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Abstract. The main result of this paper states that the isomorphisil@no for w-automatic trees of
finite height is at least has hard as second-order arithrmetitherefore not analytical. This strengthens
a recent result by Hjorth, Khoussainov, Montalban, ancsNiKMNO8] showing that the isomorphis-
m problem forw-automatic structures is not s . Moreover, assuming the continuum hypotheiis,

we can show that the isomorphism problemdoeautomatic trees of finite height is recursively equiva-
lent with second-order arithmetic. On the way to our maimnitsswe show lower and upper bounds for
the isomorphism problem for-automatic trees of every finite height: (i) It is decidabl&)tcomplete,
resp.,) for height 1 (2, resp.), (ilY{ -hard and inl7; for height 3, and (iii)l/7,;_ ;- and X} _5-hard and

in I3, _4 (assumingCH) for all heightn > 4. All proofs are elementary and do not rely on theorems
from set theory.

1 Introduction

A graph is computable if its domain is a computable set of i@htiumbers and the edge relation is com-
putable as well. Hence, one can compute effectively in t@lyrOn the other hand, practically all other
properties are undecidable for computable graphs (earhsbility, connectedness, and even the existence
of isolated nodes). In particular, the isomorphism probiehighly undecidable in the sense that it is com-
plete for>{ (the first existential level of the analytical hierarchy [8@]); see e.g. [CK06,GKO02] for further
investigations of the isomorphism problem for computabiectures. These algorithmic deficiencies have
motivated in computer science the study of more restrid@sbses of finitely presented infinite graphs. For
instance, pushdown graphs, equational graphs, and prefigmnezable graphs have a decidable monadic
second-order theory and for the former two the isomorphisoblpm is known to be decidable [Cou89]
(for prefix recognizable graphs the status of the isomorpipisoblem seems to be open).

Automatic graphs [KN95] are in between prefix recognizalsld aeomputable graphs. In essence, a
graph is automatic if the elements of the universe can beesepted as strings from a regular language
and the edge relation can be recognized by a finite state atwomvith several heads that proceed syn-
chronously. Automatic graphs (and more general, autorstatictures) received increasing interest over the
last years [BG04,IKR02,KNRS07,KRS05, Rub08,BGR11]. Ohthe main motivations for investigating
automatic graphs is that their first-order theories can loéddd uniformly (i.e., the input is an automatic
presentation and a first-order sentence). On the other Hamsomorphism problem for automatic graphs
is X1-complete [KNRS07] and hence as complex as for computabiehgr(see [KL10] for the recursion
theoretic complexity of other natural properties of auttiomgraphs).

In our recent paper [KLL11], we studied the isomorphism peabfor restricted classes of automatic
graphs. Among other results, we proved that: (i) the isorisrp problem for automatic trees of height
at mostn > 2 is complete for the levelld, . of the arithmetical hierarchy, (i) that the isomorphism
problem for well-founded automatic order trees is recalgiequivalent to true arithmetic, and (iii) that
the isomorphism problem for automatic order treesUiscomplete. In this paper, we extend our tech-
nigues from [KLL11] tow-automatic treesThe class ofv-automatic structures was introduced in [Blu99];
it generalizes automatic structures by replacing ordiffiaite automata by Biichi automata anwords.

In this way, uncountable graphs can be specified. Some reesuits onw-automatic structures can be

* The second and third author were supported by the DFG rdspavject GELO.



found in [KLO8, HKMNO08, KRB08, Kus10]. On the logical side,amy of the positive results for automat-
ic structures carry over t@-automatic structures [Blu99, KRB08]. On the other hand,ifomorphism
problem ofw-automatic structures is more complicated than that ofraati structures (which i}-
complete). Hjorth et al. [HKMNO8] constructed twoe-automatic structures for which the existence of
an isomorphism depends on the axioms of set theory. Usinge®dield’s absoluteness theorem, they in-
fer that isomorphism ofs-automatic structures does not belong¥te. The extension of our elementary
techniques from [KLL11] tav-automatic trees allows us to show directly (without a “detdhrough set
theory) that the isomorphism problem forautomatic trees of finite height is not analytical (i.e.edmot
belong to any of the levelX'!). For this, we prove that the isomorphism problemdeautomatic trees of
heightn > 4 is hard for both levels! _, andII}! . of the analytical hierarchy (our proof is uniformeir).

A more precise analysis moreover reveals at which heighthneplexity jump forw-automatic trees oc-
curs: For automatic as well as forautomatic trees of height 2, the isomorphism probleiid fscomplete
and hence arithmetical. But the isomorphism problemufeautomatic trees of height 3 is hard fof}
(and therefore outside of the arithmetical hierarchy) e/tile isomorphism problem for automatic trees of
height 3 isII9-complete [KLL11]. Our lower bounds fas-automatic trees even hold for the smaller class
of injectively w-automatic trees.

We prove our results by reductions from monadic secondr@fidgments of) number theory. The first
step in the proof is a normal form for analytical predicafdse basic idea of the reduction then is that a
subsetX C N can be encoded by anrword wx over{0, 1}, where thei-th symbol is1 if and only if
1 € X. The combination of this basic observation with our techaifrom [KLL11] allows us to encode
monadic second-order formulas oV&Y, +, x ) by w-automatic trees of finite height. This yields the lower
bounds mentioned above. We also give an upper bound fordheigphism problem: fop-automatic trees
of heightn, the isomorphism problem belongsig,, ,. While the lower bound holds in the usual system
ZFC of set theory, we can prove the upper bound only assumingditiad the continuum hypothesis. The
precise recursion theoretic complexity of the isomorphisoblem forw-automatic trees remains open, it
might depend on the underlying axioms for set theory.

Related work Results on isomorphism problems for various subclassesitofratic structures can be
found in [KNRSO07, KRSO05, KLL11, Rub04]. Some completenessults for low levels of the analytical
hierarchy for decision problems on infinitary rational tedlas were shown in [Fin09]. In [FT10], it was
shown that the isomorphism problems foitree-automatic boolean algebras, (commutative) ringd, a
nilpotent groups of class > 1 neither belong ta”} nor toI7..

2 Preliminaries

LetN; = {1,2,3,...} be the set of naturals witho0t With 7 we denote a tuplézy, . . . , x,,) of variables,
whose lengthn does not matter.

2.1 The analytical hierarchy

In this paper we follow the definitions of the arithmeticatlaamalytical hierarchy from [Odi89]. In order
to avoid some technical complications, it is useful to edeldiin the following, i.e., to consider subsets of
N,. In the following, f; ranges over unary functions &, X; over subsets d, , andu, z,y, z, x, . ..
over elements oV, . The classy? C 28+ is the collection of all setgl C N of the form

A:{,’EEN+ | (N7+7X) ):Eyl vaerILayivay;ﬂ@(xaylaayyllay72m7y:zn)}a

where@ =V (resp.QQ = 3) if n is even (resp. odd) and is a quantifier-free formula over the signature
containing+ and x. The clasg1? is the class of all complements aF sets. The classes!, 1710 (n > 1)
make up tharithmetical hierarchy

The analytical hierarchy extends the arithmetical hidrg@nd is defined analogously using function
quantifiers: The clas&! C 2"+ is the collection of all setgl C N of the form

A:{IGNJF | (N,—F,X) ':Eflvaan(p(Iaflavfn)}a (1)
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Fig. 1. The analytical hierarchy

where@ = V (resp.Q = 3J) if n is even (resp. odd) angd is a first-order formula over the signature
containing+, x, and the functiongs, ..., f,. The clasdI} is the class of all complements &f’ sets.
The classes}, IT} (n > 1) make up thenalytical hierarchy see Figure 1 for an inclusion diagram. The
class ofanalytical set$ is exactlylJ,~, X.. An example of a non-analytical set is the set of all second-
order sentences that are trugW, +, x) (the second-order theory @R, +, x)).

As usual in computability theory, a Gdodel numbering of alltB objects of interest allows to quantify
over, say, finite automata as well. We will always assume autimbering without mentioning it explicitly.

2.2 Bichi automata

For details on Biichi automata, see [GTW02, PP04, Tho9T]I Uee a finite alphabet. With™* we denote
the set of all finite words over the alphaldétThe set of all nonempty finite words I$™. An w-word over
I'is an infinite sequence = ajaqas - - - with a; € I'. We setw[i] = a; fori € N,.. The set of all--words
over[ is denoted by ™.

A (nondeterministic) Buchi automatonis atuple = (Q, I, A, I, F), whereQ is a finite set of states,
I,F C @ are resp. the sets of initial and final states, ahdC Q x I" x Q is the transition relation. If
I' = X for some alphabel, then we refer tal/ as anmn-dimensional Bchi automaton ovel'. A run
of M on anw-wordw = ajasas - -- is anw-wordr = (q1, a1, q2)(q2, a2, q3)(gs, as,qs) - - - € A such
thatq, € 1. The runr is acceptingf there exists a final state froifi that occurs infinitely often im. The
languagel.(M) C I'* defined byM is the set of allv-words for which there exists an accepting run. An
w-languagel. C I'“ is regular if there exists a Buichi automataW with L(M) = L. The class of all
regularw-languages is effectively closed under boolean operatiadsrojections.

Forw-wordsws, .. .,w, € I'*, theconvolutionw; ® we ® - -- @ w,, € (I'"™)* is defined by

w1 QW ® - @wy = (wr[l], ..., wu[1])(w1]2],. .., wn[2])(w1[3], ..., wa[3]) - .

Forw = (wy,...,w,), we write®(w) forw; ® - - - ® wy,.

An n-ary relationR C (I'“)" is calledw-automaticif the w-languagex R = {®(w) | w € R} is
regular, i.e., it is accepted by somedimensional Biichi automaton ovér. We denote withR(M) C
(I')™ the relation defined by am-dimensional Buchi-automaton over the alphabet

To also define the convolution of finite words (and of finite d@wwith infinite words), we identify a
finite wordu € I'* with thew-worduo“, whereo is a new symbol. Then, far,v € I'*,w € I'“, we write
u ® v for thew-wordu o* Qvo¥ andu ® w (resp.w ® ) for u o Rw (resp.w ® uo®).

2.3 w-automatic structures

A signatureis a finite setr of relational symbols together with an aritgy € N, for every relational
symbolS € 7. A 7-structureis a tupleA = (A, (S*)se-), WwhereA is a non-empty set (theniverseof

A) andS4 C A™s. When the context is clear, we dendté with S, and we writen € A for a € A. Let

E C A2 be an equivalence relation oh ThenFE is acongruencen A if (uy,v1),..., (Ung,vns) € F

and(uq,...,upg) € Simply (vi,...,v,4) € Sforall S € 7. Then thequotient structured/E can be
defined:

4 Here the notion ofinalytical setds defined for sets of natural numbers and is not to be confuitbcthe analytic
setsstudied in descriptive set theory [Kec95].



— The universe ofd/ E is the set of allE-equivalence classés]| for u € A.
— The interpretation of' € 7 is the relation{ ([u1], . . ., [ung]) | (u1,...,ung) € S}.

Definition 2.1. Anw-automatic presentatiasver the signature is a tuple
P = (Fa Ma MEa (MS)SET)
with the following properties:

— I'is afinite alphabet.

— M is a Bichi automaton over the alphabEt

— ForeveryS € 7, Mg is anng-dimensional Bchi automaton over the alphabBt

— M= is a 2-dimensional Bchi automaton over the alphabét such thatR(M=) is a congruence
relation on(L(M), (R(Ms))ser)-

Ther-structure defineBly thew-automatic presentatiof? is the quotient structure
S(P) = (L(M), (R(Ms))ser)/R(M=) .

If R(M=) is the identity relation o™, then P is calledinjective A structureA is (injectively) w-
automaticif there is an (injectivelylw-automatic presentatio® with A = S(P). In [HKMNO8] it
was shown that there existautomatic structures that are not injectivelyautomatic. We simplify our
statements by saying “given/compute an (injectivelygutomatic structurel” for “given/compute an (in-
jectively) w-automatic presentatioR of a structureS(P) = A”. Automatic structureBKN95] are defined
analogously tav-automatic structures, but instead of Blichi automatanamgi finite automata over finite
words are used. For this, one has to pad shorter stringshégthadding symbal when defining the convo-
lution of finite strings. More details an-automatic structures can be found in [BG04, HKMNO08, KRB08]
In particular, a countable structuredsautomatic if and only if it is automatic [KRBO8].

Let FO[3%0, 32™°] be first-order logic extended by the quantifigs: ... (x € {Xo,2%}) saying that
there exist exactly manyx satisfying. . .. The following theorem lays out the main motivation for iave
tigatingw-automatic structures.

Theorem 2.2 ([Blu99, KRB08]).From anw-automatic presentation
P = (Fa M, MEa (MS)SET)

and a formulap(z) € FO[F0, 32%] in the signaturer with » free variables, one can compute @dhi
automaton for the relation

{(a1,...,an) € L(M)" | S(P) = ¢([ai], [az], - - -, [an])} -
In particular, theFO[3*0, 32%] theory of anyv-automatic structured is (uniformly) decidable.

In this paper, @raphis a setV together with a binary relatioll C V x V. If every node of the graph
G = (V, E) has at most successors, the graph has out-degtee If G has out-degree ¢ for some
¢ € N, thenG hasfinite out-degree

We will use the following decidability result fas-automatic graphs:

Theorem 2.3. It is decidable whether ann-automatic graph has finite out-degree.

Proof. Let P = (I', M, M=, M) be arw-automatic presentation of the gragh= (V, E). We define the
set
Vi = {(u,v) € I'* x I'* | |u| = |v], wv® € L(M)}

and the binary relations™ and £fi» on Vfin:

(u1,v1) =fin (ug,v2) <= |u1| = |uz| and(uivy,ugvy’) € R(Mz=)

(u1,v1) B (ug,v) <= |u1| = |ua| and(uiv?, ugvy) € R(Mp)



Then it is easily seen that the gragh® = (Vfin, Efin) /=fin js effectively automatic.
Letc € N and define

Le={(z,y1,...,9.) € LM)"T¢ | V1 <i<c:([z],[ys]) € E
andvl <i <j <c:([yil,[y;]) ¢ R(M=)}.

By Theorem 2.2, the relatioh, is effectivelyw-automatic.

ThenG does not have out-degreec iff L. # ). Since® L. is regular, this is the case iff there exists
some ultimately periodic word i® L., i.e., iff there are finite words, v, uy, vy, .. ., uc, v, all of the same
length with

(wo®, urvf, ..., u0%} € L.

But this is equivalent to
V1 <i<c:(u,v) E™ (u,v;) andvl <i < j <ec:(ui,vi) 2™ (uj,0;).

Equivalently, there is a node in the automatic gréptt with at leasic successors, i.eGi" does not have
out-degree< c.

HenceG has finite out-degree if;™™ has finite out-degree. But this is decidable by [Kus11, Cpr. 1
sinceGt" is effectively automatic. a

Definition 2.4. LetK be a class ofo-automatic presentations. Thigmorphism problertso(K) is the set
of pairs (P, P») € K? of w-automatic presentations froid with S(Py) = S(P,).

If S; andS, are two structures over the same signature, we wiite) S, for the disjoint union of the
two structures. We us8” to denote the disjoint union @f many copies of the structut® wherex is any
cardinal.

The disjoint union as well as the countable or uncountabhespof an automatic structure are effective-
ly automatic, again. In this paper, we will only need thisgedy (in a more explicit form) for injectively
w-automatic structures.

Lemma 2.5. Let P, = (I', M, ML, (M%)se-) be injectivelyw-automatic presentations of structurSs

fori € {1,2}. One can effectively construct injectivelyautomatic copies af; W Ss, S{‘“, andSl2N0 such
that

— The universe of the injectively-automatic copys of S; WS, equalsL(M*)UL(M?) and the relations
are given byS® = R(M}) U R(M2) providedL(M*) and L(M?) are disjoint.

— The universe of the injectively-automatic copyS of S}° is $* @ L(M') where$ is a fresh symbol.
For i € N, the restriction ofS to {$’} @ L(M*) forms a copy 08;.

— The universe of the injectively-automatic copys ofoR“ is {$1, %2}« ® L(M?') where$; and$, are
fresh symbols. Fow € {$;, $2}*, the restriction ofS to {w} ® L(M*) forms a copy of;.

2.4 Trees

A forestis a partial ordef = (V, <) such that for every: € V, the set{y | y < z} of ancestors of:
is finite and linearly ordered by.. Thelevelof a nodex € Vis |{y | y < z}| € N. Theheightof F' is
the supremum of the levels of all nodeslh it may be infinite. Note that a forest of infinite height can
be well-founded, i.e., all its paths are finite. In this payweronly deal with forests dinite height For all
u € V, F(u) denotes the restriction df to the sef{v € V' | u < v} of successors af. We will speak of
thesubtree rooted at. A treeis a forest that has a minimal element, calledrt@. For two forests, F»
we denote withF} W F; there disjoint union. For a set of foresiswe write |4 F for the disjoint union
of all forests inF; it is again a forest. For a single foreBtand a cardinak we write F'* for the forest
that consists ok many disjoint copies of". We use the following simple fact: L&T;);cr and(U;) e
be two families of trees and letbe an infinite cardinal which is greater than the cardinality and.J.
There may exist # j with T; = T; and similarly for the family(U; ) jc;. Let the forestF’ (resp.G) be



the disjoint union of all thel; (resp.U;). ThenF* = G* ifand only if (vi € I35 € J : T; = U; and
Vi e J3iel:T;=U,), ie., the two families contain the same isomorphism tygfe¢eees.

For a forestt" andr not belonging to the domain df, we denote with- o F' the tree that results from
addingr to F as a new root. Thedge relationE of the forestF is the set of pair§u,v) € V2 such
thatu is the largest element ific | < v}. Note that a foresF’ = (V, <) of finite height is (injectively)
w-automatic if and only if the graptV, E) (whereE is the edge relation af) is (injectively)w-automatic,
since each of these structures is first-order interprefalitee other structure. This does not hold for trees
of infinite height. For any node € V', we useE (u) to denote the set of children (orimmediate successors)
of u.

We useT,, (resp.7,!) to denote the class of (injectively)}automatic presentations of trees of height at
mostn. Note that it is decidable whether a giverautomatic presentatioR belongs ta7,, and7,}, resp.,
since the class of trees of height at mestan be axiomatized in first-order logic. Also the clags. ; 7,
of w-automatic presentations of trees of finite height is ddilieta -

Theorem 2.6. For a givenw-automatic treel’, one can decide whethét has finite height.

Proof. LetT = (V, <). ThenT has finite height if and only if there exists a constamt N such that for
everyu € V there are at mostmanywv with v < w. This is decidable by Theorem 2.3. a

3 w-automatic trees of height 1 and 2

Forw-automatic trees of height 2 we need the following result:

Theorem 3.1 ( [KRBO08]).Let .4 be anw-automatic structure and lep(z1, ..., z,,y) be a formula of
FO[3®0,32"]. Then, for allas, . .., a, € A, the cardinality of the sefb € A | A = o(ay,...,an,b)}
belongs tdN U {X, 2% 1.

Theorem 3.2. The following holds:

— The isomorphism probleiso(7;) for w-automatic trees of height 1 is decidable.
— There exists a tre& such that{ P € 7, | S(P) = U} is I19-hard. The isomorphism problerfs(7z)
andlso(73) for (injectively)w-automatic trees of height 2 aé{-complete.

Proof. Two trees of height 1 are isomorphic if and only if they have $ame size. By Theorem 3.1, the
number of elements in an-automatic treeS(P) with P € 7 is either finite X, or 2% and the exact size
can be computed using Theorem 2.2 (by checking successiakdjty of the sentences*x : x = z for
keNU {No, 2N0}5).

By [KLL11], there is a countable tre€ of height2 such that the set of automatic presentations @
IIY-hard. Since, from an automatic presentatifrone can construct an-automatic presentatioR with
S(P’) = S(P), the set ofw-automatic presentations of (and therefore the isomorphism problem for
w-automatic trees of height at mastis 777-hard as well.

To show containment idl?, let us take two tree; andT; of height 2 and lefy; be the edge relation
of T; andr; its root. Fori € {1,2} and a cardinal let x, ; be the cardinality of the set of all € E;(r;)
such thallE;(u)| = A. ThenTy; = Ty if and only if kx1 = k2 for any cardinal\. Now assume that
T, and T, are bothw-automatic. By Theorem 3.1, for all € {1,2} and everyu € E;(r;) we have
|Ei(u)] € N U {Xg,2%}. Moreover, again by Theorem 3.1, every cardirgl; (A € N U {R, 2%},

i € {1,2}) belongs taN U {Xy, 2%} as well. HenceT; = Ty if and only if for all x, A € NU {Xg, 2%0}:

T, =32 : ((r,z) € EATy: (2,y) € E)
ifandonlyif T, }=3%z: ((r2,z) € EATNy: (z,y) € E).

By Theorem 2.2, this equivalence is decidable forkall. Since it has to hold for alt, A, the isomorphism
of two w-automatic trees of height 2 is expressible b/ &statement. a

> Where3"z : o(z) for n € N is shorthand for the obvious first-order formula expressirag there are exactly
elements satisfying.



4 A normal form for analytical sets

To prove our lower bound for the isomorphism problemwéutomatic trees of height > 3, we will
use the following normal form for analytical sets. A formuliathe formz € X orz ¢ X is called aset
constraint The constructions in the following proof are standard.

Proposition 4.1. For every odd(resp. evejn € N, and everylI} (resp.X}) relation A C N7, there
exist polynomialg;, ¢; € N[z, y, z] and disjunctions); (1 < i < ¢) of set constraints (on the set variables
X4,..., X, and individual variableg, y, z) such thatt € A if and only if

¢
QIXI QQXQ o Qan Eyvz : /\pl(fvyaz) # QZ(Tvva) \ ¢i(fayvza le s 7X’n.)7

i=1

whereQ1, Q2, . .., Q,, are alternating quantifiers witli),, = V. Moreover, if thell} (resp.X}) relation
A C N, is given by a second-order formula as(ih), then the polynomialg;, ¢; and the disjunctions);
can be effectively computed.

Proof. For notational simplicity, we present the proof only for tese whem is odd. The other case can
be proved in a similar way by just adding an existential gifiaation 3.X at the beginning. We will write
Ym(SC, REC) for the set of first-ordel,,,-formulas over set constraints and recursive predicatesrev
all quantifiers range oveé¥ .. The setlT,,,(SC, REC) is to be understood similarly and.X,, (SC, REC) is
the set of boolean combinations of formulas fram, (SC, REC). With C, : N’i — Ny we will denote
some computable bijection.

Fix an odd number. It is well known that everyT}-relationA C N’ can be written as

whereP is a recursive predicate relative to the functighs. . ., f,, (see [0di89, p. 378]). In other words,
there exists an oracle Turing-machine which computes tiséeha valueP(z, y, f1,. .., f») from input

(Z,y). The oracle Turing-machine can compute a vafi(@) for a previously computed numbere N
in a single step. Therefore we can easily obtain an oraclegumachineM which halts on inpuf if and
onlyif 3y : P(Z,y, f1,..., f) holds.

Following [Odi89], we can replace the function quantifier$2) by set quantifiers as follows. A func-
tion f : Ny — N, is encoded by the s€Cs(z,y) | f(z) = y}. Letfunc(X) be the following formula,
whereX is a set variable:

func(X) = (Va,y, z,u,v: Co(z,y) =uACa(z,2) =vAu,v € X 5 y=2)A
(Vo Jy,z: Ca(x,y) = 2Nz € X)

Hencefunc(X) is all>(SC, REC)-formula, which expresses that encodes a total function d¥, . Then,
the setd in (2) can be defined by the formula

VX5 @ —func(X1) V 3Xs : func(Xa) A -+ - VX, : =func(X,,) V R(Z, X1,..., Xn). 3

The predicate? can be derived from the oracle Turing-machiWeas follows: Construct frond/ a new
oracle Turing-machineéV with oracle setsXy, ..., X,. If the machineM wants to compute the value
fi(a), then the machiné starts to enumerate dlle N until it findsb € N with Cs(a,b) € X;. Then
it continues its computation withfor f;(a). Then the predicat®(z, X1, ..., X,,) expresses that machine
N halts on inputz.

Fix a computable bijectio® : N, — Fin(N,.), whereFin(N_ ) is the set of all finite subsets &f, .
Letin(z,y) be an abbreviation far € D(y). This is a computable predicate.

Next, consider the predicat®(z, X1, ..., X, ). In every terminating run of the machiié on input
T, the machineN makes only finitely many oracle queries. Hence, the predifdt, X;,...,X,,) is
equivalent to

I 3(s1,.-y8n) : S(T, b, ($1,.--,80)) A /\Vz <b(in(z,s;) < z € X;),
i=1



where the predicaté is derived from the Turing-machin¥ as follows: LetT" be the Turing-machine that
on input(z, b, (s1,. .., s,)) behaves asv, but if N asks the oracle whethere X, thenT first checks
whetherz < b (if not, thenT" diverges) and then checks, wheth€k, s;) holds. TherS(z, b, (s1, ..., sn))
if and only if T halts on inpu{(z, b, (s1, - - ., s»)). Hence, the predicat&(z, b, (s1, .. ., s»)) iS recursively
enumerable, i.e., can be described by a formula fEart6C, REC). Hence the predicat® can be described
by a formula from¥5(SC, REC).

Note that the formula from (3) is equivalent with a formula

VX13Xs - VX, 1 (T, X), (4)

wherey is a boolean combination & and formulas of the forrfunc(X;). Since all these formulas belong
to I715(SC, REC) U X5(SC, REC), the formulap belongs taB X (SC, REC) C IT5(SC, REC). Hence (4) is
equivalent to

VX; 3X,--- VX, Va 3bVe: 5, (5)

whereg is a boolean combination of recursive predicates and seticonts.

We can eliminate the quantifier bloti by merging it withv.X,,: First, we can reducéa to a single
quantifierva. For this, assume that the length of the tuplis k. Then,va - - - in (5) can be replaced by
Va 3a : Cr(@) = a A ---. SinceCy(a) = a is again recursive and since we can mefigelb into a single
block of quantifiersdb, we obtain indeed an equivalent formula of the form

VX, 3X, VX, VaIbVe: B, (6)

wheref3’ is a boolean combination of recursive predicates and settizints.
Next, we encode the paiX,,, a) by the sef{2z | z € X,,} U {2a + 1}. Leta(X) be the formula

a(X) = Vo,y, 2’y cx=22" +1Ay=2¢y +1Az,ye X — x=9y)A
Fr,u:xe X ANx=2u+1).

Hence (X)) expresses that contains exactly one odd number. Hence, we obtain a forngulaalent to
(6) by

— replacingvX,, Va - - - withvVX,, : ~a(X,,) V3a,d' : ¢’ € X, A’ =2a+1A--- and

— replacing every existential quantifigb; - - - (resp. universal quantifierc; - - -) in (6) with 3b; 3b; :
b, =2b; \--- (respVe; V¢, : ¢, #2¢; VvV ---),and

— replacing every sub-formulae X,,, b; € X,,, or¢; € X,, witha' € X,,, b, € X,,, orc, € X,,, resp..

All new quantifiers can be merged with either the blatkor the blockvz in (6). We now have obtained
an equivalent formula of the form

VX, 3X, VX, JbVe: g7, (7)

wheres” is a boolean combination of recursive predicates and setiznts. ~
The block3b - - - can be replaced byb Vb : C(b) # bV - - -, wherel is the length of the tuplg. Since
Cy(b) # b is a computable predicate, this results in an equivalemida of the form

VX, 3X, VX, JbVe: B,

where3”” is a boolean combination of recursive predicates and sestiints.
Note that the set of recursive predicates is closed unddedn@ombinations and that the set of set
constraints is closed under negation. This allows to ot#aiaquivalent formula of the form

4
VX1 3Xp VX, 30VE: N\ (R Vi),
i=1

where theR; are recursive predicates and theare disjunctions of set constraints.



Since the recursive predicatég are co-Diophantine (cf. [Mat93]), there are polynomiglsg; €
N[b, ¢, z] such thatr; (b, ) is equivalent tor'z : p;(b, ¢, Z) # ¢;(b, ¢, Z). ReplacingR; in the above formula
by this equivalent formula and merging the new universahgjtiars vz with V¢ results in a formula as
required.

Since all the steps in our construction can be made effedtieesecond part of the proposition con-
cerning effectiveness follows. a0

It is known that the first-order quantifier bloély vz in Proposition 4.1 cannot be replaced by a block with
only one type of first-order quantifiers, see e.g. [0di89,49]3

5 w-automatic trees of height at least

Our main technical result for injectively-automatic trees of height at leastwhose proof occupies Sec-
tions 5.1 and 5.2, is the following:

Proposition 5.1. From a givenn > 1, one can compute injectively-automatic tree</[0] and U|[1] of
heightn + 3 such that the following holds: From a given s&tC N thatis 7} if n is odd andy} if n
is evefi and a givenr € N, one can compute an injectivelyautomatic treel’[z] of heightn + 3 with
Tlx] =2 U[0] ifand only ifz € A andT'[z] = U[1] otherwise.

Before we prove Proposition 5.1, let us first state some easyerjuences.

Corollary 5.2. From givenn > 1 and® € {X 1T}, one can compute an injectivelyautomatic tree
Un,e of heightn + 3 such thatthe seP € 7!, 5 | S(P) = U, e} is hard foro;..

Proof. Letn > 1 be odd. LetA be an arbitrary set fromi} and set,, ; = U[0] andU,, »- = U[1]. Then

the mappingr — T'[z] is a reduction fromA to {P € 7! 5 | S(P) = U, 1} and, at the same time, a
reduction from theX}-setN, \ Ato {P € 7,5 | S(P) & U, x}. SinceA was chosen arbitrary from
IT}, the first statement follows fot odd. If n is even, we can proceed similarly exchanging the roles of
U[0] andU[1]. O

Corollary 5.3. The following holds for alh > 1:

— The isomorphism problefiso(7,, ;) for the class of injectivelw-automatic trees of height + 3 is
hard for both the classeH}! and X}.

— The second-order theory @, +, x) can be reduced to the isomorphism problés(| -, 7,})
for the class of all injectivelys,-automatic trees of finite height. Hence, the isomorphisoblem
Iso(U,,>, 7,}) is not analytical.

We now start to prove Proposition 5.1. Léte a set (given by a second-order formula) thdi jsif n
is odd and>’! otherwise. By Proposition 4.1 it can be written effectivielthe form

14

A= {(E € N+ | QIXI e QanHy VZ /\pz(xay7z) 7é ql(xay7z) \ 1/’1‘(9579,7,7)}, (8)
=1

where

- Q1,Qq, ..., Q, are alternating quantifiers witg,, =V,

— pi,qi (1 <4 < {)are polynomials ilN[z, y, Z] whereZ has lengthk, and

—everyy; (1 < i < ¢)is a disjunction of set constraints on the set variabigs. .., X,, and the
individual variables:, y, z.

® It is assumed that the sdtis given by a second-order formula as in (1).



Lety_4(z,y, X1,...,X,) be the formula

Y4

VZ - /\pi(l',y,f) 7& qi(‘rayvz) \ 1/%‘(55,%3,7) .
=1

For0 < m < n, we will also consider the formula,,, (x, X1, ..., X, —,) defined by
QnJrlmenJrlfm e Qan Ely : (p*l('rv Y, le cee 7Xn)

such thatpg(z, X1, ..., X,,) is afirst-order formula ang,, () holds if and only ifz: € A.
To prove Proposition 5.1, we construct by inductiordon m < n height{m-+3) treesl,, [ X1, ..., Xn—m, ]
andU,,[i]| whereX,, ..., X,,_,, CN,,z € N4, andi € {0, 1} such that the following holds:

Upn[0] if 0, (2, X) holds
Un[l] otherwise

VX € (2N )M g € Ny 1 T, [X, 2] & { (9)

SettingT'[z] = T,[z], U[0] = U,[0], andU|[1] = U,[1] and effectively constructing from, n, and the
formula for the se# injectively w-automatic presentations f@i{z], U[0], andU[1] then proves Proposi-
tion 5.1.

5.1 Construction of trees

In the following, we will use thénjectivepolynomial function
C: NI - Ny with C(z,y) = (z +y)* + 3z + y. (10)

Forey,es € N, letS[ey, eo] denote the height-1 tree containiide; , e2) leaves. Fot X, z,y, %z, zx11) €
(2N+)" x N’fj3 andl < i < /, define the following height-1 tree, whetgp;, andg; refer to the definition
of the setA above’

. 11
Spi(z,y,%Z) + zk+1, 6 (7,y,Z) + 2x41]  Otherwise. ()

T/[Ya x, yaza Zk+1, Z] = {

Next, we define the following height-2 trees, wherec N, U {w} (we consider the natural order on
N; U{w} withn < wforalln € Ny):

[H{Sler ea] | e1 # e2} w

Rg
T"X,z,y] =ro0 i ) . ) (12)
Lﬂ{T [Xv'rvyazv Zk+1vl] | S N+7Zk+1 € N+71 <1< g}

U'[k] =70 (L—Ij{S[el, co] | e1 # ea} w|H{Slee] | k< e < w})NO . (13)

Note that all the tree®”'[X, x,y] andU" [«] are build from trees of the formi[ey, e2]. Furthermore, if

Sle, e] appears as a building block, théfe + a, e + o] also appears as one for alke N (this is the reason
for introducing the additional variablg ; ; in (11)). In addition, any building blocK[e1, 2] appears either
Ny many times or not at all. In this sengé&; [«] encodes the set

{(e1,€2) | e1 Zeat U{(e,e) | k < e <w}
andT”[X, z,y] encodes the set

{(61162) | €1 7& 62} U{(pi(x,y,i)+zk+1,qi($€,y,7) +Zk+1) | 1 < { < é?ﬂf-l-l € N-l-?E S Ni such that
¥;(x,y,Z, X ) does not hold.

These observations allow to prove the following:

" The choice ofS[1, 2] in the first case is arbitrary. An§/[a, b] with a # b would work.
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Lemma5.4. LetX € (2V+)" andz, y € N.. Then the following hold:

(@) T"[X,x,y] = U"[x] for somex € N, U{w}
(b) T"[X,z,y] = U"[w] ifand only ifp_1 (x, y, X) holds

Proof. Let us start with property (b). Suppoge  (z,y, X) holds. Letz € N, 2,11 € N, andl < i < ¢.
Thenp;(z,y,%) # qi(x,y,Z) ory;(x,y,Z, X) holds. In any case, there are natural numberg e, with
T'X,2,y,Z, 2k11,1] = Sler, ea]. HenceT” [ X, z,y] = U" [w].

Conversely, suppose we ha¥¥[X, z,y] = U"[w]. Letz € N¥, 2,11 € N, and1 < i < £. Then
the treeT’[X, z,y,Z, 2141, 1] is @ height-2 subtree df”'[X,z,y] = U”[w]. This means that there are
natural numberg; # e, with 7'[X,z,y,Z, 2141, = Sle1, es]. By (11), this impliesp;(x,y,%) #
¢i(z,y,2) V i(x,y,%, X). Hence the formula

¢
VZ /\ pz('rvyaz) # q’L(Ia yvz) \ 1/}1(177 %ZY)
=1

holds.

Now it suffices to prove statement (a) in case (, y, X ) does not hold. Then there exist some Nﬁ
andl < ¢ < ¢/ with o

pi(fE, yvz) = %(‘T?yaz) A ﬁ’L/Ji(‘ra Y, Z, X) .

Hence there is somee N, such thatS[e, ¢] appears in the definition &f”[X, 2, y]. Letm = min{e €
Ny | Sle, e] appears il [X, z,y]}. Then, for alla € N, alsoS[m + a,m + a] appears ifl"'[X, z, y].
HenceT”[ X, x,y] =2 U"[m]. O
In a next step, we collect the tre@¥[X, z,y] and U”[x] into the treesl,[X, z], Uy[0], and Uy[1] as
follows:

TX, ) = ro (U m] | m e N} 8 T (K2 ) [y e NG ) (14
Uof0) = ro (WU | 5 € N, U fw}) (15)
volt] = r o (0"l | m e N4y) (16)

By Lemma 5.4(a), these trees are build from copies of the /¢« (and are therefore of height 3), each
appearing eithe®, many times or not at all. The following lemma states (9)for= 0:

Lemma 5.5. Let X € (2M+)" andz € N,. Then

To[X, o] Uo[0]  if ¢o(z,X) holds and
Tl =
o Up[l] otherwise.

Proof. If T,[X, z] = Uy[0], then there must be somec N, such thatl”’[X, z,y] = U"[w]. By Lem-
ma 5.4(b), this means that (z, X) holds.

On the other hand, suppod8[X,z] % Up[0]. ThenT”[X,z,y] % U”[w] for all y € N,. From
Lemma 5.4(b) again, we obtain for ajl € Ny: T"[X,z,y] = U"[m,] for somem, € N,. Hence
To[ X, z] = Up[1] in this case. O
Now, we come to the induction step in the construction of oees. Suppose that for sorie< m < n
we have heightm + 3) treesT,,[ X1, ..., Xy—m, 2], Un[0] andU,,[1] satisfying (9). LetX stand for
(X1,...,Xn—m—1) and leta = m mod 2. We define the following heightm + 4) trees:

— — 2%o
Tii[X, 2] = 7o (Um[a] W | { T3 [ X @] | X € N+}) (17)
Uil = o (Unla] @ Unli))** fori e {0,1} (18)
Note that the tre€,,,1[X, x|, U,,+1[0], andU,, . 1[1] consist of2% many copies ot/,,,[«] and possibly

2% many copies ot/,,,[1 — a.
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Lemmab5.6. Let X1,..., X,,—m-1 C Ny andx € N,. Then

Uerl[O] if (pm+1(17, Xl, - Xn,mfl) holds

Tm Xa"-aX’n—m—a = .
+1lX 12l {Um+1[1] otherwise.

Proof. We have to handle the cases of odd and eweseparately and start assumingto be even (i.e.,
a = 0) such that the outermost quantifi@y, _,,, of the formulap,,,+1(z, X1, ..., Xn—m—1) is universal.

Suppose thap,,,+1 (X1, ..., Xn—m—1, ) holds. Then, by the inductive hypothesis, for eath_,,, C
Ny, Tn[X1, ..oy Xnem, ] = Up[0]. Hence all heightim + 3) subtrees off},,+1[X1, ..., Xn—m—1, ]
are isomorphic td/,,, [0] and thus

Tons1[ X1, Xnome1,2) 2 70 Up [0 = U1 (0]

On the other hand, suppose thap,,+1(X1,..., Xn—m—1,2) holds. Then there exists some $ét_,,
such thaty,, (X1, ..., X—m,x) is true. Hence, by the induction hypothesis,

Tm(Xla st ,Xn_m,l') = Um[l]a

i.6.,Trni1(X1, ..., Xn_m—1, ) contains one (and therefa® many) heighttm+3) subtrees isomorphic
to U,,[1]. This impliesT,,+1(X1, ..., Xn—m-1,2) = U,41[1] sincem is even.
The arguments fom odd are very similar and therefore left to the reader. a

The following lemma follows from Lemma 5.6 withh = n — 1 and the fact thap,, () holds if and only
if z € A.

Lemma5.7. For all x € N, we havel, [z] =2 U,[0] if x € AandT,[z] = U,[1] otherwise.

5.2 Injective w-automaticity

Injectively w-automatic presentations of the tré€s[ X, z], U,,[0], andU,,[1] will be constructed induc-
tively. Note that the construction @, 1[X, x] involves all the treeg,,,[X, X,,_n, 2] for X,,_,,, C N,.
Hence we needne single injectivelw-automatic presentatiofor the forest consisting of all these trees.
Therefore, we will deal with forests. We will prove Lemma 5@ which we need the following defini-
tions.

Let0, 1, a, andb be symbols. For an-languagd., we write® (L) for ®(L*). ForX C N, letwx €
{0,1}* be the characteristic word (i.eux[i] = 1 if and only if i € X) and, forX = (X1,...,X,,) €
(2M+)", write w for the convolution of the words x, .

Lemma 5.8. From each0 < m < n, one can effectively construct an injectivelyautomatic forest,,,
such that

— the set of roots ofL,,, iS (@n—m ({0,1}*) ® a™) U {e, b},

- Hp(wg ®a®) 2T, [X, 2] forall X € (28+)"~™ andz € N,
- Hm(e) = U,[0], and

— Hon (b) = Un[1].

Before we prove Lemma 5.8, let us first deduce Propositior(d@ndl therefore Corollary 5.2). Note that
T,[z] is the tree inH,, rooted ata®. HenceT,,[z] is (effectively) an injectivelyw-automatic tree. Now
Lemma 5.7 finishes the proof of Proposition 5.1.

We will construct the forest,, 1 from H,,, by the following general strategy: Add a set of new roots
to H,, and connect them to some of the old roatsich results in a directed acyclic gragbr dag) and not
necessarily in a forest. The foret,, will then be the unfolding of this dag.

Theheightof a dagD is the length (number of edges) of a longest directed paih /e only consider
dags of finite height. Aoot of a dag is a node without incoming edges. A dag- (V, F) can be unfolded
into a forestunfold(D) in the usual way: Nodes afnfold(D) are directed paths iy that start in a root
and the order relation is the prefix relation between theslesp&or a rootv € V of D, we define the
treeunfold(D, v) as the restriction ofinfold(D) to those paths that start in We will make use of the
following lemma whose proof is based on the immediate olagiem that the set of convolutions of paths
in D is again a regulav-language.
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Lemma 5.9. From a givenk € N and an injectivelyv-automatic presentation for a dafy of height at
mostk, one can construct effectively an injectivelautomatic presentation fainfold(D) such that the
roots ofunfold(D) coincide with the roots ab andunfold(D, r) = (unfold(D))(r) for any rootr.

Proof. Let D = (V, E) = S(P), i.e.,V is anw-regular language and the binary relatbrC V' x V' is w-
automatic. The universe for our injectivelyautomatic copy ofinfold(D) is the set of all convolutions
v ® V1 ® V2 ® -+ ® vy, Whereuy is a root and(v;,v;11) € F forall 0 < i < m. Since the dag>
has height at most, we havem < k. Since the edge relation @ is w-automatic and since the set of all
roots in D is FO-definable and hence-regular by Theorem 2.2, is indeed anv-regular set. Moreover,
the edge relation ainfold(D) becomes clearly-automatic orl.. O

For a symbok and a tuple& = (ey,...,ex) € N’jr, we writea® for thew-word
a® ®a®? ® - ®a®* = (a® oY) ® (%) ® - ® (a®oY).
The following lemma was shown in [KLL11] for finite words irstd ofw-words.

Lemma 5.10. Given a non-zero polynomial(z) € N[Z] in k variables, one can effectively construct a
Buichi automatorB[p(z)] over the alphabefa, o}* with L(B[p(z)]) = @x(a™) such that for alle € N :
B[p(T)] has exactly(¢) accepting runs on input®.

Proof. The lemma is shown by induction on the construction of the/painial p. Buichi automata for
the polynomial(z) = 1 andp(z) = x; are easily build. Now le3[p,(Z)] and B[p2(Z)] be already
constructed. Then it is easily seen that the disjoint unibthese two Blchi-automata can serve has
B[p1(T) + p2(T)]. The construction of the Bichi-automat#ifp, (Z) - p2(T)] uses Choueka’s flag con-
struction (cf. [Cho74, Tho90, PP04]):

Let B[p:(z)] = (Q:, I, I;, A;, F;) fori € {1,2} and set

Blp1(Z) - p2(7)] = (Q1 x Q2 x {1,2}, I I} x I x {1}, A, F1 x Q2 x {1}),
where((p1,p2,m), a, (q1,92,n)) € Aif and only if

- (pl,a,ql) S Al and(pg,a,qg) S AQ, and
— if p,, € F,, thenn = m and ifp,, € F,, thenn =2 —m.

Hence the runs af[p; () - p2(T)] on thew-word a® consist of a run of3[p; (Z)] and of B[p2(Z)] ona’. The
“flag” m € {1,2} in (p1, p2, m) signals that the automaton waits for an accepting stat&{f,(7)]. As
soon as such an accepting state is seen, the flag togglehigs M&nce accepting runs Bfp: (T) - p2(T))
correspond to pairs of accepting rung3jp; (7)] and of B[p2(Z)]. Therefore, the number of accepting runs
of B[p1(T) - p2(Z)] ona® equals the product of the numbers of accepting ru8[pf(z)] and of B[ps(T)]

ona¥‘. O
Lemma 5.11. From a given boolean combinatiafi(z1, ..., zm, X1, ..., X, ) of set constraints on set
variables Xy, ..., X,, and individual variablest, . .., x,, one can construct effectively a deterministic

Buchi automaton4,, over the alphabef0,1}™ x {a,©}™ such that for allX,..., X,, C N;,¢ € N7,
the following holds:

wy, ® - Qwx, ®a® € L(Ay) < (¢ X1,...,X,) holds.

Proof. Since set constraints are closed under negation, we camagbaty is a positive boolean com-
bination. Then the claim is trivial for a single set consttabincew-languages accepted by deterministic
Biichi automata are effectively closed under interseciwth union, the result follows. a

In the next lemmak, ¢, n, p;, andy; (1 < i < /) are taken from the definition of our!-setA in (8).

Lemma 5.12. From 1 < i < /, one can construct a i&hi automatonA; with the following property:
Forall X € (2"+)", z € N%, andz,y, 241 € Ny, the number of accepting runs gf; on the word
W ® a(%yﬁazkﬂ) equa|s

C(1,2) if 1;(x,y,%, X) holds

C(pz (.T, Y, 7) + Zk+1,4i (:Ea Y, E) + Z]H—l) otherwise.
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Proof. By Lemma 5.10, one can construct a Buchi automadignwhich has precisely’ (p; (x,y,z) +
Zk+1,4i (2, Y, Z) + zi41) Many accepting runs on theword wy ® a®¥%z241)  Secondly, one builds
deterministic Buichi automat andC; accepting a wordrs ® a®¥%241) if and only if the disjunction
¥;(x,y,Zz, X) of set constraints is satisfied (not satisfied, resp.) whigiossible by Lemma 5.11.

Let A be the result of applying the flag constructiondpand B;. If X € (2+)", z € N%, and
x,y, z+1 € Ny, then the number of accepting runs.éfon the wordws ® al®¥:%2:41) gquals

0 if (x, y, %, X) holds
C(pi(x,y,%Z) + 2141, (2, y,Z) + 2141)  Otherwise.

Hence the disjoint union oft andC(1, 2) many copies of; has the desired properties. a
Lemma 5.13. One can construct an injectively-automatic forest’ = (L', E’) of height 1 such that

— the set of roots equalfl, ..., /} @ (®,({0,1}*)) ® (®+3(a™)) U (bT @ bT),
—for1 <i<¢,X e (2¥)", z,y, 241 € Ny andz € N*, we have

H (i@ uwg® a @35y > P'X 2.y, %, 241, 1] and

— forey,es € Ny, we have
Hl(b(el’ez)) = S[el, 62] .

Proof. Using Lemma 5.10 (with the polynomial = C(z1,z2)) and Lemma 5.12, we can construct a
Biichi automatomd accepting(1, . .., ¢} ® (2,({0,1}*)) ® (®k+3(a™))U(bT @bT) such that the number
of accepting runs afl on thew-word » equals

(I) 0(61162) if u= b(€1)€2), -
(i CQ,2)ifu=1iQ0wsy® a(®:v.%2e41) such that); (z, y,z, X) holds, and B
(i) C(pi(z,y,2) + 2ks1, qi(2, ¥, Z) + 2k if u = i @ wg ® al®¥Z7+1) such thatp; (x, y, Z, X ) does
not hold.

Let Run 4 denote the set of accepting runs4fNote that this is a regular-language over the alphahat
of transitions ofA. Now the fores®#{’ is defined as follows:

— Its universe equal&(.A) U Run 4.
— There is an edgéu, v) if and only if v € Run 4 is a accepting run oft onu € L(A).

It is clear thatH’ is an injectivelyw-automatic forest of height 1 with set of roat$.4) as required. Note
that (i)-(iii) describe the number of leaves of the heightele rooted att € L(.A). By (i), we therefore
getimmediatelyi’ (b(¢1:¢2)) = S[ey, e5]. Comparing the numbers in (i) and (iii) with the definitiofitbe
treeT'[X,z,y,%, zx11,1] in (11) completes the proof. O

From#' = (L', E'), we build an injectively-automatic da@ as follows:

— The domain ofD is the se{®,,({0,1}*) ® aT™ ® a™) U b* U ($* @ L').

Foru,v € L', the words$’ ® u and$’ @ v are connected if and onlyif= j and(u,v) € E’. In other
words, the restriction b to $* @ L’ is isomorphic toH ™.

ForallX € (2M+)", z,y € N, the new rootv ® a(™¥) is connected to all nodes in

$* ® (({1, . 7(} & (%3 & a(m’y) & (®k+1 (a+))) U {b(el’ez) | e1 75 62}) .

The new root is connected to all nodes #f ® {b(¢1:¢2) | e; # ey},
For allm € N, the new roob™ is connected to all nodes in

$* @ {ble12) | ) £ ey Ve =ey >mb.
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Itis easily seen thaD is an injectivelyw-automatic dag. LeH” = unfold(D) which is also injectively
w-automatic by Lemma 5.9. Then, for &l € (2V+)", z,y, m € N4, we have:

W{H (i ® wg @ a@¥2)) | 1< < 0,7 € NEF g %o
W (b12)) | er # €2} )
Lem.5.13 W{T' (X, 2,y,7,i] | 7€ NN 1 <4 < 0} "o

) TO(wwkh@Hey¢@} )

(g ©al?) = (wy®a@w>o<

(1:2) T”[Y, z, y]
H'(e) (U{H blever)) | eg # 62})

L 513

= (U{S e1, ez | e1 # 62})

(2) U”[w]

No
H”(bm) (U{H 61,62) Y]e1#es Ve =ey > m})

Lem.5.13 Ro

" ro(L—Ij{S[el,eg] |el7éeg\/61:(322m})

(2) U”[m]

From#"” = (L”, E") we build an injectivelyv-automatic da@, as follows:

— The domain oDy is the se{®,,({0,1}*) ® a™) U {e,b} U ($* @ L").

— Foru,v € L”, the words$?! @ v and$’ @ v are connected by an edge if and onlyiit= j and
(u,v) € E", i.e., the restriction oD, to $* @ L is isomorphic taH" ™.

— ForX € (2V+)", z € N} we connect the new roaty ® a® to all nodes in

$" @ (wgx®a”®@a™) UDbY) C S L

— We connect the new roetto all nodes irt* @ b*.

— We connect the new roétto all nodes irf* @ b.

ThenD, is an injectivelyw-automatic dag of height 3 and we $&§ = unfold(D,). We have the following:

— The set of roots ot is (®,({0,1}*) ® a™) U {e, b}.

— Forall X € (2%+)", x € N, we have:
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2%o

1%

Holwy ® a%) = (wy @ a*) o (Lﬂ{“f‘”@m) | m e N, )

H{H (wg ©@a” @ a?) |y € Ny}
~ (U{U” |meN+}UU{T”X z,y] |y€N+})
LT[, 4]
( Hrrom) |meN})
(U{U” weNU{w))”

HQ(E)

||2

HZ

12

Ho(b)

1%

T o

bo (U{H” &™) | m e N+})
(

O ] [ e N3
@ Uo[1]

These identities settle the induction base for the proofesfima 5.8.

We now construct the fores® i, Hs, Hs, ..., H, inductively. For0 < m < n, suppose we have
obtained an injectivelw-automatic forest,,, = (L,,, F,,) as described in Lemma 5.8. The forésf, 1
is constructed as follows, whete= (m mod 2) € {0, 1}:

— The domain ofH,;, 41 IS (®@p—m—1({0,1}¥) @ a™) U{e,b} U ({$1,$2}* ® L,,).
— Foru,v € L, andu’,v" € {$1, $2}*, the words:’ ® v andv’ ® v are connected by an edge if and only
if u" =" and(u,v) € Ep,, i.e., the restriction oD, {1 t0 {$1,$2}“ ® Ly, is isomorphictO}'-[f:‘).
— Forall X € (2+)"=™~! and allz € N, connect the new roat ® a” to all nodes from
(51,8} @ (wy® (0,1} ® a® U ba) .
— Connect the new roatto all nodes from{$;, $2}* ® {e,b*}.
— Connect the new rodtto all nodes from{$;, $21« ® {b, b}.
In this way we obtain the injectively-automatic forest,,; such that:

— The set of roots 0t 11 iS (®n—m—1({0,1}*) ® a™) U {e, b}.
- ForX € (2M+)»=m~! andz € N, we have:
2%0
Honia (g ©0%) =2 (wx@a®)o (Y Hmlug @ wx, ., ©07) | Xom Ny} 8 H (")

(Ind.) _ 2%o
=10 (HTIX, Xy 2] | Xnm € Ny} 0 Upnla])

,\
=
~

)

12

Terl[Ya I]

1%

Hins1(e) = 0 (Hm(e) 8 Hm(57)>
(Ind.)

=" 1 o (U [0] & Up[a])2°
(18)
= Um-l—l[o]

Hing1(B) =2 bo (Hu(b) W M (%))

(ind.) o
= ro(Un[l]@ Unla])

(18)
= Um+ 1 1]

Ro
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This concludes the proof of Lemma 5.8 and hence of Propaositib.

6 w-automatic trees of height 3

Recall that the isomorphism problelso(7;) is arithmetical by Theorem 3.2 and that(7}) is not by
Corollary 5.3. In this section, we modify the proof of Projtios 5.1 in order to show that alreadsp(73)
is not arithmetical:

Theorem 6.1. There exists a tre& such that{ P € 73 | S(P) = U} is I1{-hard. Hence the isomorphism
problemiso(73) for injectivelyw-automatic trees of height 3 &} -hard.

So letA C N, be some set fronf/{ . By Proposition 4.1 it can be written as

¢
A= {x € N+ (VX 31/ vz /\pi('rvyvz) 7£ qi(xvyvz) \ wi(IayvaX)},
=1
wherep; andg; are polynomials with coefficients iN and+; is a disjunction of set constraints. As in
Section 5, letp_1 (z, y, X') denote the subformula starting wittz, and letpg(z, X) = Jy : o_1(z,y, X).
We reuse the tre€s’[ X, z, y,Z, 211, 4| of heightl defined in (11). Recall that they are all of the form
Sle1, e2] and therefore have an even number of leaves (since the rémige polynomialC : N2 — N,
from (10) consists of even numbers). o N, let S[e] denote the height-1 tree witle + 1 Ieaves.
Recall that the tre@”'[ X, «, y] from (12) encodes the set

{(61382) | €1 BQ}U{(pz(:C Y,z )+Zk+l7Qz(«r Y,z )+Zk+1) | 1 < ) < é Zk+1 c N+,Z c Nk SUCh that
¥i(z,y,7z,X) does not holy.

We now modify the construction of this tree such that, in &ddi it also encodes the s&t C N:

Ro
FIX,z,9) = 7o [H{Slel | e € X} wlh{Sler ea) | er # ea}
LY L—H{T'{Y,x,y,?,zkﬂi] |E€Niazk+1 ENy,1<i<l)

In a similar spirit, we definé/[x, X] for X C N andx € N, U {w}:

Ok, X] = TO(U{S |e€X}UU{Sel,eg]|el7féeg}U> Ho
H{Sle.el | 5 < e <w}

ThenT[X, z,y] = Ulw, Y] ifand only if X = Y andT"”'[X, z,y] = U"[w], i.e., ifand only ifX =Y and
w—1(z,y, X) holds by Lemma 5.4(b). Finally, we set

T[] =ro (@{ﬁ[ﬁ,X] | X CNy ke Ny wlH{T(X,2,y] | X CNyy € N+})NO :
U=ro (@{ﬁ[ﬁ,X] | X CN_,keN,U {w}})NO

Lemma 6.2. Letz € N;. ThenT[z] 2 U if and only ifz € A.

Proof. Suppose: € A. To proveT'[z] = U, it suffices to show that any height-2 subtredf] is a subtree
of U and vice versa. First, letY C N, andy € N,. Then, by Lemma 5.4(a), there existse N, U {w}
with T"[X, z,y] = U"[x] and thereford’[ X, z,y] = Ulx, X, i.e.,T[X, z,y] appears irU. Secondly, let
X C N;. Fromz € A, we can infer that there exists some N, with ¢_1(z,y, X). Then Lemma 5.4(b)
impliesU” [w] = T"[X, x,y] and thereforé/ [w, X] = T[X, z, 4], i.e.,U|w, X] appears ifT'[z]. Thus, any
height-2 subtree df'[z] is a subtree ot/ and vice versa.

Conversely supposE[z] = U. Let X C N,. ThenU|w, X] appears i/ and therefore if’[z]. Since
Ulw, X] 2 Uls, Y] forall k € Ny andY C N, there exists somg € N, with U[w, X] = T[X, z, ).
Thus, we havd”'[ X, z,y] = U”|w]. Lemma 5.4(b) implies that_; (x, y, X') holds. We have shown that
x € A a
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6.1 Injective w-automaticity
We follow closely the construction for. = 0 from Section 5.2.
Lemma 6.3. There exists an injectively-automatic forest’ = (L', E’) of height 1 such that:

— The set of roots equald., ..., ¢} ® {0,1}¥ @ (Qx4+3(at)) U (BT @ bT)UcT.
- For1<i<{¢ X CNy, vy, 241 € Ny andz € N;, we have

Hl(l Quwx @ a(zﬂyﬂzzwrl)) = T/[Xa €T, .%5, Zk+15 Z]

— Forej,es € Ny, we have
H' (blere2)) = Sley, eq).

— Fore € N, we haveH’'(c?) = Se].

Proof. Using Lemma 5.10 twice (with the polynomi@l(z,«2) and with the polynomia2z; + 1) and
Lemma 5.12, we can construct a Biichi automatbaccepting{1,...,¢} ® {0,1}* ® (®Qk4+3(a™)) U
(b* ® bT) U T such that the number of accepting runstbn thew-word u equals

(i) C(er,eq)if u = blere2),
@iy 2e+1if u=—c",
(i) C(1,2)if u=1i®wx @ a®¥*2+1) such that);(z, y,z, X) holds, and
(V) C(pi(w,y,2) + 2k11, Gi(7, Y, Z) + 2511) if u = i @ wx ® al®¥Z2+1) such that);(z, y, Z, X ) does
not hold.

The rest of the proof is the same as that of Lemma 5.13. a
From#’' = (L', E'), we build an injectively-automatic da@ as follows:

— The domain ofD is the se({0,1}* ® a™ ® a™) U ({0,1}* ® b*) U ($* @ L’).

— Foru,v € L', the words}* @ u and$’ @ v are connected if and onlyif= j and(u,v) € E'. In other
words, the restriction o to $* @ L’ is isomorphic taH">o.

ForallX C N, z,y € N, the new rootwx ® a(*¥) is connected to all nodes in

$* ® (({1, Ll ®wx ® a@Y) @ (@rg1(at))) U {b(€1,€2) ler #es}U{c |e€ X}) '

Forall X C N, the new rootvx ® e is connected to all nodes in

$ @ ({blere2) | e £ e} U{c® | e € X}).

For all X C N, andm € N, the new rootvx ® b™ is connected to all nodes in
§* @ ({0 | e1 # ea Ver = ea >m}U{c | e € X}).

It is easily seen thaD is an injectivelyw-automatic dag. Let{” = unfold(D) which is also injectively
w-automatic by Lemma 5.9. Now computations analogous tcetbospage 19 (using Lemma 6.3 instead
of Lemma 5.13) yield for allX C Ny andz,y,m € Ny:

H'(wx ®a®Y)) = T[X, z,y]
H'(wx ®¢) = Ulw, X]
H (wx @b™) 2= Ulm, X]

FromH"” = (L”, E"), we build an injectivelyv-automatic dag, as follows:

— The domain ofD, equalsa* U $* ® L”.
— Foru,v € L"”, the words$’ ® u and$’ ® v are connected by an edge if and onlyii= j and
(u,v) € E". Hence the restriction @, to $* @ L is isomorphic taH">°.
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— Forz € N4, the new root” is connected to all nodes in
$" @ ({0, 1}* @bt U {0,1}*®a” ®@a™).
— The new root is connected to all nodes #f @ {0, 1}* ® b*.

ThenD; is an injectivelyw-automatic dag of height 3 and we $¢t = unfold(Dy). The set of roots of
H, is a*. Calculations similar to those on page 16 then yiklde) = U andHo(a”) = T[x] for z € N..
Hence,T'[x] is (effectively) an injectivelyv-automatic tree. Now Lemma 6.2 finishes the proof of the first
statement of Theorem 6.1, the second follows immediately.

Remark 6.4.In our previous paper [KLL11], we proved that the isomorphjgoblem forautomatic trees

of heightn > 2is hard (in fact complete) for levély,, . of the arithmetical hierarchy. For this construction
we used the fact thally, , ,-sets can be defined by the quantifier prefixz, - - - 3°x,,Vy, see [Rog68,
Theorem XVIII] (in our construction, a singkE™ -quantifier increases the height of the trees only by one).

An analogous characterization fof},, , -sets clearly fails.

7 Upper bounds assuming CH

In the following, we will identify anw-wordw € I' with the functiomw : N — I', (and hence with a
second-order object) where(i) = w[i]. We need the following lemma:

Lemma 7.1. From a given Bichi automaton\/ over an alphabef” one can construct an arithmetical
predicateaccy (u) (Wherew : N — I') such thatw € L(M) if and only ifaccas (u) holds.

Proof. First, letM be adeterministidBiichi-automaton with set of statés For a giverw-wordu: N, —
I'andi € Nletq(u,?) € Q be the unique state that is reachedMdyafter reading the lengthprefix of u.
Note thatg(u, ¢) is computable fromi (if « is given as an oracle), hengéu, i) is arithmetically definable
andu is accepted by iff

\/VxeN+3y2:v:q(u,y):f.

feF
Finally note that every regular-language is (effectively) a Boolean combinationwefanguages ac-
cepted by deterministic Buchi-automata (cf. [PP04, ThaoH.9.3]. a

Theorem 7.2. AssumingCH, the isomorphism probleiwo(7,,) belongs tal13,,_, for n > 3.

Proof. Consider tree§; = S(F;) for P1, P> € T,. Define the forest’ = (V, <) asF =Ty W Ts. LetE
be the edge relation df. Recall thatE'(v) denotes the set of children ofe V. Let us fix anv-automatic
presentatiorP = (X', M, M=, Mg) for the graph(V, E). In the following, foru € L(M) we write F'(u)
for the subtred”([u] g(as_)) rooted in theF'-node(u] z(r,_) represented by the-word u. Similarly, we
write E(u) for E([u]g_)). We will define all3, ,,_,-predicateisoy (uy, uz), Whereuy, us € L(M)
are on levek in F. This predicate expresses thatu;) = F(us).

As induction base, let = n — 2. Then the tree$'(u;) and F'(uz) have height at most. Then, as
in the proof of Theorem 3.2, we havé(u,) = F(us) if and only if the following holds for alls, A €
NuU {No, 2N0}:

F E <EI“IEV:(([U1],:1:) EEANTY eV :(2,y) EE)) “
<3“x€ V:((Jug),z) € EAFy €V : (2,y) EE))

Note that by Theorem 2.2, one can compute framy € NU {R, 280} a Biichi automatoit/,, , accepting
the set of convolutions of pairs afwords(u;, uz) satisfying the above formula. Hené&u,) 2 F(us)
if and only if the following arithmetical predicate holds:

Vi, A € NU {Xo, 2N°} raccyy, , (U1 ®@ ug) .
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Now let0 < k < n — 2. We first introduce a few notations. For a sgketlet count(A) denote the set of all
countable (possibly finite) subsets4f Forx € NU {X,} we denote withx] the set{0,...,x — 1} (resp.
N) in casex € N (k = Ng). For a functionf : (A x B) — C anda € A let f[a] : B — C denote the
function with f[a](b) = f(a,b).

On an abstract level, the formukay, (u1, us2) is

(Vz € E(u1) 3y € E(uz) : isog11(z,y)) A (29)
(Vz € E(uz) Jy € E(uy) : isopr1(z,y)) A (20)
VX, € count(E(u1)) VX € count(E(uz)) : (21)
Jz,y € X5 U Xy : nisogt1(z,y) V (22)
Jr e X1 UXy 3y € (E(ur) UE(u2)) \ (X1 UXs) :isopy1(z,y) V (23)
| X1 = X (24)

Line (19) and (20) express that the childremnugfandu, realize the same isomorphism types of trees of
height< n — k& — 1. The rest of the formula expresses that if a certain isorisnpltyper of height-
(n—k — 1) trees appears countably many times belgwhen it appears with the same multiplicity below
uo and vice versa. Assumin@H and the correctness @by 1, the formulaisoy (u1, u2) expresses indeed
thatF(ul) = F(UQ)

In the above definition ooy, (u1, u2) we actually have to fill in some details. The countableXge
count(E(u;)) € 2V of children of[u;] r(a—y (Which is universally quantified in (21)) can be represented
as a functiory; : [| X;|] x N — X such that the following holds:

[Vj € [1Xil] - acears (ue @ filiD] A [V, 1€ [|X6l) - 5 = 1V —acear (fils] @ fill])] -
Hence VX, € count(E(u;))--- in (21) can be replaced by:
VKZGNU{No}Vfl : [Iiz] XxN— X
(3j € [mi : maceary, (ui @ fild]) v
(34,1 € [ra] - § # LN acen (filj] ® fill])) V-

Next, the formuladz, y € X7 U X : —isog41(z, y) in (22) can be replaced by:

\/ Fi,1€ (ki) misor 1 (filil, fill]) V Tj € [5a] T € [ra] : —isons1 (frls], f[l)-
ie{1,2}

Similarly, the formuladz € X; U X5 Jy € (E(u1) U E(u2)) \ (X1 U X3) : isogt+1(z,y) in (23) can be
replaced by

\ Fj€lri]Iv:N— Zrisopia(filil,v) A
e{n.2} (accary (w1 ® v) V accpry (U2 @ v)) A
Vi € [k1] : macea (f1[l] @ v) A

Vi e [Hg] : acCy- (fg [l] (9 U) .

Note that in line (19) and (20) we introduce a new second-order block of quantifiers. The same holds
for the rest of the formula: We introduce two universal seamgifiers in (21) followed by the existential
quantifierdv : N — X' in the above formula. Since by induction, jsq is aH%n_Q(k+1)_4-statement, it

follows that isq.(u1,u2) is all}, ,, ,-Statement. 0
Corollary 5.3 and Theorem 7.2 imply:
Corollary 7.3. AssumingCH, the isomorphism problem for (injectively}automatic trees of finite height

is recursively equivalent to the second-order theorydaf+, x).
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Remark 7.4.For the casex = 3 we can avoid the use @H in Theorem 7.2: Let us consider the proof
of Theorem 7.2 fon = 3. Then, the binary relatioiso; (which holds between twa@-wordswu, v in F if

and only if [u] and[v] are on level 1 and’(u) = F(v)) is aII?-predicate. It follows that this relation is
Borel (see e.g. [Kec95] for background on Borel sets). Ndw lbe anw-word on levell in F'. It follows
that the set of allb-wordsv on level 1 withiso; (u, v) is again Borel. Now, every uncountable Borel set has
cardinality2™° (this holds even for analytic sets [Kec95]). It follows tiia¢ definition ofiso, in the proof

of Theorem 7.2 is correct even without assum@tg. Hence)so(73) belongs tall3 (recall that we proved
IT}-hardness for this problem in Section 6), this can be shovF@.

8 Open problems

The main open problem concerns upper bounds in case we afiseimegation of the continuum hypothe-
sis. Assuming-CH, is the isomorphism problem for (injectively}automatic trees of height still ana-
lytical? In our paper [KLL11] we also proved that the isomtuigm problem for automatic linear orders is
Y'1-complete and hence not arithmetical. This leads to thetimueshether our techniques farautomatic
trees can be also used for proving lower bounds on the isdmsmpproblem foro-automatic linear or-
ders. More specifically, one might ask whether the isomampproblem forw-automatic linear orders is
analytical. A more general question asks for the complexithe isomorphism problem fag-automatic
structures in general. On the face of it, it is an existenitigitl-order property (since any isomorphism has
to map second-order objects to second-order objects).tBsitniot clear whether it is complete for this
class.
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