual natural language phrase(s) the essential interactions were
derived from. This provides a traceability support mechanism
between textual natural language requirements and derived EUC
models.
The engineer can then modify the resultant EUC model and/or the
original textual natural language requirements. This includes
adding phrases and interactions, re-ordering phrases and
interactions, deleting phrases and interactions and modifying
phrase and interaction descriptive text. The engineer then re-
extracts the essential interactions and associated traceability links.
Engineers can add new essential interaction phrases to their
library or even develop different essential interaction libraries for
different problem domains. Guidelines of using the tool and the
patterns are also codified. Moreover, engineers need to have an
understanding of the Essential Use Case concept and methodology
before using the tool. The former allows our tool to improve its
extraction support for users over time and the latter allows
specific domain interaction patterns to be used.

4.1 Tool Process
The framework for extraction and trace-forward and trace-back
between the abstract interactions from the textual natural language
requirements and vice versa is illustrated in Figure 3. We use the
scenario of getting cash by [10] as an example of extracting
textual natural language requirements to Essential Use Cases. The
tracing engine searches for key textual phrases (typically verb-
noun phrases, such as “withdraw cash” or “request amount”)
contained within the library within the textual requirements.
Having identified such matching phrases, it looks for orderings of
these within the requirements that match orderings in the library
associated with particular EUC interaction specifications. For
example, in Figure 3 (1), the phrases “insert an ATM card” and
“client enters PIN” are both associated, in that order, with the
“identify self” abstract interaction. Having identified such
essential interactions, the tracing engine instantiates an instance of
the abstract interaction into the EUC model, to the right in Figure
3 and associates it with the identified key phrases in the textual
requirements. This association allows trace forward or trace back
to be supported with appropriate matching elements highlighted in
the other view when key phrases or abstract interactions are
selected. This supports both traceability between textual natural
language and EUC model elements but also assist engineers and
clients in reasoning about the quality of the requirements. For
example, phrases with missing interactions and incomplete
interaction sequences can be seen; interactions or interaction
sequences with incomplete textual phrases or ordering/structure in
natural language identified; and EUC models with inconsistencies
or incompleteness, such as missing system responses to user
requests, highlighted.

258

Figure 3. An example of performing an essential interaction extraction to a EUC model and supporting trace-forward/trace-back

Figure 4. Our Automated Tracing Tool

1

2

3

259

4.2 Tool Example
We have developed a prototype automated extraction and tracing
tool in order to reduce the time taken to generate abstract
interactions and increase the correctness level of each specific
abstract interaction. Several screen dumps of the tool in use are
shown in Figure 4. Textual natural language requirements are
written in the textual authoring tool (1). A list of corresponding
essential requirements (abstract interactions) is generated
automatically as shown in (2). Users can trace back each abstract
interaction to the corresponding textual requirements phrases as
shown in (3).

The textual natural language requirements (1) are expressed in
natural language phrases. These may be including headings,
numbered items, bullet points as well as sentences. In this
example for clarity we use a numbered list of sentences but in
general the textual natural language requirements can contain
other layout as appropriate. The requirements engineer authors
this textual natural language requirement either in our authoring
tool, an external word processor or extracts the text from an
existing document e.g. PDF, Word, and Power Point files.
The engineer then asks the tool to extract all recognized EUC
“essential interactions” expressed in the textual requirements,
using an essential interaction pattern database. The extracted
essential interactions are shown in sequence as recognized in the
text (2). Depending on the complexity of the submitted
requirements text, several EUC interaction sequences, or Essential
Use Cases, may be recognized. These can be divided up or
represented as a collection of EUCs. We used a listing of these
essential interaction phrases. These can be represented as an EUC
model with user interaction/system response divisions using
Constantine & Lockwood’s approach if desired.
Users can interact with either the textual natural language
requirement segments or the essential interactions extracted in
order to trace between the textual phrases and the essential
interactions. Essentially this provides a traceability mechanism
between each abstract interaction to the corresponding textual
natural language requirements phrases, as shown in the example

of highlighting in (3). This tracing process helps users to be able
to check for correctness, completeness and consistency of the
requirements. Phrases with missing EUC essential interactions
may be incorrect or incomplete. Phrases with too many
corresponding essential interactions may be imprecise. A
sequence of essential interactions with phrases in different parts of
the textual requirements may mean the text requirements are out
of order. A sequence of essential interactions that is incomplete or
redundant may mean the textual requirements have
inconsistencies or undue repetition.

We implemented our extraction and tracing tool in Java. We have
recently integrated this into a further prototype in Eclipse,
Marama Essential, which provides integrated textual requirements
visualization along with graphical essential interaction and EUC
visualization. An example of using this tool to trace between
textual requirements and extracted essential interaction and EUC
model elements is shown in Figure 5. This prototype was built
using our Marama meta-tools platform [28].

4.3 Essential Interactions Extraction
In order to facilitate this extraction we have developed an
interaction pattern library for storing all the essential interactions
and abstract interactions. We collected and categorized phrases
from a wide variety of textual natural language requirements
documents available to us and stored them as essential
interactions. Currently, we have collected approximately 300
phrases from various requirements domains including online
booking, online banking, mobile systems related to making and
receiving calls, online election systems, online business, online
registration and e-commerce. The collection and categorization of
the phrases are on-going. Based on these 300 phrases, we have
come up with close to 80 patterns of abstract interaction. On
average, there are 3-4 phrases or essential interactions associated
with each abstract interaction. However, some refinement on the
patterns has been done and we have currently approximately 88
patterns. The full examples of patterns are documented and we
may place this online at a later date.

Figure 5. Example of integration into a prototype Eclipse-based EUC tracing and visualisation tool, MaramaEssential.

260

For example the abstract interaction “display error’ is associated
with four different essential interactions: “display time out”,
“show error”, “display error message” and “show problem list”.
The essential interactions were not categorized based on one
scenario. They have associations with five different concrete
scenarios such as online business, e-commerce, online booking,
online banking and online voting system. This example shows that
one particular abstract interaction can be associated with multiple
concrete scenarios. On average in our interaction pattern library 3-
4 concrete scenarios are associated with one abstract interaction.
In order to store the essential interactions in the interaction pattern
library, selected phrases (“key textual structures”) are extracted
from the natural language text based on their sentence structure.
The ‘key textual structure” uses Verb-Phrases (VP) and Noun-
Phrases (NP) in the sentence structures to categorize the essential
interactions. Any phrases that follow this structure will be
acceptable as an essential interaction pattern in the interaction
library. The tree structure of the key textual structure is illustrated
in Figure 6.
The tree structure in Figure 6 shows that our library comprises
three different sentence structures based on the location of the
Verb Phrase (VP) and Noun Phrase (NP). The Noun Phrase can
contains structure elements such as Articles (ART) and Adjectives
(ADJ) or only Nouns (Noun).

Figure 6. Tree Structure for Key Textual Phrase

The three different sentence structures are;

I. Verb (V) + Noun (N) (only) e.g. request (V)
amount (N)

II. Verb (V) + Articles (ART)+ Noun (N) e.g.
issue (V) a (ART) receipt (N)

III. Verb (V) + Adjective (ADJ)+ Noun (N) e.g.
ask (V) which (ADJ) operation (N)

This key text structure aims to provide flexibility in the library’s
capability to accommodate various types of sentences containing
essential requirements. With this, a broad range of phrase options
can be extracted by the tracing engine, while still affording a
lightweight implementation using string manipulation and some
regular expression matching. To date we have performed this
essential interaction pattern library development manually. Scope
exists for semi-automating this process.

5. EVALUATION
We carried out an evaluation of our automated tracing tool in
order to compare its accuracy and performance with the manual
extractions undertaken by our original EUC extraction study
participants. In addition, these same participants were asked to use
and evaluate the automated tracing tool using the same scenario as

before. We then surveyed them to gain their perceptions of the
tool’s ease of use and utility for the extraction and tracing tasks
evaluated.

The results in Table 2 compare the accuracy of the automated
tracing tool against the previous results for manual extraction. The
tool failed to identify one of the abstract interactions (Take Cash)
but identified all others, providing an accuracy almost double that
of the participants’ average and better than all except one of the
participants. The automated extraction process took just over 1
second to execute in comparison with the 11.2 minutes average
taken by the manual study participants.
Results of the participant survey of the tool usefulness and ease of
use are shown in Figures 7a. and 7b. respectively. All eleven
participants found that the tool was either very useful (85%) or
always useful (15%) for generating and tracing the list of abstract
interaction. However, in qualitative feedback, most participants
wanted the interaction pattern library to support a broader set of
domains in the future.
Table 2. Comparison result of correctness between Manual
extraction and Automated Tracing Tool

No. Correct answers No. Wrong answers
Answers Manual

extraction
Automated

Tracing
Manual

extraction
Automated

Tracing

Identify
user

5 1 6 0

Verify
Identity

4 1 7 0

Offer cash 4 1 7 0

Choose 6 1 5 0

Dispense
cash

9 1 2 0

Take cash 3 0 8 1

Correctness
ratio

47% 83% 53% 17%

 Figure 7a. The Tool Usefulness of the Automated Tracing

All participants found the automated tracing tool to be very easy
(86.5%) or always easy (13.5%) to use. Qualitatively they stated
that the tool was easy and simple to understand but they would
have liked to have had a better user interface with a more user-
friendly design rather than the preliminary prototype they used.

Sentence

 Verb Phrase(VP) Noun Phrase (NP)

 (none)/ Noun
 Articles/Adjective

261

Most suggested that the tool could usefully be embedded within a
tool that visually displays the EUCs in order to improve usability.
They expected that such visualizations would allow them to better
understand the interaction between the user intentions and system
responsibilities in the EUC model.
The participants also evaluated the response time of the automated
tracing tool for the trace back process. All found the tool to be fast
or very fast, but noted some variation in speed with different
scenarios when they had a chance to experiment with these.

Figure 7b. The Ease of Use of the Automated Tracing Tool

To further investigate the utility of our tool, we evaluated its
accuracy when applied to 15 use case scenarios in different
domains derived from different researchers, developers and
ourselves: Online CD catalog, Cellular phone [14], Voter
registration [15] Cash withdrawal [16], Online book [17],
Checkout book (library) [18], Seminar Enrollment [9], Transfer
transaction [16], Deposit transaction [16], Assign report problem
[19], Create problem report [19], Report problem [19], Booking
room [20] and Place order [21]. The tool correctness was
evaluated by comparing the answers with the actual interaction
pattern provided in the source pattern documents that was
developed by Constantine and Lockwood [9], Biddle et al. [3]
and also with patterns that developed by us following Constantine
and Lockwood’s methodology. The evaluation results are shown
in Figure 7c.
Figure 7c. shows the correctness ratio for the automated tracing
tool for each scenario. This shows some variability across the
range of scenarios, but the average correctness across all scenarios
and interactions is approximately 80%, so the “getting cash”
scenario used in the earlier evaluation was not atypical.
The automated tracing tool does not (and cannot) produce 100%
correct answers due to the incorrectness and incompleteness issue
of textual requirements. The correctness and incompleteness
issue is related to various linguistic issues, such as phrases or
sentences using a passive pattern, parentheses existence such as
{,},[,],/,\ and grammar issues such as plural, singular, adjective or
adverb issues. These problems, however, also lead requirement
engineers to misunderstand requirements and can be one of the
reasons why different requirement engineers or users will provide
inconsistent results.
For example, our automated tracing tool did not derive a
completely correct EUC for the scenario “Getting Cash” because
of the grammar used in the sentences in the textual natural
language requirements. The phrase “receive cash” from sentence
number 11: “Client receive cash” is not readable by the tool as in

the database, it is stored as “receives cash”. This problem can be
improved either by giving guidelines to users for writing a good
requirement document or allowing the library to be expanded to
accept grammatically incorrect sentences for patterns that
correspond to common grammatical errors. Additionally, we have
experimented with using simple regular expressions in the
essential interaction pattern repository e.g. “receive{s} cash”, {}
indicating should have ‘s’ but may accept without. This however
complicates both the library phrase representation and authoring.

Figure 7c. Accuracy across different scenarios
Using our tool, requirements engineers will notice that the
“receive cash” phrase in the textual requirements does not have
any corresponding essential interaction phrase(s). Alternatively
they will see an incomplete interaction sequence between the user
and the system where no response is provided to a user
submission by the system in the EUC model extracted and
visualized. In our Eclipse-based prototype we have experimented
with adding checking for such apparent inconsistencies between
requirements text and essential interactions. This is also
complicated by textual requirements typically having portions of
text that do not correspond directly to interactions e.g. headings,
introductory or concluding remarks, comments, example
input/output data, etc.

6. RELATED WORK
There have been several areas of work done in extracting UML
use case models and other diagrams from Natural language
requirements. Fantechi et al. [22] proposed linguistic techniques
for supporting the use of semantic analysis of the use cases. Their
tool succeeds in the evaluation of the natural language
requirement, but does not support the problems related to the
requirement consistency and completeness [22]. This work also
does not deal with extracting and generating natural language
requirement to the correct level of abstraction needed for an
Essential Use Case model.

Harmain and Gaizaukas [23] developed a tool called CM-Builder
to assist the analyst in an Object oriented environment by having a
Natural language Processing technique that is able to analyze
textual requirements written in English. An initial UML class
diagram is extracted from the object classes that are described in
the textual requirement. There are a number of limitations for this
tool such as: the limited style of linguistic analysis and the limited
beneficial generic knowledge used in interpreting the software
requirement text; the grammar and lexicon are not adaptive, not
extracting the dynamic aspect of a system, and no graphical
CASE is integrated to this tool [23] . This tool is different from

262

our work as it is using NLP techniques in handling the natural
language requirement as opposed to our lightweight approach.
Ilieva and Ormandjieva [24] proposed a methodology to process
natural language requirements and map them automatically to an
OO analysis model. The extracted requirement is presented in a
tabular form and then transformed to the semantic network which
able to be translated to an OO model (class diagram) [24]. The
concept of this work is similar to our work as they are also
processing natural language requirements and then transforming
the requirements into a model. The differences are in terms of the
technique used and the representational model that they are
transforming to. We generate abstract interactions for an EUC
model but they are transforming the requirement to a semantic
network diagram and then a class diagram. They do not attempt to
support consistency between model and the natural language.
In addition to extracting UML diagrams from natural language
requirements, EUCs can also be used to capture or elicit
requirements written in natural language. Using Essential Use
cases (EUC) is actually not new and has been applied by some
researchers in limited domains. For example, Gelperin [25] has
used the Essential Use Case for analyzing and testing
requirements. Gelperin agrees that EUCs effectively support user
interface design [25]. He applied EUCs for checking the precision
of use case. In addition, Patricio et al. [26] have used essential use
cases for designing multiplatform services. They mention that the
association between the identified essential use cases and the
experience requirements is beneficial to understanding customer
preferences. Although, EUC modeling helps in identifying areas
of interaction that need to be improved together with the
information which provides the concrete and objective guideline
[26] for the work, all of this is done manually without any tool
support.
 Biddle et al.[27] believe that EUCs provide a good reusable
requirements approach and they have developed a tool called
UKASE, a web based use case management tool, in order to
support reusability of EUCs. Guidelines and a glossary are
provided for reusable use cases by exploring the requirements
pattern. This tool supports the reuse of use cases, but just provides
templates for users to key in the abstract interaction and does not
generate the abstract interaction and EUC diagram automatically.
In [3] Biddle et.al. provide a set of styles or patterns to follow
when writing EUCs. One of the objectives of this paper is to help
the user to write good EUCs quicker. However these researchers
stated that the patterns need further development. This work also
does not use any tool support and it is done by investigation and
discussion based on a few scenarios. The drawbacks of this work
are small and incomplete patterns for the essential and abstract
interactions. We have tried to overcome the problem by
developing an interaction pattern library that comprises a broader
set of essential interaction patterns and abstract interaction. Our
work also concentrates on developing a tool support for
generating the abstract interaction automatically.

7. CONCLUSION
In this paper we have discussed the motivation for using essential
use cases (EUC) to help model and structure textual natural
language requirements. We have also identified some of the
problems faced by requirements engineers and end users while
using the EUC approach. A preliminary study of requirements
engineers indicated they face problems in identifying essential

interactions, sequencing these interactions, and using common
name and phrase structures to describe them. They also have
difficulty in tracing forwards and backwards between natural
language and EUC expressed requirements.

We developed a prototype EUC essential interaction extraction
and tracing tool. The key aims of our tool were to support EUC by
extracting the essential requirements (abstract interactions)
automatically and facilitate tracing between EUC and textual
natural language requirements to assist engineers in identifying
and managing inconsistencies and incompleteness. Another aspect
of our research involved the collection and categorization of
terminology for the library of abstract interactions. This both
assists in structuring EUC expressed requirements using common
terminology and also helps prevent the textual requirements from
being vague and error-prone by tracing back from the EUC
structured representations to the natural language text phrases.
We evaluated our prototype tool using the same group of
participants as we used for the manual extraction survey. The
participants evaluated the tool usefulness and ease of use with
promising results. This confirms other researchers’ claims about
the importance of having tool support for engineers working with
EUC models. Our results found that such an automated extraction
and tracing tool appears to increase the ratio of correctness in
extracting EUC requirements from textual natural language
requirements and eases the effort of users or requirements
engineers in handling the EUC, significantly reducing the time
taken to develop EUC models from textual natural language
requirements.
As part of our future work we are embedding our extraction
approach into an integrated EUC Diagram tool (Marama
Essential) developed using the Marama meta tool [28] as shown in
Figure 5. This will enable users to generate and maintain the
consistency of visual EUC models automatically from lists of
abstract interaction. As shown in Table 2, our tool cannot
guarantee correctness due to linguistic issues and common
incorrectness and incompleteness of textual requirements. In order
to overcome these problems, a glossary and template authoring
support will also be embedded in the tool to assist improved
natural language-based requirements authoring and update. We
will also try considering a pre-processing phase where all
different forms can be unified. We want to add additional support
for inconsistency, incompleteness and redundancy detection using
our extraction approach and round-trip engineering of natural
language and EUC model requirements. We plan to explore a
complementary approach using a composite EUC pattern template
library to assist with this. As mentioned in section 2, the EUC
requirements modeling approach opens up a fruitful research
direction involving the consistency issue of requirements and
design, encouraging engineers to check the consistency of
requirements using this representation later. We plan to explore
relating EUCs to further artefact views including generating UI
and OO design models in our Eclipse prototype, with round-trip
engineering support to consistency with textual natural language
requirements.

8. ACKNOWLEDGEMENTS
This research is funded by the Ministry of Higher Education
Malaysia (MOHE), Universiti Teknikal Malaysia Melaka (UTeM)
the PReSS Account of the University of Auckland and the FRST
Software Process and Product Improvement project.

263

9. REFERENCES
[1] Brown, D. W. An Introduction to Object- Oriented Analysis

object and UML in Plain English. John Wiley& Sons, Inc,
New York, 2002.

[2] Constantine, L. L. Essential modeling: use cases for user
interfaces interactions, 2, 2 1995, 34-46.

[3] Biddle, R., Noble, J. and Tempero, E. April 2000.Pattern
for Essential Use Cases. Technical Report. Victoria
University of Wellington at Wellington, New Zealand.

[4] Susan, L. 1999. Use Case Pitfalls: Top 10 Problems from
Real Projects Using Use Cases. In Proceedings of the
Proceedings of the Technology of Object-Oriented
Languages and Systems (Santa Barbara, California 1999).
IEEE Computer Society, Washington, DC, USA, 465 -
466.DOI=http://doi.ieeecomputersociety.org/10.1109/TOO
LS.1999.787547

[5] Sindre, G. and Opdahl, A. L. "Eliciting security
requirements with misuse cases", Journal of Requirements
Engineering, 2005.

[6] Cockburn, A. "Structuring use cases with goals", Journal of
Object-Oriented Programming, 1997.

[7] Biddle, R., Noble, J. and Tempero, E. "Essential use cases
and responsibility in object-oriented development",
Australian Computer Science Communications, 2002.

[8] Kaindl, H., Constantine, L., Pastor, O., Sutcliffe, A. and
Zowghi, D. 2008. How to Combine Requirements
Engineering and Interaction Design? In 16th IEEE
International Requirements Engineering Conference
(Barcelona, Catalunya, Spain, 2008),Re'08, IEEE Computer
Society, Washington, DC, USA, 299-
301.DOI=http://doi.ieeecomputersociety.org/10.1109/RE.20
08.59

 [9] Constantine, L. L. and Lockwood, A. D. L. Software for
use: a practical guide to the models and methods of usage-
centered design. ACM Press/Addison-Wesley Publishing
Co., 1999.

[10] Constantine, L. L. and Lockwood, A. D. L. Structure and
style in use cases for user interface design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[11] Vinay S, Aithal S, Desai. P 2009 An Approach towards
Automation of Requirements Analysis. In Proceeding of
International Multi Conference of Engineers and Computer
Scientists.(Hong Kong, 2009) IMEC'09, IAENG, 1080-
1085.

[12] Haruhiko, K. and Motoshi, S 2005. Ontology Based
Requirements Analysis: Lightweight Semantic Processing
Approach. In Proceedings of the Fifth International
Conference on Quality Software (Melbourne, Australia,
2005). QSIC'05, IEEE Computer Society, Washington, DC,
USA,223-.230.
DOI=http://dx.doi.org/10.1109/QSIC.2005.46.

 [13] Gnesi S, L. G., Trentanni G, Fabbrini F, Fusani M "An
automatic tool for the analysis of natural language
requirements." In International Journal of Computer
Systems Science & Engineering, 2005.

[14] Litvak, B., Tyszberowicz, S. and Yehudai, A 2003.
Behavioral consistency validation of UML diagrams. In
Proceedings of First International Conference on Software
Engineering and Formal Methods,(Brisbane, Australia,
2003), SEFM'03, IEEE Computer Society, Washington, DC,

USA.118125,DOI=http://doi.ieeecomputersociety.org/10.11
09/SEFM.2003.1236213

[15] Some.S.S.2005. Use Cases based Requirements Validation
with Scenarios. In Proceedings of the 13th IEEE
International Conference on Requirements Engineering,
(Minnepolis/St Paul, Minnessota, USA, 2005). RE'05, IEEE
Computer Society Washington, DC, USA,
http://doi.ieeecomputersociety.org/10.1109/RE.2005.75

 [16] Bjork R.C., Use Cases for Example ATM System,1998.
http://www.math.cs.gordon.edu/courses/cs320/ATM_Exam
ple/UseCases.html

[17] Glinz, M. A lightweight approach to consistency of
scenarios and class models. In Proceeding Fourth
International Conference on Requirements
Engineering,(Schaumburg, Illinois, June19-23 2000)
(ICRE'00), IEEE Computer Society Washington, DC, USA,
pp.49.DOI=http://doi.ieeecomputersociety.org/10.1109/ICR
E.2000.855584

[18] Sendall. S, LBB System Use Case: check-out books, 2001.
http://lgl.epfl.ch/research/fondue/case-studies/lbb/uc-check-
out-books.htm

[19] Horton,T. Example Use Cases for PARTS. 2009.
http://www.cs.virginia.edu/~horton/cs494/examples/parts/us
ecases-ex1.html

[20] Kim, J., Park, S. and Sugumaran, V. "Improving use case
driven analysis using goal and scenario authoring: A
linguistics-based approach." Journal of Data & Knowledge
Engineering, 2006.

[21] OpenSRS,Scenarioexamples,
http://www.opensrs.com/resources/documentation/sync/scen
arioexamples.htm

 [22] Fantechi, A., Gnesi, S., Lami, G. and Maccari, A.
"Applications of linguistic techniques for use case analysis."
Journal of Requirements Engineering, 2003.

[23] Harmain, H. M. and Gaizauskas, R. "CM-Builder: A
Natural Language-Based CASE Tool for Object-Oriented
Analysis." Journal of Automated Software Engineering,
2003.

[24] Ilieva, M. G. and Ormandjieva, O. 2005 Automatic
Transition of Natural Language Software Requirements
Specification into Formal Presentation. In Natural Language
Processing and Information Systems, Ed Springer-Verlag,
Alicante, Spain, pp. 392-397. DOI= 10.1007/b136569.

[25] Gelperin.D, Precise Use Case, 2004. www.livespecs.com.
[26] Patricio,L., Cunha, J., Fisk, R. and Pastor, O. 2003.

Essential Use Cases in the Design of Multi-channel Service
Offerings — A Study of Internet Banking.In Web
Engineering, Ed Springer-Verlag, Oviedo, Spain, 199-
206.DOI= 10.1007/3-540-45068-8.

[27] Biddle, R., Noble, J., & Tempero, E. (2002). Supporting
Reusable Use Cases. In Software Reuse: Methods,
Techniques, and Tools, Ed Springer-Verlag, London, UK
135-138.

[28] Grundy,J.C., Hosking, J.G. Huh, J. and Li, N.
2008.Marama: an Eclipse meta-toolset for generating multi-
view environments. In Proceedings of the 30th international
conference on Software Engineering, (Liepzig, Gertmany,
2008), ICSE’08, ACM Press,New York,NY,USA,819-822,
http://doi.acm.org/10.1145/1368088.1368210

264

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

