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Abstract. The main result of this paper states that the isomorphism problem forω-automatic trees of
finite height is at least has hard as second-order arithmeticand therefore not analytical. This strengthens
a recent result by Hjorth, Khoussainov, Montalbán, and Nies [HKMN08] showing that the isomorphis-
m problem forω-automatic structures is not inΣ1

2 . Moreover, assuming the continuum hypothesisCH,
we can show that the isomorphism problem forω-automatic trees of finite height is recursively equiva-
lent with second-order arithmetic. On the way to our main results, we show lower and upper bounds for
the isomorphism problem forω-automatic trees of every finite height: (i) It is decidable (Π0

1 -complete,
resp.,) for height 1 (2, resp.), (ii)Π1

1 -hard and inΠ1

2 for height 3, and (iii)Π1

n−3- andΣ1

n−3-hard and
in Π1

2n−4 (assumingCH) for all heightn ≥ 4. All proofs are elementary and do not rely on theorems
from set theory.

1 Introduction

A graph is computable if its domain is a computable set of natural numbers and the edge relation is com-
putable as well. Hence, one can compute effectively in the graph. On the other hand, practically all other
properties are undecidable for computable graphs (e.g., reachability, connectedness, and even the existence
of isolated nodes). In particular, the isomorphism problemis highly undecidable in the sense that it is com-
plete forΣ1

1 (the first existential level of the analytical hierarchy [Odi89]); see e.g. [CK06,GK02] for further
investigations of the isomorphism problem for computable structures. These algorithmic deficiencies have
motivated in computer science the study of more restricted classes of finitely presented infinite graphs. For
instance, pushdown graphs, equational graphs, and prefix recognizable graphs have a decidable monadic
second-order theory and for the former two the isomorphism problem is known to be decidable [Cou89]
(for prefix recognizable graphs the status of the isomorphism problem seems to be open).

Automatic graphs [KN95] are in between prefix recognizable and computable graphs. In essence, a
graph is automatic if the elements of the universe can be represented as strings from a regular language
and the edge relation can be recognized by a finite state automaton with several heads that proceed syn-
chronously. Automatic graphs (and more general, automaticstructures) received increasing interest over the
last years [BG04, IKR02,KNRS07,KRS05,Rub08,BGR11]. One of the main motivations for investigating
automatic graphs is that their first-order theories can be decided uniformly (i.e., the input is an automatic
presentation and a first-order sentence). On the other hand,the isomorphism problem for automatic graphs
isΣ1

1 -complete [KNRS07] and hence as complex as for computable graphs (see [KL10] for the recursion
theoretic complexity of other natural properties of automatic graphs).

In our recent paper [KLL11], we studied the isomorphism problem for restricted classes of automatic
graphs. Among other results, we proved that: (i) the isomorphism problem for automatic trees of height
at mostn ≥ 2 is complete for the levelΠ0

2n−3 of the arithmetical hierarchy, (ii) that the isomorphism
problem for well-founded automatic order trees is recursively equivalent to true arithmetic, and (iii) that
the isomorphism problem for automatic order trees isΣ1

1 -complete. In this paper, we extend our tech-
niques from [KLL11] toω-automatic trees. The class ofω-automatic structures was introduced in [Blu99];
it generalizes automatic structures by replacing ordinaryfinite automata by Büchi automata onω-words.
In this way, uncountable graphs can be specified. Some recentresults onω-automatic structures can be

⋆ The second and third author were supported by the DFG research project GELO.



found in [KL08, HKMN08, KRB08, Kus10]. On the logical side, many of the positive results for automat-
ic structures carry over toω-automatic structures [Blu99, KRB08]. On the other hand, the isomorphism
problem ofω-automatic structures is more complicated than that of automatic structures (which isΣ1

1-
complete). Hjorth et al. [HKMN08] constructed twoω-automatic structures for which the existence of
an isomorphism depends on the axioms of set theory. Using Schoenfield’s absoluteness theorem, they in-
fer that isomorphism ofω-automatic structures does not belong toΣ1

2 . The extension of our elementary
techniques from [KLL11] toω-automatic trees allows us to show directly (without a “detour” through set
theory) that the isomorphism problem forω-automatic trees of finite height is not analytical (i.e., does not
belong to any of the levelsΣ1

n). For this, we prove that the isomorphism problem forω-automatic trees of
heightn ≥ 4 is hard for both levelsΣ1

n−3 andΠ1
n−3 of the analytical hierarchy (our proof is uniform inn).

A more precise analysis moreover reveals at which height thecomplexity jump forω-automatic trees oc-
curs: For automatic as well as forω-automatic trees of height 2, the isomorphism problem isΠ0

1 -complete
and hence arithmetical. But the isomorphism problem forω-automatic trees of height 3 is hard forΠ1

1

(and therefore outside of the arithmetical hierarchy) while the isomorphism problem for automatic trees of
height 3 isΠ0

3 -complete [KLL11]. Our lower bounds forω-automatic trees even hold for the smaller class
of injectivelyω-automatic trees.

We prove our results by reductions from monadic second-order (fragments of) number theory. The first
step in the proof is a normal form for analytical predicates.The basic idea of the reduction then is that a
subsetX ⊆ N can be encoded by anω-wordwX over{0, 1}, where thei-th symbol is1 if and only if
i ∈ X . The combination of this basic observation with our techniques from [KLL11] allows us to encode
monadic second-order formulas over(N,+,×) by ω-automatic trees of finite height. This yields the lower
bounds mentioned above. We also give an upper bound for the isomorphism problem: forω-automatic trees
of heightn, the isomorphism problem belongs toΠ1

2n−4. While the lower bound holds in the usual system
ZFC of set theory, we can prove the upper bound only assuming in addition the continuum hypothesis. The
precise recursion theoretic complexity of the isomorphismproblem forω-automatic trees remains open, it
might depend on the underlying axioms for set theory.

Related work Results on isomorphism problems for various subclasses of automatic structures can be
found in [KNRS07, KRS05, KLL11, Rub04]. Some completeness results for low levels of the analytical
hierarchy for decision problems on infinitary rational relations were shown in [Fin09]. In [FT10], it was
shown that the isomorphism problems forω-tree-automatic boolean algebras, (commutative) rings, and
nilpotent groups of classn > 1 neither belong toΣ1

2 nor toΠ1
2 .

2 Preliminaries

LetN+ = {1, 2, 3, . . .} be the set of naturals without0. With xwe denote a tuple(x1, . . . , xm) of variables,
whose lengthm does not matter.

2.1 The analytical hierarchy

In this paper we follow the definitions of the arithmetical and analytical hierarchy from [Odi89]. In order
to avoid some technical complications, it is useful to exclude0 in the following, i.e., to consider subsets of
N+. In the following,fi ranges over unary functions onN+, Xi over subsets ofN+, andu, x, y, z, xi, . . .
over elements ofN+. The classΣ0

n ⊆ 2N+ is the collection of all setsA ⊆ N+ of the form

A = {x ∈ N+ | (N,+,×) |= ∃y1 ∀y2 · · ·Qy
1
n, y

2
n, . . . , y

m
n : ϕ(x, y1, . . . , y

1
n, y

2
n, . . . , y

m
n )},

whereQ = ∀ (resp.Q = ∃) if n is even (resp. odd) andϕ is a quantifier-free formula over the signature
containing+ and×. The classΠ0

n is the class of all complements ofΣ0
n sets. The classesΣ0

n, Π
0
n (n ≥ 1)

make up thearithmetical hierarchy.
The analytical hierarchy extends the arithmetical hierarchy and is defined analogously using function

quantifiers: The classΣ1
n ⊆ 2N+ is the collection of all setsA ⊆ N+ of the form

A = {x ∈ N+ | (N,+,×) |= ∃f1 ∀f2 · · ·Qfn : ϕ(x, f1, . . . , fn)}, (1)
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Fig. 1. The analytical hierarchy

whereQ = ∀ (resp.Q = ∃) if n is even (resp. odd) andϕ is a first-order formula over the signature
containing+, ×, and the functionsf1, . . . , fn. The classΠ1

n is the class of all complements ofΣ1
n sets.

The classesΣ1
n, Π

1
n (n ≥ 1) make up theanalytical hierarchy, see Figure 1 for an inclusion diagram. The

class ofanalytical sets4 is exactly
⋃
n≥1Σ

1
n. An example of a non-analytical set is the set of all second-

order sentences that are true in(N,+,×) (the second-order theory of(N,+,×)).
As usual in computability theory, a Gödel numbering of all finite objects of interest allows to quantify

over, say, finite automata as well. We will always assume sucha numbering without mentioning it explicitly.

2.2 Büchi automata

For details on Büchi automata, see [GTW02,PP04,Tho97]. Let Γ be a finite alphabet. WithΓ ∗ we denote
the set of all finite words over the alphabetΓ . The set of all nonempty finite words isΓ+. An ω-word over
Γ is an infinite sequencew = a1a2a3 · · · with ai ∈ Γ . We setw[i] = ai for i ∈ N+. The set of allω-words
overΓ is denoted byΓω.

A (nondeterministic) Büchi automaton is a tupleM = (Q,Γ,∆, I, F ), whereQ is a finite set of states,
I, F ⊆ Q are resp. the sets of initial and final states, and∆ ⊆ Q × Γ × Q is the transition relation. If
Γ = Σn for some alphabetΣ, then we refer toM as ann-dimensional B̈uchi automaton overΣ. A run
of M on anω-wordw = a1a2a3 · · · is anω-word r = (q1, a1, q2)(q2, a2, q3)(q3, a3, q4) · · · ∈ ∆ω such
thatq1 ∈ I. The runr is acceptingif there exists a final state fromF that occurs infinitely often inr. The
languageL(M) ⊆ Γω defined byM is the set of allω-words for which there exists an accepting run. An
ω-languageL ⊆ Γω is regular if there exists a Büchi automatonM with L(M) = L. The class of all
regularω-languages is effectively closed under boolean operationsand projections.

Forω-wordsw1, . . . , wn ∈ Γω, theconvolutionw1 ⊗ w2 ⊗ · · · ⊗ wn ∈ (Γn)ω is defined by

w1 ⊗ w2 ⊗ · · · ⊗ wn = (w1[1], . . . , wn[1])(w1[2], . . . , wn[2])(w1[3], . . . , wn[3]) · · · .

Forw = (w1, . . . , wn), we write⊗(w) for w1 ⊗ · · · ⊗ wn.
An n-ary relationR ⊆ (Γω)n is calledω-automaticif the ω-language⊗R = {⊗(w) | w ∈ R} is

regular, i.e., it is accepted by somen-dimensional Büchi automaton overΓ . We denote withR(M) ⊆
(Γω)n the relation defined by ann-dimensional Büchi-automaton over the alphabetΓ .

To also define the convolution of finite words (and of finite words with infinite words), we identify a
finite wordu ∈ Γ ∗ with theω-wordu⋄ω, where⋄ is a new symbol. Then, foru, v ∈ Γ ∗, w ∈ Γω, we write
u⊗ v for theω-wordu ⋄ω ⊗v⋄ω andu⊗ w (resp.w ⊗ u) for u ⋄ω ⊗w (resp.w ⊗ u⋄ω).

2.3 ω-automatic structures

A signatureis a finite setτ of relational symbols together with an aritynS ∈ N+ for every relational
symbolS ∈ τ . A τ -structureis a tupleA = (A, (SA)S∈τ ), whereA is a non-empty set (theuniverseof
A) andSA ⊆ AnS . When the context is clear, we denoteSA with S, and we writea ∈ A for a ∈ A. Let
E ⊆ A2 be an equivalence relation onA. ThenE is acongruenceonA if (u1, v1), . . . , (unS

, vnS
) ∈ E

and(u1, . . . , unS
) ∈ S imply (v1, . . . , vnS

) ∈ S for all S ∈ τ . Then thequotient structureA/E can be
defined:

4 Here the notion ofanalytical setsis defined for sets of natural numbers and is not to be confusedwith theanalytic
setsstudied in descriptive set theory [Kec95].
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– The universe ofA/E is the set of allE-equivalence classes[u] for u ∈ A.
– The interpretation ofS ∈ τ is the relation{([u1], . . . , [unS

]) | (u1, . . . , unS
) ∈ S}.

Definition 2.1. Anω-automatic presentationover the signatureτ is a tuple

P = (Γ,M,M≡, (MS)S∈τ )

with the following properties:

– Γ is a finite alphabet.
– M is a Büchi automaton over the alphabetΓ .
– For everyS ∈ τ ,MS is annS-dimensional B̈uchi automaton over the alphabetΓ .
– M≡ is a 2-dimensional B̈uchi automaton over the alphabetΓ such thatR(M≡) is a congruence

relation on(L(M), (R(MS))S∈τ ).

Theτ -structure definedby theω-automatic presentationP is the quotient structure

S(P ) = (L(M), (R(MS))S∈τ )/R(M≡) .

If R(M≡) is the identity relation onΓω, thenP is called injective. A structureA is (injectively)ω-
automaticif there is an (injectively)ω-automatic presentationP with A ∼= S(P ). In [HKMN08] it
was shown that there existω-automatic structures that are not injectivelyω-automatic. We simplify our
statements by saying “given/compute an (injectively)ω-automatic structureA” for “given/compute an (in-
jectively)ω-automatic presentationP of a structureS(P ) ∼= A”. Automatic structures[KN95] are defined
analogously toω-automatic structures, but instead of Büchi automata ordinary finite automata over finite
words are used. For this, one has to pad shorter strings with the padding symbol⋄ when defining the convo-
lution of finite strings. More details onω-automatic structures can be found in [BG04,HKMN08,KRB08].
In particular, a countable structure isω-automatic if and only if it is automatic [KRB08].

Let FO[∃ℵ0 , ∃2
ℵ0
] be first-order logic extended by the quantifiers∃κx . . . (κ ∈ {ℵ0, 2

ℵ0}) saying that
there exist exactlyκ manyx satisfying. . .. The following theorem lays out the main motivation for inves-
tigatingω-automatic structures.

Theorem 2.2 ( [Blu99,KRB08]).From anω-automatic presentation

P = (Γ,M,M≡, (MS)S∈τ )

and a formulaϕ(x) ∈ FO[∃ℵ0 , ∃2
ℵ0

] in the signatureτ with n free variables, one can compute a Büchi
automaton for the relation

{(a1, . . . , an) ∈ L(M)n | S(P ) |= ϕ([a1], [a2], . . . , [an])} .

In particular, theFO[∃ℵ0 , ∃2
ℵ0

] theory of anyω-automatic structureA is (uniformly) decidable.

In this paper, agraph is a setV together with a binary relationE ⊆ V × V . If every node of the graph
G = (V,E) has at mostc successors, the graph has out-degree≤ c. If G has out-degree≤ c for some
c ∈ N, thenG hasfinite out-degree.

We will use the following decidability result forω-automatic graphs:

Theorem 2.3. It is decidable whether anω-automatic graph has finite out-degree.

Proof. LetP = (Γ,M,M≡,ME) be anω-automatic presentation of the graphG = (V,E). We define the
set

V fin = {(u, v) ∈ Γ ∗ × Γ ∗ | |u| = |v|, uvω ∈ L(M)}

and the binary relations≡fin andEfin onV fin:

(u1, v1) ≡
fin (u2, v2) ⇐⇒ |u1| = |u2| and(u1vω1 , u2v

ω
2 ) ∈ R(M≡)

(u1, v1)E
fin (u2, v2) ⇐⇒ |u1| = |u2| and(u1vω1 , u2v

ω
2 ) ∈ R(ME)
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Then it is easily seen that the graphGfin = (V fin, Efin)/≡fin is effectively automatic.
Let c ∈ N and define

Lc = {(x, y1, . . . , yc) ∈ L(M)1+c | ∀1 ≤ i ≤ c : ([x], [yi]) ∈ E
and∀1 ≤ i < j ≤ c : ([yi], [yj]) /∈ R(M≡)} .

By Theorem 2.2, the relationLc is effectivelyω-automatic.
ThenG does not have out-degree< c iff Lc 6= ∅. Since⊗Lc is regular, this is the case iff there exists

some ultimately periodic word in⊗Lc, i.e., iff there are finite wordsu, v, u1, v1, . . . , uc, vc all of the same
length with

(uvω, u1v
ω
1 , . . . , ucv

ω
c } ∈ Lc .

But this is equivalent to

∀1 ≤ i ≤ c : (u, v)Efin (ui, vi) and∀1 ≤ i < j ≤ c : (ui, vi) 6≡
fin (uj , vj) .

Equivalently, there is a node in the automatic graphGfin with at leastc successors, i.e.,Gfin does not have
out-degree< c.

HenceG has finite out-degree iffGfin has finite out-degree. But this is decidable by [Kus11, Cor. 1]
sinceGfin is effectively automatic. ⊓⊔

Definition 2.4. LetK be a class ofω-automatic presentations. Theisomorphism problemIso(K) is the set
of pairs(P1, P2) ∈ K2 of ω-automatic presentations fromK with S(P1) ∼= S(P2).

If S1 andS2 are two structures over the same signature, we writeS1 ⊎ S2 for the disjoint union of the
two structures. We useSκ to denote the disjoint union ofκ many copies of the structureS, whereκ is any
cardinal.

The disjoint union as well as the countable or uncountable power of an automatic structure are effective-
ly automatic, again. In this paper, we will only need this property (in a more explicit form) for injectively
ω-automatic structures.

Lemma 2.5. LetPi = (Γ,M i,M i
≡, (M

i
S)S∈τ ) be injectivelyω-automatic presentations of structuresSi

for i ∈ {1, 2}. One can effectively construct injectivelyω-automatic copies ofS1 ⊎S2, Sℵ0

1 , andS2ℵ0

1 such
that

– The universe of the injectivelyω-automatic copyS ofS1⊎S2 equalsL(M1)∪L(M2) and the relations
are given bySS = R(M1

S) ∪R(M
2
S) providedL(M1) andL(M2) are disjoint.

– The universe of the injectivelyω-automatic copyS of Sℵ0

1 is $∗ ⊗ L(M1) where$ is a fresh symbol.
For i ∈ N, the restriction ofS to {$i} ⊗ L(M1) forms a copy ofS1.

– The universe of the injectivelyω-automatic copyS ofS2ℵ0

1 is {$1, $2}ω⊗L(M1) where$1 and$2 are
fresh symbols. Forw ∈ {$1, $2}ω, the restriction ofS to {w} ⊗ L(M1) forms a copy ofS1.

2.4 Trees

A forest is a partial orderF = (V,≤) such that for everyx ∈ V , the set{y | y ≤ x} of ancestors ofx
is finite and linearly ordered by≤. The levelof a nodex ∈ V is |{y | y < x}| ∈ N. Theheightof F is
the supremum of the levels of all nodes inV ; it may be infinite. Note that a forest of infinite height can
be well-founded, i.e., all its paths are finite. In this paperwe only deal with forests offinite height. For all
u ∈ V , F (u) denotes the restriction ofF to the set{v ∈ V | u ≤ v} of successors ofu. We will speak of
thesubtree rooted atu. A treeis a forest that has a minimal element, called theroot. For two forestsF1, F2

we denote withF1 ⊎ F2 there disjoint union. For a set of forestsF we write
⊎
F for the disjoint union

of all forests inF ; it is again a forest. For a single forestF and a cardinalκ we writeFκ for the forest
that consists ofκ many disjoint copies ofF . We use the following simple fact: Let(Ti)i∈I and(Uj)j∈J
be two families of trees and letκ be an infinite cardinal which is greater than the cardinalityof I andJ .
There may existi 6= j with Ti ∼= Tj and similarly for the family(Uj)j∈J . Let the forestF (resp.G) be
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the disjoint union of all theTi (resp.Uj). ThenFκ ∼= Gκ if and only if (∀i ∈ I∃j ∈ J : Ti ∼= Uj and
∀j ∈ J∃i ∈ I : Ti ∼= Uj), i.e., the two families contain the same isomorphism typesof trees.

For a forestF andr not belonging to the domain ofF , we denote withr ◦ F the tree that results from
addingr to F as a new root. Theedge relationE of the forestF is the set of pairs(u, v) ∈ V 2 such
thatu is the largest element in{x | x < v}. Note that a forestF = (V,≤) of finite height is (injectively)
ω-automatic if and only if the graph(V,E) (whereE is the edge relation ofE) is (injectively)ω-automatic,
since each of these structures is first-order interpretablein the other structure. This does not hold for trees
of infinite height. For any nodeu ∈ V , we useE(u) to denote the set of children (or immediate successors)
of u.

We useTn (resp.T i
n) to denote the class of (injectively)ω-automatic presentations of trees of height at

mostn. Note that it is decidable whether a givenω-automatic presentationP belongs toTn andT i
n, resp.,

since the class of trees of height at mostn can be axiomatized in first-order logic. Also the class
⋃
n≥1 Tn

of ω-automatic presentations of trees of finite height is decidable:

Theorem 2.6. For a givenω-automatic treeT , one can decide whetherT has finite height.

Proof. Let T = (V,≤). ThenT has finite height if and only if there exists a constantc ∈ N such that for
everyu ∈ V there are at mostc manyv with v ≤ u. This is decidable by Theorem 2.3. ⊓⊔

3 ω-automatic trees of height 1 and 2

Forω-automatic trees of height 2 we need the following result:

Theorem 3.1 ( [KRB08]).Let A be anω-automatic structure and letϕ(x1, . . . , xn, y) be a formula of
FO[∃ℵ0 , ∃2

ℵ0
]. Then, for alla1, . . . , an ∈ A, the cardinality of the set{b ∈ A | A |= ϕ(a1, . . . , an, b)}

belongs toN ∪ {ℵ0, 2
ℵ0}.

Theorem 3.2. The following holds:

– The isomorphism problemIso(T1) for ω-automatic trees of height 1 is decidable.
– There exists a treeU such that{P ∈ T i

2 | S(P ) ∼= U} isΠ0
1 -hard. The isomorphism problemsIso(T2)

andIso(T i
2 ) for (injectively)ω-automatic trees of height 2 areΠ0

1 -complete.

Proof. Two trees of height 1 are isomorphic if and only if they have the same size. By Theorem 3.1, the
number of elements in anω-automatic treeS(P ) with P ∈ T1 is either finite,ℵ0 or 2ℵ0 and the exact size
can be computed using Theorem 2.2 (by checking successivelyvalidity of the sentences∃κx : x = x for
κ ∈ N ∪ {ℵ0, 2

ℵ0}5).
By [KLL11], there is a countable treeU of height2 such that the set of automatic presentations ofU is

Π0
1 -hard. Since, from an automatic presentationP ′ one can construct anω-automatic presentationP with

S(P ′) ∼= S(P ), the set ofω-automatic presentations ofU (and therefore the isomorphism problem for
ω-automatic trees of height at most2) isΠ0

1 -hard as well.
To show containment inΠ0

1 , let us take two treesT1 andT2 of height 2 and letEi be the edge relation
of Ti andri its root. Fori ∈ {1, 2} and a cardinalλ let κλ,i be the cardinality of the set of allu ∈ Ei(ri)
such that|Ei(u)| = λ. ThenT1 ∼= T2 if and only if κλ,1 = κλ,2 for any cardinalλ. Now assume that
T1 andT2 are bothω-automatic. By Theorem 3.1, for alli ∈ {1, 2} and everyu ∈ Ei(ri) we have
|Ei(u)| ∈ N ∪ {ℵ0, 2

ℵ0}. Moreover, again by Theorem 3.1, every cardinalκλ,i (λ ∈ N ∪ {ℵ0, 2
ℵ0},

i ∈ {1, 2}) belongs toN ∪ {ℵ0, 2
ℵ0} as well. Hence,T1 ∼= T2 if and only if for all κ, λ ∈ N ∪ {ℵ0, 2

ℵ0}:

T1 |= ∃κx : ((r1, x) ∈ E ∧ ∃λy : (x, y) ∈ E)

if and only if T2 |= ∃κx : ((r2, x) ∈ E ∧ ∃λy : (x, y) ∈ E) .

By Theorem 2.2, this equivalence is decidable for allκ, λ. Since it has to hold for allκ, λ, the isomorphism
of two ω-automatic trees of height 2 is expressible by aΠ0

1 -statement. ⊓⊔

5 Where∃nx : ϕ(x) for n ∈ N is shorthand for the obvious first-order formula expressingthat there are exactlyn
elements satisfyingϕ.
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4 A normal form for analytical sets

To prove our lower bound for the isomorphism problem ofω-automatic trees of heightn ≥ 3, we will
use the following normal form for analytical sets. A formulaof the formx ∈ X or x 6∈ X is called aset
constraint. The constructions in the following proof are standard.

Proposition 4.1. For every odd(resp. even) n ∈ N+ and everyΠ1
n (resp.Σ1

n) relationA ⊆ N
r
+, there

exist polynomialspi, qi ∈ N[x, y, z] and disjunctionsψi (1 ≤ i ≤ ℓ) of set constraints (on the set variables
X1, . . . , Xn and individual variablesx, y, z) such thatx ∈ A if and only if

Q1X1 Q2X2 · · ·QnXn ∃y ∀z :

ℓ∧

i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X1, . . . , Xn),

whereQ1, Q2, . . . , Qn are alternating quantifiers withQn = ∀. Moreover, if theΠ1
n (resp.Σ1

n) relation
A ⊆ N

r
+ is given by a second-order formula as in(1), then the polynomialspi, qi and the disjunctionsψi

can be effectively computed.

Proof. For notational simplicity, we present the proof only for thecase whenn is odd. The other case can
be proved in a similar way by just adding an existential quantification∃X0 at the beginning. We will write
Σm(SC,REC) for the set of first-orderΣm-formulas over set constraints and recursive predicates, where
all quantifiers range overN+. The setΠm(SC,REC) is to be understood similarly andBΣm(SC,REC) is
the set of boolean combinations of formulas fromΣm(SC,REC). With Ck : Nk+ → N+ we will denote
some computable bijection.

Fix an odd numbern. It is well known that everyΠ1
n-relationA ⊆ N

r
+ can be written as

A = {x ∈ N
r
+ | ∀f1 ∃f2 · · · ∀fn ∃y : P (x, y, f1, . . . , fn)}, (2)

whereP is a recursive predicate relative to the functionsf1, . . . , fn (see [Odi89, p. 378]). In other words,
there exists an oracle Turing-machine which computes the boolean valueP (x, y, f1, . . . , fn) from input
(x, y). The oracle Turing-machine can compute a valuefi(a) for a previously computed numbera ∈ N+

in a single step. Therefore we can easily obtain an oracle Turing-machineM which halts on inputx if and
only if ∃y : P (x, y, f1, . . . , fn) holds.

Following [Odi89], we can replace the function quantifiers in (2) by set quantifiers as follows. A func-
tion f : N+ → N+ is encoded by the set{C2(x, y) | f(x) = y}. Let func(X) be the following formula,
whereX is a set variable:

func(X) = (∀x, y, z, u, v : C2(x, y) = u ∧ C2(x, z) = v ∧ u, v ∈ X → y = z) ∧

(∀x ∃y, z : C2(x, y) = z ∧ z ∈ X)

Hence,func(X) is aΠ2(SC,REC)-formula, which expresses thatX encodes a total function onN+. Then,
the setA in (2) can be defined by the formula

∀X1 : ¬func(X1) ∨ ∃X2 : func(X2) ∧ · · · ∀Xn : ¬func(Xn) ∨R(x,X1, . . . , Xn). (3)

The predicateR can be derived from the oracle Turing-machineM as follows: Construct fromM a new
oracle Turing-machineN with oracle setsX1, . . . , Xn. If the machineM wants to compute the value
fi(a), then the machineN starts to enumerate allb ∈ N+ until it finds b ∈ N+ with C2(a, b) ∈ Xi. Then
it continues its computation withb for fi(a). Then the predicateR(x,X1, . . . , Xn) expresses that machine
N halts on inputx.

Fix a computable bijectionD : N+ → Fin(N+), whereFin(N+) is the set of all finite subsets ofN+.
Let in(x, y) be an abbreviation forx ∈ D(y). This is a computable predicate.

Next, consider the predicateR(x,X1, . . . , Xn). In every terminating run of the machineN on input
x, the machineN makes only finitely many oracle queries. Hence, the predicate R(x,X1, . . . , Xn) is
equivalent to

∃b ∃(s1, . . . , sn) : S(x, b, (s1, . . . , sn)) ∧
n∧

i=1

∀z ≤ b (in(z, si) ↔ z ∈ Xi),
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where the predicateS is derived from the Turing-machineN as follows: LetT be the Turing-machine that
on input(x, b, (s1, . . . , sn)) behaves asN , but if N asks the oracle whetherz ∈ Xi, thenT first checks
whetherz ≤ b (if not, thenT diverges) and then checks, whetherin(z, si) holds. ThenS(x, b, (s1, . . . , sn))
if and only if T halts on input(x, b, (s1, . . . , sn)). Hence, the predicateS(x, b, (s1, . . . , sn)) is recursively
enumerable, i.e., can be described by a formula fromΣ1(SC,REC). Hence the predicateR can be described
by a formula fromΣ2(SC,REC).

Note that the formula from (3) is equivalent with a formula

∀X1∃X2 · · · ∀Xn : ϕ(x,X), (4)

whereϕ is a boolean combination ofR and formulas of the formfunc(Xi). Since all these formulas belong
toΠ2(SC,REC) ∪Σ2(SC,REC), the formulaϕ belongs toBΣ2(SC,REC) ⊆ Π3(SC,REC). Hence (4) is
equivalent to

∀X1 ∃X2 · · · ∀Xn∀a ∃b ∀c : β, (5)

whereβ is a boolean combination of recursive predicates and set constraints.
We can eliminate the quantifier block∀a by merging it with∀Xn: First, we can reduce∀a to a single

quantifier∀a. For this, assume that the length of the tuplea is k. Then,∀a · · · in (5) can be replaced by
∀a ∃a : Ck(a) = a ∧ · · · . SinceCk(a) = a is again recursive and since we can merge∃a ∃b into a single
block of quantifiers∃b, we obtain indeed an equivalent formula of the form

∀X1 ∃X2 · · · ∀Xn ∀a ∃b ∀c : β′, (6)

whereβ′ is a boolean combination of recursive predicates and set constraints.
Next, we encode the pair(Xn, a) by the set{2x | x ∈ Xn} ∪ {2a+ 1}. Letα(X) be the formula

α(X) = (∀x, y, x′, y′ : x = 2x′ + 1 ∧ y = 2y′ + 1 ∧ x, y ∈ X → x = y) ∧

(∃x, u : x ∈ X ∧ x = 2u+ 1).

Hence,α(X) expresses thatX contains exactly one odd number. Hence, we obtain a formula equivalent to
(6) by

– replacing∀Xn ∀a · · · with ∀Xn : ¬α(Xn) ∨ ∃a, a′ : a′ ∈ Xn ∧ a′ = 2a+ 1 ∧ · · · and
– replacing every existential quantifier∃bi · · · (resp. universal quantifier∀ci · · · ) in (6) with ∃bi ∃b

′
i :

b′i = 2bi ∧ · · · (resp.∀ci ∀c′i : c
′
i 6= 2ci ∨ · · · ), and

– replacing every sub-formulaa ∈ Xn, bi ∈ Xn, or ci ∈ Xn with a′ ∈ Xn, b′i ∈ Xn, or c′i ∈ Xn, resp..

All new quantifiers can be merged with either the block∃b or the block∀c in (6). We now have obtained
an equivalent formula of the form

∀X1 ∃X2 · · · ∀Xn ∃b ∀c : β′′, (7)

whereβ′′ is a boolean combination of recursive predicates and set constraints.
The block∃b · · · can be replaced by∃b ∀b : Cℓ(b) 6= b∨ · · · , whereℓ is the length of the tupleb. Since

Cℓ(b) 6= b is a computable predicate, this results in an equivalent formula of the form

∀X1 ∃X2 · · · ∀Xn ∃b ∀c : β′′′,

whereβ′′′ is a boolean combination of recursive predicates and set constraints.
Note that the set of recursive predicates is closed under boolean combinations and that the set of set

constraints is closed under negation. This allows to obtainan equivalent formula of the form

∀X1 ∃X2 · · · ∀Xn ∃b ∀c :
ℓ∧

i=1

(Ri ∨ ψi),

where theRi are recursive predicates and theψi are disjunctions of set constraints.
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Since the recursive predicatesRi are co-Diophantine (cf. [Mat93]), there are polynomialspi, qi ∈
N[b, c, z] such thatRi(b, c) is equivalent to∀z : pi(b, c, z) 6= qi(b, c, z). ReplacingRi in the above formula
by this equivalent formula and merging the new universal quantifiers∀z with ∀c results in a formula as
required.

Since all the steps in our construction can be made effective, the second part of the proposition con-
cerning effectiveness follows. ⊓⊔

It is known that the first-order quantifier block∃y ∀z in Proposition 4.1 cannot be replaced by a block with
only one type of first-order quantifiers, see e.g. [Odi89, p. 379].

5 ω-automatic trees of height at least4

Our main technical result for injectivelyω-automatic trees of height at least4, whose proof occupies Sec-
tions 5.1 and 5.2, is the following:

Proposition 5.1. From a givenn ≥ 1, one can compute injectivelyω-automatic treesU [0] andU [1] of
heightn + 3 such that the following holds: From a given setA ⊆ N+ that isΠ1

n if n is odd andΣ1
n if n

is even6 and a givenx ∈ N+ one can compute an injectivelyω-automatic treeT [x] of heightn + 3 with
T [x] ∼= U [0] if and only ifx ∈ A andT [x] ∼= U [1] otherwise.

Before we prove Proposition 5.1, let us first state some easy consequences.

Corollary 5.2. From givenn ≥ 1 andΘ ∈ {Σ,Π}, one can compute an injectivelyω-automatic tree
Un,Θ of heightn+ 3 such that the set{P ∈ T i

n+3 | S(P ) ∼= Un,Θ} is hard forΘ1
n.

Proof. Let n ≥ 1 be odd. LetA be an arbitrary set fromΠ1
n and setUn,Π = U [0] andUn,Σ = U [1]. Then

the mappingx 7→ T [x] is a reduction fromA to {P ∈ T i
n+3 | S(P ) ∼= Un,Π} and, at the same time, a

reduction from theΣ1
n-setN+ \ A to {P ∈ T i

n+3 | S(P ) ∼= Un,Σ}. SinceA was chosen arbitrary from
Π1
n, the first statement follows forn odd. If n is even, we can proceed similarly exchanging the roles of

U [0] andU [1]. ⊓⊔

Corollary 5.3. The following holds for alln ≥ 1:

– The isomorphism problemIso(T i
n+3) for the class of injectivelyω-automatic trees of heightn + 3 is

hard for both the classesΠ1
n andΣ1

n.
– The second-order theory of(N,+,×) can be reduced to the isomorphism problemIso(

⋃
n≥1 T

i
n)

for the class of all injectivelyω-automatic trees of finite height. Hence, the isomorphism problem
Iso(
⋃
n≥1 T

i
n) is not analytical.

We now start to prove Proposition 5.1. LetA be a set (given by a second-order formula) that isΠ1
n if n

is odd andΣ1
n otherwise. By Proposition 4.1 it can be written effectivelyin the form

A = {x ∈ N+ | Q1X1 · · ·QnXn∃y ∀z :
ℓ∧

i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)}, (8)

where

– Q1, Q2, . . . , Qn are alternating quantifiers withQn = ∀,
– pi, qi (1 ≤ i ≤ ℓ) are polynomials inN[x, y, z] wherez has lengthk, and
– everyψi (1 ≤ i ≤ ℓ) is a disjunction of set constraints on the set variablesX1, . . . , Xn and the

individual variablesx, y, z.

6 It is assumed that the setA is given by a second-order formula as in (1).
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Letϕ−1(x, y,X1, . . . , Xn) be the formula

∀z :
ℓ∧

i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X) .

For0 ≤ m ≤ n, we will also consider the formulaϕm(x,X1, . . . , Xn−m) defined by

Qn+1−mXn+1−m · · ·QnXn ∃y : ϕ−1(x, y,X1, . . . , Xn)

such thatϕ0(x,X1, . . . , Xn) is a first-order formula andϕn(x) holds if and only ifx ∈ A.
To prove Proposition 5.1, we construct by induction on0 ≤ m ≤ n height-(m+3) treesTm[X1, . . . , Xn−m, x]

andUm[i] whereX1, . . . , Xn−m ⊆ N+, x ∈ N+, andi ∈ {0, 1} such that the following holds:

∀X ∈ (2N+)n−m ∀x ∈ N+ : Tm[X, x] ∼=

{
Um[0] if ϕm(x,X) holds

Um[1] otherwise
(9)

SettingT [x] = Tn[x], U [0] = Un[0], andU [1] = Un[1] and effectively constructing fromx, n, and the
formula for the setA injectivelyω-automatic presentations forT [x], U [0], andU [1] then proves Proposi-
tion 5.1.

5.1 Construction of trees

In the following, we will use theinjectivepolynomial function

C : N2
+ → N+ with C(x, y) = (x+ y)2 + 3x+ y. (10)

Fore1, e2 ∈ N+, letS[e1, e2] denote the height-1 tree containingC(e1, e2) leaves. For(X, x, y, z, zk+1) ∈
(2N+)n×N

k+3
+ and1 ≤ i ≤ ℓ, define the following height-1 tree, whereℓ, pi, andqi refer to the definition

of the setA above:7

T ′[X, x, y, z, zk+1, i] =

{
S[1, 2] if ψi(x, y, z,X)

S[pi(x, y, z) + zk+1, qi(x, y, z) + zk+1] otherwise.
(11)

Next, we define the following height-2 trees, whereκ ∈ N+ ∪ {ω} (we consider the natural order on
N+ ∪ {ω} with n < ω for all n ∈ N+):

T ′′[X, x, y] = r ◦

(⊎
{S[e1, e2] | e1 6= e2} ⊎⊎
{T ′[X, x, y, z, zk+1, i] | z ∈ N

k
+, zk+1 ∈ N+, 1 ≤ i ≤ ℓ}

)ℵ0

(12)

U ′′[κ] = r ◦
(⊎

{S[e1, e2] | e1 6= e2} ⊎
⊎

{S[e, e] | κ ≤ e < ω}
)ℵ0

. (13)

Note that all the treesT ′′[X, x, y] andU ′′[κ] are build from trees of the formS[e1, e2]. Furthermore, if
S[e, e] appears as a building block, thenS[e+ a, e+ a] also appears as one for alla ∈ N (this is the reason
for introducing the additional variablezk+1 in (11)). In addition, any building blockS[e1, e2] appears either
ℵ0 many times or not at all. In this sense,U ′′[κ] encodes the set

{(e1, e2) | e1 6= e2} ∪ {(e, e) | κ ≤ e < ω}

andT ′′[X, x, y] encodes the set

{(e1, e2) | e1 6= e2}∪{(pi(x, y, z)+ zk+1, qi(x, y, z)+ zk+1) | 1 ≤ i ≤ ℓ, zk+1 ∈ N+, z ∈ N
k
+ such that

ψi(x, y, z,X) does not hold} .

These observations allow to prove the following:

7 The choice ofS[1, 2] in the first case is arbitrary. AnyS[a, b] with a 6= b would work.
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Lemma 5.4. LetX ∈ (2N+)n andx, y ∈ N+. Then the following hold:

(a) T ′′[X, x, y] ∼= U ′′[κ] for someκ ∈ N+ ∪ {ω}
(b) T ′′[X, x, y] ∼= U ′′[ω] if and only ifϕ−1(x, y,X) holds

Proof. Let us start with property (b). Supposeϕ−1(x, y,X) holds. Letz ∈ N
k
+, zk+1 ∈ N, and1 ≤ i ≤ ℓ.

Thenpi(x, y, z) 6= qi(x, y, z) orψi(x, y, z,X) holds. In any case, there are natural numberse1 6= e2 with
T ′[X, x, y, z, zk+1, i] = S[e1, e2]. HenceT ′′[X, x, y] ∼= U ′′[ω].

Conversely, suppose we haveT ′′[X, x, y] ∼= U ′′[ω]. Let z ∈ N
k, zk+1 ∈ N, and1 ≤ i ≤ ℓ. Then

the treeT ′[X, x, y, z, zk+1, i] is a height-2 subtree ofT ′′[X, x, y] ∼= U ′′[ω]. This means that there are
natural numberse1 6= e2 with T ′[X, x, y, z, zk+1, i] ∼= S[e1, e2]. By (11), this impliespi(x, y, z) 6=
qi(x, y, z) ∨ ψi(x, y, z,X). Hence the formula

∀z :
ℓ∧

i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)

holds.
Now it suffices to prove statement (a) in caseϕ−1(x, y,X) does not hold. Then there exist somez ∈ N

k
+

and1 ≤ i ≤ ℓ with
pi(x, y, z) = qi(x, y, z) ∧ ¬ψi(x, y, z,X) .

Hence there is somee ∈ N+ such thatS[e, e] appears in the definition ofT ′′[X, x, y]. Letm = min{e ∈
N+ | S[e, e] appears inT ′′[X, x, y]}. Then, for alla ∈ N, alsoS[m + a,m + a] appears inT ′′[X, x, y].
HenceT ′′[X, x, y] ∼= U ′′[m]. ⊓⊔

In a next step, we collect the treesT ′′[X, x, y] andU ′′[κ] into the treesT0[X, x], U0[0], andU0[1] as
follows:

T0[X, x] = r ◦
(⊎

{U ′′[m] | m ∈ N+} ⊎
⊎

{T ′′[X, x, y] | y ∈ N+}
)ℵ0

(14)

U0[0] = r ◦
(⊎

{U ′′[κ] | κ ∈ N+ ∪ {ω}}
)ℵ0

(15)

U0[1] = r ◦
(⊎

{U ′′[m] | m ∈ N+}
)ℵ0

(16)

By Lemma 5.4(a), these trees are build from copies of the treesU ′′[κ] (and are therefore of height 3), each
appearing eitherℵ0 many times or not at all. The following lemma states (9) form = 0:

Lemma 5.5. LetX ∈ (2N+)n andx ∈ N+. Then

T0[X, x] ∼=

{
U0[0] if ϕ0(x,X) holds and

U0[1] otherwise.

Proof. If T0[X, x] ∼= U0[0], then there must be somey ∈ N+ such thatT ′′[X, x, y] ∼= U ′′[ω]. By Lem-
ma 5.4(b), this means thatϕ0(x,X) holds.

On the other hand, supposeT0[X, x] 6∼= U0[0]. ThenT ′′[X, x, y] 6∼= U ′′[ω] for all y ∈ N+. From
Lemma 5.4(b) again, we obtain for ally ∈ N+: T ′′[X, x, y] ∼= U ′′[my] for somemy ∈ N+. Hence
T0[X, x] ∼= U0[1] in this case. ⊓⊔

Now, we come to the induction step in the construction of our trees. Suppose that for some0 ≤ m < n
we have height-(m + 3) treesTm[X1, . . . , Xn−m, x], Um[0] andUm[1] satisfying (9). LetX stand for
(X1, . . . , Xn−m−1) and letα = m mod 2. We define the following height-(m+ 4) trees:

Tm+1[X, x] = r ◦
(
Um[α] ⊎

⊎{
Tm[X,Xn−m, x] | Xn−m ⊆ N+

})2ℵ0

(17)

Um+1[i] = r ◦ (Um[α] ⊎ Um[i])
2ℵ0

for i ∈ {0, 1} (18)

Note that the treesTm+1[X, x], Um+1[0], andUm+1[1] consist of2ℵ0 many copies ofUm[α] and possibly
2ℵ0 many copies ofUm[1− α].
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Lemma 5.6. LetX1, . . . , Xn−m−1 ⊆ N+ andx ∈ N+. Then

Tm+1[X1, . . . , Xn−m−1, x] ∼=

{
Um+1[0] if ϕm+1(x,X1, . . . Xn−m−1) holds

Um+1[1] otherwise.

Proof. We have to handle the cases of odd and evenm separately and start assumingm to be even (i.e.,
α = 0) such that the outermost quantifierQn−m of the formulaϕm+1(x,X1, . . . , Xn−m−1) is universal.

Suppose thatϕm+1(X1, . . . , Xn−m−1, x) holds. Then, by the inductive hypothesis, for eachXn−m ⊆
N+, Tm[X1, . . . , Xn−m, x] ∼= Um[0]. Hence all height-(m + 3) subtrees ofTm+1[X1, . . . , Xn−m−1, x]
are isomorphic toUm[0] and thus

Tm+1[X1, . . . , Xn−m−1, x] ∼= r ◦ Um[0]2
ℵ0

= Um+1[0] .

On the other hand, suppose that¬ϕm+1(X1, . . . , Xn−m−1, x) holds. Then there exists some setXn−m

such that¬ϕm(X1, . . . , Xn−m, x) is true. Hence, by the induction hypothesis,

Tm(X1, . . . , Xn−m, x) ∼= Um[1],

i.e.,Tm+1(X1, . . . , Xn−m−1, x) contains one (and therefore2ℵ0 many) height-(m+3) subtrees isomorphic
toUm[1]. This impliesTm+1(X1, . . . , Xn−m−1, x) ∼= Um+1[1] sincem is even.

The arguments form odd are very similar and therefore left to the reader. ⊓⊔

The following lemma follows from Lemma 5.6 withm = n − 1 and the fact thatϕn(x) holds if and only
if x ∈ A.

Lemma 5.7. For all x ∈ N+, we haveTn[x] ∼= Un[0] if x ∈ A andTn[x] ∼= Un[1] otherwise.

5.2 Injectiveω-automaticity

Injectivelyω-automatic presentations of the treesTm[X, x], Um[0], andUm[1] will be constructed induc-
tively. Note that the construction ofTm+1[X, x] involves all the treesTm[X,Xn−m, x] for Xn−m ⊆ N+.
Hence we needone single injectivelyω-automatic presentationfor the forest consisting of all these trees.
Therefore, we will deal with forests. We will prove Lemma 5.8, for which we need the following defini-
tions.

Let0, 1, a, andb be symbols. For anω-languageL, we write⊗k(L) for ⊗(Lk). ForX ⊆ N+, letwX ∈
{0, 1}ω be the characteristic word (i.e.,wX [i] = 1 if and only if i ∈ X) and, forX = (X1, . . . , Xn) ∈
(2N+)n, writewX for the convolution of the wordswXi

.

Lemma 5.8. From each0 ≤ m ≤ n, one can effectively construct an injectivelyω-automatic forestHm

such that

– the set of roots ofHm is
(
⊗n−m({0, 1}

ω)⊗ a+
)
∪ {ε, b},

– Hm(wX ⊗ ax) ∼= Tm[X, x] for all X ∈ (2N+)n−m andx ∈ N+,
– Hm(ε) ∼= Um[0], and
– Hm(b) ∼= Um[1].

Before we prove Lemma 5.8, let us first deduce Proposition 5.1(and therefore Corollary 5.2). Note that
Tn[x] is the tree inHn rooted atax. HenceTn[x] is (effectively) an injectivelyω-automatic tree. Now
Lemma 5.7 finishes the proof of Proposition 5.1.

We will construct the forestHm+1 fromHm by the following general strategy: Add a set of new roots
toHm and connect them to some of the old rootswhich results in a directed acyclic graph(or dag) and not
necessarily in a forest. The forestHm will then be the unfolding of this dag.

Theheightof a dagD is the length (number of edges) of a longest directed path inD. We only consider
dags of finite height. Aroot of a dag is a node without incoming edges. A dagD = (V,E) can be unfolded
into a forestunfold(D) in the usual way: Nodes ofunfold(D) are directed paths inD that start in a root
and the order relation is the prefix relation between these paths. For a rootv ∈ V of D, we define the
treeunfold(D, v) as the restriction ofunfold(D) to those paths that start inv. We will make use of the
following lemma whose proof is based on the immediate observation that the set of convolutions of paths
in D is again a regularω-language.
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Lemma 5.9. From a givenk ∈ N and an injectivelyω-automatic presentation for a dagD of height at
mostk, one can construct effectively an injectivelyω-automatic presentation forunfold(D) such that the
roots ofunfold(D) coincide with the roots ofD andunfold(D, r) = (unfold(D))(r) for any rootr.

Proof. LetD = (V,E) = S(P ), i.e.,V is anω-regular language and the binary relationE ⊆ V × V is ω-
automatic. The universe for our injectivelyω-automatic copy ofunfold(D) is the setL of all convolutions
v0 ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vm, wherev0 is a root and(vi, vi+1) ∈ E for all 0 ≤ i < m. Since the dagD
has height at mostk, we havem ≤ k. Since the edge relation ofD is ω-automatic and since the set of all
roots inD is FO-definable and henceω-regular by Theorem 2.2,L is indeed anω-regular set. Moreover,
the edge relation ofunfold(D) becomes clearlyω-automatic onL. ⊓⊔

For a symbola and a tuplee = (e1, . . . , ek) ∈ N
k
+, we writeae for theω-word

ae1 ⊗ ae2 ⊗ · · · ⊗ aek = (ae1⋄ω)⊗ (ae2⋄ω)⊗ · · · ⊗ (aek⋄ω) .

The following lemma was shown in [KLL11] for finite words instead ofω-words.

Lemma 5.10. Given a non-zero polynomialp(x) ∈ N[x] in k variables, one can effectively construct a
Büchi automatonB[p(x)] over the alphabet{a, ⋄}k withL(B[p(x)]) = ⊗k(a+) such that for allc ∈ N

k
+ :

B[p(x)] has exactlyp(c) accepting runs on inputac.

Proof. The lemma is shown by induction on the construction of the polynomial p. Büchi automata for
the polynomialsp(x) = 1 andp(x) = xi are easily build. Now letB[p1(x)] andB[p2(x)] be already
constructed. Then it is easily seen that the disjoint union of these two Büchi-automata can serve has
B[p1(x) + p2(x)]. The construction of the Büchi-automatonB[p1(x) · p2(x)] uses Choueka’s flag con-
struction (cf. [Cho74,Tho90,PP04]):

LetB[pi(x)] = (Qi, Γ, Ii, ∆i, Fi) for i ∈ {1, 2} and set

B[p1(x) · p2(x)] = (Q1 ×Q2 × {1, 2}, Γ, I1 × I2 × {1}, ∆, F1 ×Q2 × {1}) ,

where((p1, p2,m), a, (q1, q2, n)) ∈ ∆ if and only if

– (p1, a, q1) ∈ ∆1 and(p2, a, q2) ∈ ∆2, and
– if pm 6∈ Fm thenn = m and ifpm ∈ Fm thenn = 2−m.

Hence the runs ofB[p1(x) ·p2(x)] on theω-wordac consist of a run ofB[p1(x)] and ofB[p2(x)] onac. The
“flag” m ∈ {1, 2} in (p1, p2,m) signals that the automaton waits for an accepting state ofB[pm(x)]. As
soon as such an accepting state is seen, the flag toggles its value. Hence accepting runs ofB[p1(x) · p2(x)]
correspond to pairs of accepting runs ofB[p1(x)] and ofB[p2(x)]. Therefore, the number of accepting runs
of B[p1(x) · p2(x)] onac equals the product of the numbers of accepting runs ofB[p1(x)] and ofB[p2(x)]
onac. ⊓⊔

Lemma 5.11. From a given boolean combinationψ(x1, . . . , xm, X1, . . . , Xn) of set constraints on set
variablesX1, . . . , Xn and individual variablesx1, . . . , xm one can construct effectively a deterministic
Büchi automatonAψ over the alphabet{0, 1}n × {a, ⋄}m such that for allX1, . . . , Xn ⊆ N+, c ∈ N

m
+ ,

the following holds:

wX1
⊗ · · · ⊗ wXn

⊗ ac ∈ L(Aψ) ⇐⇒ ψ(c,X1, . . . , Xn) holds.

Proof. Since set constraints are closed under negation, we can assume thatψ is a positive boolean com-
bination. Then the claim is trivial for a single set constraint. Sinceω-languages accepted by deterministic
Büchi automata are effectively closed under intersectionand union, the result follows. ⊓⊔

In the next lemma,k, ℓ, n, pi, andψi (1 ≤ i ≤ ℓ) are taken from the definition of ourΠ1
n-setA in (8).

Lemma 5.12. From 1 ≤ i ≤ ℓ, one can construct a B̈uchi automatonAi with the following property:
For all X ∈ (2N+)n, z ∈ N

k
+, andx, y, zk+1 ∈ N+, the number of accepting runs ofAi on the word

wX ⊗ a(x,y,z,zk+1) equals
{
C(1, 2) if ψi(x, y, z,X) holds

C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) otherwise.
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Proof. By Lemma 5.10, one can construct a Büchi automatonBi, which has preciselyC(pi(x, y, z) +
zk+1, qi(x, y, z) + zk+1) many accepting runs on theω-word wX ⊗ a(x,y,z,zk+1). Secondly, one builds
deterministic Büchi automataCi andCi accepting a wordwX ⊗ a(x,y,z,zk+1) if and only if the disjunction
ψi(x, y, z,X) of set constraints is satisfied (not satisfied, resp.) which is possible by Lemma 5.11.

Let A be the result of applying the flag construction toCi andBi. If X ∈ (2N+)n, z ∈ N
k
+, and

x, y, zk+1 ∈ N+, then the number of accepting runs ofA on the wordwX ⊗ a(x,y,z,zk+1) equals

{
0 if ψi(x, y, z,X) holds

C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) otherwise.

Hence the disjoint union ofA andC(1, 2) many copies ofCi has the desired properties. ⊓⊔

Lemma 5.13. One can construct an injectivelyω-automatic forestH′ = (L′, E′) of height 1 such that

– the set of roots equals{1, . . . , ℓ} ⊗ (⊗n({0, 1}ω))⊗ (⊗k+3(a
+)) ∪ (b+ ⊗ b+),

– for 1 ≤ i ≤ ℓ,X ∈ (2N+)n, x, y, zk+1 ∈ N+ andz ∈ N
k
+, we have

H′(i ⊗ wX ⊗ a(x,y,z,zk+1)) ∼= T ′[X, x, y, z, zk+1, i] and

– for e1, e2 ∈ N+, we have
H′(b(e1,e2)) ∼= S[e1, e2] .

Proof. Using Lemma 5.10 (with the polynomialp = C(x1, x2)) and Lemma 5.12, we can construct a
Büchi automatonA accepting{1, . . . , ℓ}⊗(⊗n({0, 1}ω))⊗(⊗k+3(a

+))∪(b+⊗b+) such that the number
of accepting runs ofA on theω-wordu equals

(i) C(e1, e2) if u = b(e1,e2),
(ii) C(1, 2) if u = i⊗ wX ⊗ a(x,y,z,zk+1) such thatψi(x, y, z,X) holds, and

(iii) C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) if u = i⊗wX ⊗ a(x,y,z,zk+1) such thatψi(x, y, z,X) does
not hold.

LetRunA denote the set of accepting runs ofA. Note that this is a regularω-language over the alphabet∆
of transitions ofA. Now the forestH′ is defined as follows:

– Its universe equalsL(A) ∪ RunA.
– There is an edge(u, v) if and only if v ∈ RunA is a accepting run ofA onu ∈ L(A).

It is clear thatH′ is an injectivelyω-automatic forest of height 1 with set of rootsL(A) as required. Note
that (i)-(iii) describe the number of leaves of the height-1tree rooted atu ∈ L(A). By (i), we therefore
get immediatelyH′(b(e1,e2)) ∼= S[e1, e2]. Comparing the numbers in (ii) and (iii) with the definition of the
treeT ′[X, x, y, z, zk+1, i] in (11) completes the proof. ⊓⊔

FromH′ = (L′, E′), we build an injectivelyω-automatic dagD as follows:

– The domain ofD is the set(⊗n({0, 1}ω)⊗ a+ ⊗ a+) ∪ b∗ ∪
(
$∗ ⊗ L′).

– Foru, v ∈ L′, the words$i ⊗ u and$j ⊗ v are connected if and only ifi = j and(u, v) ∈ E′. In other
words, the restriction ofD to $∗ ⊗ L′ is isomorphic toH′ℵ0 .

– For allX ∈ (2N+)n, x, y ∈ N+, the new rootwX ⊗ a(x,y) is connected to all nodes in

$∗ ⊗
(
({1, . . . , ℓ} ⊗ wX ⊗ a(x,y) ⊗ (⊗k+1(a

+))) ∪ {b(e1,e2) | e1 6= e2}
)
.

– The new rootε is connected to all nodes in$∗ ⊗ {b(e1,e2) | e1 6= e2}.
– For allm ∈ N+, the new rootbm is connected to all nodes in

$∗ ⊗ {b(e1,e2) | e1 6= e2 ∨ e1 = e2 ≥ m}.
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It is easily seen thatD is an injectivelyω-automatic dag. LetH′′ = unfold(D) which is also injectively
ω-automatic by Lemma 5.9. Then, for allX ∈ (2N+)n, x, y,m ∈ N+, we have:

H′′(wX ⊗ a(x,y)) ∼= (wX ⊗ a(x,y)) ◦

(⊎
{H′(i⊗ wX ⊗ a(x,y,z)) | 1 ≤ i ≤ ℓ, z ∈ N

k+1
+ }⊎

⊎
{H′(b(e1,e2)) | e1 6= e2}

)ℵ0

Lem. 5.13
∼= r ◦

(⊎
{T ′[X, x, y, z, i] | z ∈ N

k+1
+ , 1 ≤ i ≤ ℓ}⊎

⊎
{S[e1, e2] | e1 6= e2}

)ℵ0

(12)
= T ′′[X, x, y]

H′′(ε) ∼= ε ◦
(⊎

{H′(b(e1,e2)) | e1 6= e2}
)ℵ0

Lem. 5.13
∼= r ◦

(⊎
{S[e1, e2] | e1 6= e2}

)ℵ0

(13)
= U ′′[ω]

H′′(bm) ∼= bm ◦
(⊎

{H′(b(e1,e2)) | e1 6= e2 ∨ e1 = e2 ≥ m}
)ℵ0

Lem. 5.13
∼= r ◦

(⊎
{S[e1, e2] | e1 6= e2 ∨ e1 = e2 ≥ m}

)ℵ0

(13)
= U ′′[m]

FromH′′ = (L′′, E′′) we build an injectivelyω-automatic dagD0 as follows:

– The domain ofD0 is the set(⊗n({0, 1}ω)⊗ a+) ∪ {ε, b} ∪ ($∗ ⊗ L′′).

– For u, v ∈ L′′, the words$i ⊗ u and$j ⊗ v are connected by an edge if and only ifi = j and
(u, v) ∈ E′′, i.e., the restriction ofD0 to $∗ ⊗ L′′ is isomorphic toH′′ℵ0 .

– ForX ∈ (2N+)n, x ∈ N+ we connect the new rootwX ⊗ ax to all nodes in

$∗ ⊗
(
(wX ⊗ ax ⊗ a+) ∪ b+

)
⊆ $∗ ⊗ L′′.

– We connect the new rootε to all nodes in$∗ ⊗ b∗.

– We connect the new rootb to all nodes in$∗ ⊗ b+.

ThenD0 is an injectivelyω-automatic dag of height 3 and we setH0 = unfold(D0). We have the following:

– The set of roots ofH0 is (⊗n({0, 1}ω)⊗ a+) ∪ {ε, b}.

– For allX ∈ (2N+)n, x ∈ N+ we have:
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H0(wX ⊗ ax) ∼= (wX ⊗ ax) ◦

(⊎
{H′′(bm) | m ∈ N+}⊎⊎
{H′′(wX ⊗ ax ⊗ ay) | y ∈ N+}

)2ℵ0

∼= r ◦
(⊎

{U ′′[m] | m ∈ N+} ⊎
⊎

{T ′′[X, x, y] | y ∈ N+}
)ℵ0

(14)
= T0[X, x]

H0(ε) ∼= ε ◦
(⊎

{H′′(bm) | m ∈ N}
)ℵ0

∼= r ◦
(⊎

{U ′′[κ] | κ ∈ N+ ∪ {ω}}
)ℵ0

(15)
= U0[0]

H0(b) ∼= b ◦
(⊎

{H′′(bm) | m ∈ N+}
)ℵ0

∼= r ◦
(⊎

{U ′′[m] | m ∈ N+}
)ℵ0

(16)
= U0[1]

These identities settle the induction base for the proof of Lemma 5.8.
We now construct the forestsH1,H2,H3, . . . ,Hn inductively. For0 ≤ m < n, suppose we have

obtained an injectivelyω-automatic forestHm = (Lm, Em) as described in Lemma 5.8. The forestHm+1

is constructed as follows, whereα = (m mod 2) ∈ {0, 1}:

– The domain ofHm+1 is (⊗n−m−1({0, 1}ω)⊗ a+) ∪ {ε, b} ∪ ({$1, $2}ω ⊗ Lm).
– Foru, v ∈ Lm andu′, v′ ∈ {$1, $2}ω, the wordsu′⊗u andv′⊗v are connected by an edge if and only

if u′ = v′ and(u, v) ∈ Em, i.e., the restriction ofDm+1 to {$1, $2}ω ⊗ Lm is isomorphic toH2ℵ0

m .
– For allX ∈ (2N+)n−m−1 and allx ∈ N+, connect the new rootwX ⊗ ax to all nodes from

{$1, $2}
ω ⊗

(
wX ⊗ {0, 1}ω ⊗ ax ∪ bα

)
.

– Connect the new rootε to all nodes from{$1, $2}ω ⊗ {ε, bα}.
– Connect the new rootb to all nodes from{$1, $2}ω ⊗ {b, bα}.

In this way we obtain the injectivelyω-automatic forestHm+1 such that:

– The set of roots ofHm+1 is (⊗n−m−1({0, 1}ω)⊗ a+) ∪ {ε, b}.
– ForX ∈ (2N+)n−m−1 andx ∈ N+ we have:

Hm+1(wX ⊗ ax) ∼= (wX ⊗ ax) ◦
(⊎

{Hm(wX ⊗ wXn−m
⊗ ax) | Xn−m ⊆ N+} ⊎ Hm(bα)

)2ℵ0

(Ind.)
∼= r ◦

(⊎
{Tm[X,Xn−m, x] | Xn−m ⊆ N+} ⊎ Um[α]

)2ℵ0

(17)
∼= Tm+1[X, x]

Hm+1(ε) ∼= ε ◦ (Hm(ε) ⊎Hm(bα))2
ℵ0

(Ind.)
∼= r ◦ (Um[0] ⊎ Um[α])2

ℵ0

(18)
∼= Um+1[0]

Hm+1(b) ∼= b ◦ (Hm(b) ⊎Hm(bα))
2ℵ0

(Ind.)
∼= r ◦ (Um[1] ⊎ Um[α])

2ℵ0

(18)
∼= Um+1[1]
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This concludes the proof of Lemma 5.8 and hence of Proposition 5.1.

6 ω-automatic trees of height 3

Recall that the isomorphism problemIso(T i
2 ) is arithmetical by Theorem 3.2 and thatIso(T i

4 ) is not by
Corollary 5.3. In this section, we modify the proof of Proposition 5.1 in order to show that alreadyIso(T i

3 )
is not arithmetical:

Theorem 6.1. There exists a treeU such that{P ∈ T i
3 | S(P ) ∼= U} isΠ1

1 -hard. Hence the isomorphism
problemIso(T i

3 ) for injectivelyω-automatic trees of height 3 isΠ1
1 -hard.

So letA ⊆ N+ be some set fromΠ1
1 . By Proposition 4.1 it can be written as

A = {x ∈ N+ : ∀X ∃y ∀z :
ℓ∧

i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)},

wherepi andqi are polynomials with coefficients inN andψi is a disjunction of set constraints. As in
Section 5, letϕ−1(x, y,X) denote the subformula starting with∀z, and letϕ0(x,X) = ∃y : ϕ−1(x, y,X).
We reuse the treesT ′[X, x, y, z, zk+1, i] of height1 defined in (11). Recall that they are all of the form
S[e1, e2] and therefore have an even number of leaves (since the range of the polynomialC : N2

+ → N+

from (10) consists of even numbers). Fore ∈ N+, letS[e] denote the height-1 tree with2e+ 1 leaves.
Recall that the treeT ′′[X, x, y] from (12) encodes the set

{(e1, e2) | e1 6= e2}∪{(pi(x, y, z)+ zk+1, qi(x, y, z)+ zk+1) | 1 ≤ i ≤ ℓ, zk+1 ∈ N+, z ∈ N
k
+ such that

ψi(x, y, z,X) does not hold} .

We now modify the construction of this tree such that, in addition, it also encodes the setX ⊆ N+:

T̂ [X, x, y] = r ◦

(⊎
{S[e] | e ∈ X} ⊎

⊎
{S[e1, e2] | e1 6= e2}⊎⊎

{T ′[X, x, y, z, zk+1i] | z ∈ N
k
+, zk+1 ∈ N+, 1 ≤ i ≤ ℓ}

)ℵ0

In a similar spirit, we definêU [κ,X ] for X ⊆ N+ andκ ∈ N+ ∪ {ω}:

Û [κ,X ] = r ◦

(⊎
{S[e] | e ∈ X} ⊎

⊎
{S[e1, e2] | e1 6= e2}⊎⊎

{S[e, e] | κ ≤ e < ω}

)ℵ0

ThenT̂ [X, x, y] ∼= Û [ω, Y ] if and only ifX = Y andT ′′[X, x, y] ∼= U ′′[ω], i.e., if and only ifX = Y and
ϕ−1(x, y,X) holds by Lemma 5.4(b). Finally, we set

T [x] = r ◦
(⊎

{Û [κ,X ] | X ⊆ N+, κ ∈ N+} ⊎
⊎

{T̂ [X, x, y] | X ⊆ N+, y ∈ N+}
)ℵ0

,

U = r ◦
(⊎

{Û [κ,X ] | X ⊆ N+, κ ∈ N+ ∪ {ω}}
)ℵ0

.

Lemma 6.2. Letx ∈ N+. ThenT [x] ∼= U if and only ifx ∈ A.

Proof. Supposex ∈ A. To proveT [x] ∼= U , it suffices to show that any height-2 subtree ofT [x] is a subtree
of U and vice versa. First, letX ⊆ N+ andy ∈ N+. Then, by Lemma 5.4(a), there existsκ ∈ N+ ∪ {ω}

with T ′′[X, x, y] ∼= U ′′[κ] and thereforêT [X, x, y] ∼= Û [κ,X ], i.e.,T̂ [X, x, y] appears inU . Secondly, let
X ⊆ N+. Fromx ∈ A, we can infer that there exists somey ∈ N+ with ϕ−1(x, y,X). Then Lemma 5.4(b)
impliesU ′′[ω] ∼= T ′′[X, x, y] and thereforêU [ω,X ] ∼= T̂ [X, x, y], i.e.,Û [ω,X ] appears inT [x]. Thus, any
height-2 subtree ofT [x] is a subtree ofU and vice versa.

Conversely supposeT [x] ∼= U . LetX ⊆ N+. ThenÛ [ω,X ] appears inU and therefore inT [x]. Since
Û [ω,X ] 6∼= Û [κ, Y ] for all κ ∈ N+ andY ⊆ N+, there exists somey ∈ N+ with Û [ω,X ] ∼= T̂ [X, x, y].
Thus, we haveT ′′[X, x, y] ∼= U ′′[ω]. Lemma 5.4(b) implies thatϕ−1(x, y,X) holds. We have shown that
x ∈ A. ⊓⊔
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6.1 Injectiveω-automaticity

We follow closely the construction form = 0 from Section 5.2.

Lemma 6.3. There exists an injectivelyω-automatic forestH′ = (L′, E′) of height 1 such that:

– The set of roots equals{1, . . . , ℓ} ⊗ {0, 1}ω ⊗ (⊗k+3(a
+)) ∪ (b+ ⊗ b+) ∪ c+.

– For 1 ≤ i ≤ ℓ,X ⊆ N+, x, y, zk+1 ∈ N+ andz ∈ N
k
+, we have

H′(i⊗ wX ⊗ a(x,y,z,zk+1)) ∼= T ′[X, x, y, z, zk+1, i].

– For e1, e2 ∈ N+, we have
H′(b(e1,e2)) ∼= S[e1, e2].

– For e ∈ N+, we haveH′(ce) ∼= S[e].

Proof. Using Lemma 5.10 twice (with the polynomialC(x1, x2) and with the polynomial2x1 + 1) and
Lemma 5.12, we can construct a Büchi automatonA accepting{1, . . . , ℓ} ⊗ {0, 1}ω ⊗ (⊗k+3(a

+)) ∪
(b+ ⊗ b+) ∪ c+ such that the number of accepting runs ofA on theω-wordu equals

(i) C(e1, e2) if u = b(e1,e2),
(ii) 2e+ 1 if u = ce,

(iii) C(1, 2) if u = i⊗ wX ⊗ a(x,y,z,zk+1) such thatψi(x, y, z,X) holds, and
(iv) C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) if u = i⊗wX ⊗ a(x,y,z,zk+1) such thatψi(x, y, z,X) does

not hold.

The rest of the proof is the same as that of Lemma 5.13. ⊓⊔

FromH′ = (L′, E′), we build an injectivelyω-automatic dagD as follows:

– The domain ofD is the set({0, 1}ω ⊗ a+ ⊗ a+) ∪ ({0, 1}ω ⊗ b∗) ∪ ($∗ ⊗ L′).
– Foru, v ∈ L′, the words$i ⊗ u and$j ⊗ v are connected if and only ifi = j and(u, v) ∈ E′. In other

words, the restriction ofD to $∗ ⊗ L′ is isomorphic toH′ℵ0 .
– For allX ⊆ N+, x, y ∈ N+, the new rootwX ⊗ a(x,y) is connected to all nodes in

$∗ ⊗
(
({1, . . . , ℓ} ⊗ wX ⊗ a(x,y) ⊗ (⊗k+1(a

+))) ∪ {b(e1,e2) | e1 6= e2} ∪ {ce | e ∈ X}
)
.

– For allX ⊆ N+, the new rootwX ⊗ ε is connected to all nodes in

$∗ ⊗ ({b(e1,e2) | e1 6= e2} ∪ {ce | e ∈ X}).

– For allX ⊆ N+ andm ∈ N+, the new rootwX ⊗ bm is connected to all nodes in

$∗ ⊗ ({b(e1,e2) | e1 6= e2 ∨ e1 = e2 ≥ m} ∪ {ce | e ∈ X}).

It is easily seen thatD is an injectivelyω-automatic dag. LetH′′ = unfold(D) which is also injectively
ω-automatic by Lemma 5.9. Now computations analogous to those on page 19 (using Lemma 6.3 instead
of Lemma 5.13) yield for allX ⊆ N+ andx, y,m ∈ N+:

H′′(wX ⊗ a(x,y)) ∼= T̂ [X, x, y]

H′′(wX ⊗ ε) ∼= Û [ω,X ]

H′′(wX ⊗ bm) ∼= Û [m,X ]

FromH′′ = (L′′, E′′), we build an injectivelyω-automatic dagD0 as follows:

– The domain ofD0 equalsa∗ ∪ $∗ ⊗ L′′.
– For u, v ∈ L′′, the words$i ⊗ u and$j ⊗ v are connected by an edge if and only ifi = j and
(u, v) ∈ E′′. Hence the restriction ofD0 to $∗ ⊗ L′′ is isomorphic toH′′ℵ0 .

18



– Forx ∈ N+, the new rootax is connected to all nodes in

$∗ ⊗
(
{0, 1}ω ⊗ b+ ∪ {0, 1}ω ⊗ ax ⊗ a+

)
.

– The new rootε is connected to all nodes in$∗ ⊗ {0, 1}ω ⊗ b∗.

ThenD0 is an injectivelyω-automatic dag of height 3 and we setH0 = unfold(D0). The set of roots of
H0 is a∗. Calculations similar to those on page 16 then yieldH0(ε) ∼= U andH0(a

x) ∼= T [x] for x ∈ N+.
Hence,T [x] is (effectively) an injectivelyω-automatic tree. Now Lemma 6.2 finishes the proof of the first
statement of Theorem 6.1, the second follows immediately.

Remark 6.4.In our previous paper [KLL11], we proved that the isomorphism problem forautomatic trees
of heightn ≥ 2 is hard (in fact complete) for levelΠ0

2n−3 of the arithmetical hierarchy. For this construction
we used the fact thatΠ0

2n+1-sets can be defined by the quantifier prefix∃∞x1 · · · ∃∞xn∀y, see [Rog68,
Theorem XVIII] (in our construction, a single∃∞-quantifier increases the height of the trees only by one).
An analogous characterization forΠ1

2n+1-sets clearly fails.

7 Upper bounds assuming CH

In the following, we will identify anω-wordw ∈ Γω with the functionw : N+ → Γ , (and hence with a
second-order object) wherew(i) = w[i]. We need the following lemma:

Lemma 7.1. From a given B̈uchi automatonM over an alphabetΓ one can construct an arithmetical
predicateaccM (u) (whereu : N+ → Γ ) such that:u ∈ L(M) if and only ifaccM (u) holds.

Proof. First, letM be adeterministicBüchi-automaton with set of statesQ. For a givenω-wordu : N+ →
Γ andi ∈ N let q(u, i) ∈ Q be the unique state that is reached byM after reading the length-i prefix ofu.
Note thatq(u, i) is computable fromi (if u is given as an oracle), henceq(u, i) is arithmetically definable
andu is accepted byM iff ∨

f∈F

∀x ∈ N+∃y ≥ x : q(u, y) = f .

Finally note that every regularω-language is (effectively) a Boolean combination ofω-languages ac-
cepted by deterministic Büchi-automata (cf. [PP04, Theorem II.9.3]. ⊓⊔

Theorem 7.2. AssumingCH, the isomorphism problemIso(Tn) belongs toΠ1
2n−4 for n ≥ 3.

Proof. Consider treesTi = S(Pi) for P1, P2 ∈ Tn. Define the forestF = (V,≤) asF = T1 ⊎ T2. LetE
be the edge relation ofF . Recall thatE(v) denotes the set of children ofv ∈ V . Let us fix anω-automatic
presentationP = (Σ,M,M≡,ME) for the graph(V,E). In the following, foru ∈ L(M) we writeF (u)
for the subtreeF ([u]R(M≡)) rooted in theF -node[u]R(M≡) represented by theω-word u. Similarly, we
write E(u) for E([u]R(M≡)). We will define aΠ1

2n−2k−4-predicateisok(u1, u2), whereu1, u2 ∈ L(M)
are on levelk in F . This predicate expresses thatF (u1) ∼= F (u2).

As induction base, letk = n − 2. Then the treesF (u1) andF (u2) have height at most2. Then, as
in the proof of Theorem 3.2, we haveF (u1) ∼= F (u2) if and only if the following holds for allκ, λ ∈
N ∪ {ℵ0, 2

ℵ0}:

F |=

(
∃κx ∈ V : (([u1], x) ∈ E ∧ ∃λy ∈ V : (x, y) ∈ E)

)
↔

(
∃κx ∈ V : (([u2], x) ∈ E ∧ ∃λy ∈ V : (x, y) ∈ E)

)
.

Note that by Theorem 2.2, one can compute fromκ, λ ∈ N∪{ℵ0, 2
ℵ0} a Büchi automatonMκ,λ accepting

the set of convolutions of pairs ofω-words(u1, u2) satisfying the above formula. HenceF (u1) ∼= F (u2)
if and only if the following arithmetical predicate holds:

∀κ, λ ∈ N ∪ {ℵ0, 2
ℵ0} : accMκ,λ

(u1 ⊗ u2) .
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Now let 0 ≤ k < n− 2. We first introduce a few notations. For a setA, let count(A) denote the set of all
countable (possibly finite) subsets ofA. Forκ ∈ N∪ {ℵ0} we denote with[κ] the set{0, . . . , κ− 1} (resp.
N) in caseκ ∈ N (κ = ℵ0). For a functionf : (A × B) → C anda ∈ A let f [a] : B → C denote the
function withf [a](b) = f(a, b).

On an abstract level, the formulaisok(u1, u2) is

(
∀x ∈ E(u1) ∃y ∈ E(u2) : isok+1(x, y)

)
∧ (19)

(
∀x ∈ E(u2) ∃y ∈ E(u1) : isok+1(x, y)

)
∧ (20)

∀X1 ∈ count(E(u1))∀X2 ∈ count(E(u2)) : (21)

∃x, y ∈ X1 ∪X2 : ¬isok+1(x, y) ∨ (22)

∃x ∈ X1 ∪X2 ∃y ∈ (E(u1) ∪ E(u2)) \ (X1 ∪X2) : isok+1(x, y) ∨ (23)

|X1| = |X2| . (24)

Line (19) and (20) express that the children ofu1 andu2 realize the same isomorphism types of trees of
height≤ n − k − 1. The rest of the formula expresses that if a certain isomorphism typeτ of height-
(n− k− 1) trees appears countably many times belowu1 then it appears with the same multiplicity below
u2 and vice versa. AssumingCH and the correctness ofisok+1, the formulaisok(u1, u2) expresses indeed
thatF (u1) ∼= F (u2).

In the above definition ofisok(u1, u2) we actually have to fill in some details. The countable setXi ∈
count(E(ui)) ⊆ 2V of children of[ui]R(M≡) (which is universally quantified in (21)) can be represented
as a functionfi : [|Xi|]× N → Σ such that the following holds:

[∀j ∈ [|Xi|] : accME
(ui ⊗ fi[j])] ∧ [∀j, l ∈ [|Xi|] : j = l ∨ ¬accM≡

(fi[j]⊗ fi[l])] .

Hence,∀Xi ∈ count(E(ui)) · · · in (21) can be replaced by:

∀κi ∈ N ∪ {ℵ0} ∀fi : [κi]× N → Σ :

(∃j ∈ [κi] : ¬accME
(ui ⊗ fi[j])) ∨

(∃j, l ∈ [κi] : j 6= l ∧ accM≡
(fi[j]⊗ fi[l])) ∨ · · · .

Next, the formula∃x, y ∈ X1 ∪X2 : ¬isok+1(x, y) in (22) can be replaced by:

∨

i∈{1,2}

∃j, l ∈ [κi] : ¬isok+1(fi[j], fi[l]) ∨ ∃j ∈ [κ1] ∃l ∈ [κ2] : ¬isok+1(f1[j], f2[l]).

Similarly, the formula∃x ∈ X1 ∪X2 ∃y ∈ (E(u1) ∪ E(u2)) \ (X1 ∪ X2) : isok+1(x, y) in (23) can be
replaced by

∨

i∈{1,2}

∃j ∈ [κi] ∃v : N → Σ : isok+1(fi[j], v) ∧

(accME
(u1 ⊗ v) ∨ accME

(u2 ⊗ v)) ∧

∀l ∈ [κ1] : ¬accM≡
(f1[l]⊗ v) ∧

∀l ∈ [κ2] : ¬accM≡
(f2[l]⊗ v) .

Note that in line (19) and (20) we introduce a new∀∃ second-order block of quantifiers. The same holds
for the rest of the formula: We introduce two universal set quantifiers in (21) followed by the existential
quantifier∃v : N → Σ in the above formula. Since by induction, isok+1 is aΠ1

2n−2(k+1)−4-statement, it

follows that isok(u1, u2) is aΠ1
2n−2k−4-statement. ⊓⊔

Corollary 5.3 and Theorem 7.2 imply:

Corollary 7.3. AssumingCH, the isomorphism problem for (injectively)ω-automatic trees of finite height
is recursively equivalent to the second-order theory of(N; +,×).
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Remark 7.4.For the casen = 3 we can avoid the use ofCH in Theorem 7.2: Let us consider the proof
of Theorem 7.2 forn = 3. Then, the binary relationiso1 (which holds between twoω-wordsu, v in F if
and only if [u] and[v] are on level 1 andF (u) ∼= F (v)) is aΠ0

1 -predicate. It follows that this relation is
Borel (see e.g. [Kec95] for background on Borel sets). Now let u be anω-word on level1 in F . It follows
that the set of allω-wordsv on level 1 withiso1(u, v) is again Borel. Now, every uncountable Borel set has
cardinality2ℵ0 (this holds even for analytic sets [Kec95]). It follows thatthe definition ofiso0 in the proof
of Theorem 7.2 is correct even without assumingCH. Hence,Iso(T3) belongs toΠ1

2 (recall that we proved
Π1

1 -hardness for this problem in Section 6), this can be shown inZFC.

8 Open problems

The main open problem concerns upper bounds in case we assumethe negation of the continuum hypothe-
sis. Assuming¬CH, is the isomorphism problem for (injectively)ω-automatic trees of heightn still ana-
lytical? In our paper [KLL11] we also proved that the isomorphism problem for automatic linear orders is
Σ1

1 -complete and hence not arithmetical. This leads to the question whether our techniques forω-automatic
trees can be also used for proving lower bounds on the isomorphism problem forω-automatic linear or-
ders. More specifically, one might ask whether the isomorphism problem forω-automatic linear orders is
analytical. A more general question asks for the complexityof the isomorphism problem forω-automatic
structures in general. On the face of it, it is an existentialthird-order property (since any isomorphism has
to map second-order objects to second-order objects). But it is not clear whether it is complete for this
class.
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