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Abstract—Although outsourcing data to the cloud has many
advantages, cloud computing introduces new privacy and security
requirements on how data is stored and accessed. To ensure data
confidentiality, use of encryption is a common strategy. A problem
with this strategy is that for large data it becomes difficult
to access and update data, and to ensure data integrity and
data provenance without decrypting all the data. The problem
becomes severe when it comes to accessing and modifying large
files using mobile devices with limited processing and bandwidth
capabilities. In this paper, we present CloudEFS, a novel storage
framework to efficiently access and update large encrypted
data. A new cached hash algorithm enables efficient updates of
data integrity and provenance information. CloudEFS provides
improved privacy by hiding not only content but also metadata
such as data size, file count, file structure and file history.

I. INTRODUCTION

Cloud storage is a convenient and reliable solution for

storing and processing data at very attractive costs. However,

outsourcing data to the cloud raises serious privacy concerns.

To ensure data confidentiality, we can employ encryption

techniques [1]. Once encryption techniques are employed, it

becomes difficult to access and update data in an efficient

manner. Another potential issue is access control management

where the data could be shared among a set of users. That is,

only authorised users must be allowed to access and process

the data stored in the cloud. Since the data is shared, it is

essential for users to know the origin of the data and verify

the chain of integrity. In other words, to verify data integrity

and origin, integrity and provenance information should be

maintained [2], [3].

While data encryption, data integrity and provenance in-

formation are techniques to fulfil privacy and security re-

quirements, it has not been investigated how these techniques

perform for dynamic data, i.e., data that is edited or updated

frequently. In particular, there are two performance-related

problems. First, making only small edits in plaintext may result

in significant changes in the corresponding ciphertext [4]. Sec-

ond, integrity and provenance information is usually calculated

using a cryptographic hash function [2], [3]. However, similar

to the first problem, only a small data modification makes

it necessary to recalculate the data hash. For large dynamic

data, re-encryption and data hashing become expensive. The

problem becomes more severe when it comes to accessing

and modifying large files using mobile devices with limited

processing and bandwidth capabilities. That is, accessing or

updating large files on mobile devices is inefficient.

One solution to store and synchronise encrypted dynamic

data efficiently is to split data into dynamic chunks [5], [6],

[4]. However, the problem of how data integrity or provenance

information can be updated and verified efficiently has not

been thoroughly investigated. Another problem is that exist-

ing secure storage solutions leak metadata such as directory

structure, file names, the number of files or file sizes in one

way or another.

In this work, we propose CloudEFS, a novel storage

framework that makes it possible to access and update large

encrypted data. We introduce a general purpose cached hash

function that allows updating hash values efficiently when the

data is modified. More specifically, this makes it possible to

efficiently calculate integrity and provenance data for large

dynamic data. In CloudEFS, data is stored in chunk containers.

Content and chunk containers are stored as chunks. Based on

chunk containers, we describe a file system object model to

represent files, directories and data history. Compared to other

storage solutions, we do not reveal sensitive information, such

as directory structure or file number and size.

Our contributions can be summarised as follows:

• A storage model for cloud storage with enhanced privacy,

where the content and its associated metadata do not

reveal sensitive information.

• We introduce a cached hash function to efficiently cal-

culate a hash value of dynamic data that gets modified

frequently. This, in turn, speeds up verification of data

integrity and provenance.

• We introduce chunk containers to store data which is

divided into chunks. Chunk containers make access and

data modification efficient.

II. MOTIVATING SCENARIOS AND REQUIREMENTS

In this section, we describe two motivating scenarios based

on which we derive the requirements for CloudEFS. The

first scenario motivates why efficient, integrity-preserving data

operations and management of data history are necessary



for storing large scientific dataset in the cloud. The second

scenario motivates why for some systems it is not only

essential to protect file content from the cloud but also equally

important to hide the file system information including file

size, file count and directory structure.

CloudEFS for Scientific Data. Let us assume a researcher

collects a large scientific dataset. She leverages a cloud-based

storage for storing this dataset. We consider that the dataset is

dynamic, which might require frequent updates. Since she is

collaborating with a number of fellow researchers, this dataset

will be shared among them. Fellow researchers are interested

in investigating some new aspects whenever the dataset gets

updated. As desired in scientific experimentations, a researcher

should be able to revert to earlier version of the dataset at

any time. Moreover, fellow researchers must be able to verify

data integrity and provenance, e.g., to prevent a malicious

party (say a cloud service provider, an untrusted collaborator

or any third part) to manipulate research results. The study

results must be kept confidential. For this reason, the dataset

is encrypted. A suitable storage system for such a scenario

must allow the owner of the large dataset to efficiently update

the encrypted dataset and provide integrity and provenances

information. This becomes challenging since re-encrypting

the whole large dataset or calculating integrity information

becomes too expensive, in particular when the dataset gets

updated frequently. On the other hand, authorised users must

be able to efficiently access or synchronise the updated dataset

and verify integrity and provenance information.

CloudEFS for Healthcare Systems. In this scenario, we

assume a cloud-based data storage system for storing medical

data of patients. To ensure the privacy of the patients, medical

data is stored encrypted. Current cloud storage solutions that

use data encryption, unfortunately, leak information about the

file system to the cloud service provider, e.g., the file number

and size, or the directory structure. This information could be

used to analyse what medical examination has been performed.

For example, knowing a file size or the count of files could

reveal certain examinations, e.g., X-ray and MRI images. This

information is sensitive as it may allow an adversary to guess

the medical conditions of a patient. For this reason, not only

the file content but also the directory structure and the file size

must be protected from curious cloud stores.

From both scenarios, we infer the following requirements

that CloudEFS must fulfil:

• Privacy: The content as well as metadata such as direc-

tory structure, file number and size, and data provenance

must be kept secret from the cloud.

• Authenticity and Integrity: Users must be authenticated

and must be able to ensure and verify data integrity

and data provenance. The cloud storage should support a

version control system to keep data history with options

for the user to easily revert to earlier data revisions.

• Efficiency: Accessing and updating a dataset as well as

ensuring and verifying integrity and provenance informa-

tion must be efficient.

III. SYSTEM MODEL

In the system model, we assume the following entities (see

Figure 1):

• Cloud Service Provider (CSP). The CSP is responsible

to store data in a key-value store, a.k.a. Chunk Store.

The CSP ensures that only authorised users can read or

append data.

• Data Owner. This entity represents a user who owns the

data stored at the CSP and regulates access to the data

by deploying access policies at the CSP. The data owner

is a client of the CSP.

• User. A user is an entity that can access or modify data

at the CSP according to deployed access policies.

Fig. 1. A Cloud Service Provider (CSP) hosts the Chunk Store and is
responsible for managing access to the chunk store in which the data is stored
in forms of chunks. For data owners and users, access to the data is regulated
through the Access Manager. The data includes the actual data (e.g., files),
the metadata and a key store. The metadata contains structural information,
e.g., directory structure, data integrity and provenance information. The actual
data and the metadata are encrypted using encryption keys that are stored in
an encrypted form in the key store.

We assume that the CSP is honest-but-curious as is consid-

ered in scenarios where data is stored in outsourced environ-

ments [7]. This means users cannot trust the CSP to guarantee

confidentiality. For this reason, users who are authorised to

modify data encrypt sensitive data locally before sending to

the CSP. We consider that the data is updated dynamically.

Furthermore, we assume that an adversary (say a CSP or

third party) may tamper with the data or its provenance to

deceive data owners or users. Moreover, we consider that there

are mechanisms in place for ensuring availability.

IV. CloudEFS: PROPOSED STORAGE FRAMEWORK

In this work, we propose CloudEFS, a storage framework

that aims at fulfilling requirements listed in Section II. More

specifically, data owners or users can store their data in the

cloud in a privacy-preserving manner. Authorised users can get

access to the data if corresponding access policies are satisfied.

These policies are enforced by the Access Manager at the CSP.

CloudEFS enables user authentication and ensures integrity

of the data and its provenance. In order to make access and

verification efficient, in CloudEFS, we divide each data item

(e.g., file) into a set of data chunks. CloudEFS also supports



management of a version control system to keep data history.

Like data, data history is stored securely.

As we can see in Figure 1, a CSP hosts the chunk store

and is responsible for managing access to the chunk store

in which the data is stored in the form of chunks. For data

owners and users, access to the data is regulated through the

Access Manager. The data includes the actual data (i.e., files

or directories), the metadata and a key store. The metadata

contains structural information, e.g., directory structure, data

integrity and provenance information. The actual data and the

metadata are encrypted using encryption keys that are stored

in an encrypted form in the key store [8], [9].

In the following, we describe how CloudEFS stores data in

a chunk store. We first introduce the chunk store, which is

used to store encrypted data chunks (Section IV-A). We then

discuss how data of arbitrary size is split into a set of chunks

(Section IV-B). To efficiently verify integrity of the data, which

could be updated dynamically, we introduce a novel, general

purpose cached hash function (Section IV-C). We describe

how data chunks are encrypted to achieve confidentiality

(Section IV-D). We also explain how data chunks are managed

in a chunk container (Section IV-E).

A. Chunk Store

The chunk store is a database of key,value pairs, capable

of storing an arbitrary chunk of data, e.g., a chunk of a file,

where each chunk is identified using a unique ID or key. In

the following, we call a piece of data stored in the chunk store

a chunk and the corresponding ID the chunk ID, denoted as:

IDchunk. A chunk can have an arbitrary size. As described

later, all chunks in the chunk store are encrypted.

Although there could be a number of options for uniquely

identifying a chunk, without loss of generality, we suggest

a collision-resistant hash function H to calculate the chunk

ID: IDchunk [6]. This choice has various advantages: First,

no entity is needed to generate unique identifiers because

chunk keys are most likely to be globally unique; Second,

storage integrity of the stored (encrypted) chunks can easily

be verified; Third, if an adversary modifies a chunk, the

modification can easily be detected, e.g., when reading the

chunk [10]. Note, the encryption-independent integrity of the

plaintext is discussed later (Section V).

B. Data Chunking

In this section, we describe how data is split into a set

of data chunks. As we describe later, we use this technique

to split not only data, such as files, but also metadata that

describes a set of chunks.

In this work, we consider a chunking algorithm C that

takes some data as input and returns a sequence of chunk

boundaries. Technically, a chunk boundary denotes a starting

and ending indices of a chunk in the data. According to

chunk boundaries, the data is split into n chunks. A naive

approach for identifying chunk boundaries is to compute

fixed sized chunks. However, we assume dynamic data that

could be edited (say files could be modified by updating

or removing existing content and adding new content). A

chunking algorithm that produces fixed-size chunks is not

suitable for CloudEFS since an insertion or deletion of a single

byte would affect all the following chunks. On the other hand,

in CloudEFS, we require C to produce boundaries that result

in a stable set of chunks for similar data. For example, if

a file is only slightly modified, unlike the naive approach,

both versions of the file should share a large set of equal

chunks [11].

Common chunking algorithms use a Rolling hash function

r(W ) [12], [5]. r(W ) produces a pseudorandom fingerprint on

a sliding window W . We use the following trigger condition

to find chunk boundaries:

r(W ) mod D < D/c

Assuming the input data is random, c is the average chunk

size, i.e., on average, for every c bytes, r(W ) triggers a chunk

boundary. D is an arbitrary value with c < D < max(r(W ))
and is used to select r(W ) values in the range [0, D).

To avoid very small and very large data chunks, we apply a

minimum and maximum chunk size threshold: namely Tmin

and Tmax [5]. In the following, we assume a large Tmax so

that in practice it does not affect the chunk size distribution.

The total average chunk size can then be approximated to:

s = Tmin + c. This leads to a chunking algorithm:

C(s, Tmin, Tmax)

that produces chunks with an average size s in the range

[Tmin, Tmax] [5].

If the input data is too short to trigger a chunk boundary,

we pad the data with random bytes unless a boundary gets

triggered. This is done to prevent adversaries to learn the data

size of smaller data. Similarly, the last data chunk is padded.

C. Cached Hash Function

In the following, we define a general-purpose, collision-

resistant cached hash function. As its name suggests, the

cached hash algorithm makes it possible to cache partial results

of the hashing process. These partial results are less affected

by small edits in the data. This stable property of partial results

makes it possible to reuse them and efficiently calculate the

hash value of modified data.

A cached hash function works by organising data chunks in

a Merkle tree [13]. The top hash of this cached hash tree is

used as a hash value for the data as illustrated in Figure 2a.

It is known that Merkle trees are as collision-resistant as the

underlying hash function [13], i.e., H .

To keep the cached hash tree stable when only parts of the

data are modified, the tree nodes are chunked using a similar

chunking mechanism as described in Section IV-B. Thus, only

a small set of nodes are affected when a small modification is

made.

The cached hash Merkle tree is built as follows. After

splitting the initial data into chunks, using the chunking

algorithm C(s, Tmin, Tmax), the chunk hashes h are com-

bined in a single node nh. Using a different node chunking



Fig. 2. The hashes of the data chunks are organised in a Merkle tree, where
a hash output of a chunk i is represented using hi. Intermediate nodes of
the tree are built based on children nodes. The top (or root) hash of the tree
provides us the hash of the data item. a) H0 represents the top hash of the
Merkle tree of the first data version. b) H1 denotes the second data version,
where a new chunk 12 is inserted between chunk 2 and chunk 3. The insertion
of a new chunk in the tree does not trigger any split at the node level. c) H2

shows a tree with the insertion of a new chunk 13 between chunk 2 and
chunk 12. The insertion of the corresponding hash h13 results in a split at
the node level and at the parent level. The right subtree does not need to be
recomputed.

algorithm Cnode(nh), the node nh is then recursively split

into cached hash tree nodes till the root node cannot be

split further (see Figure 2a). The hash value h′ for a cached

hash tree node with n entries h0, · · · , hn−1 is defined as

h′ = H(concatenate(h0, · · · , hn−1)).

Fig. 3. a) A chunking algorithm Cnode is applied to a node nh. The hash
value h that causes Cnode to trigger is the first h value of the next chunk.
b) Chunk pointers (CP) point to data chunks or chunk container nodes. In
a chunk container node, hash values h from a cached chunk tree node are
mapped to chunk pointers (CP). For privacy reasons, the chunk pointer nodes
are padded.

The node chunking algorithm Cnode(nh) is defined as

follows. As described later in Section IV-E, for privacy

reasons, the size of cached hash tree nodes needs to be

scaled relative to the size of data chunks. To achieve this,

Cnode = C(k · s, k · Tmin, k · Tmax) with a scaling factor k is

used to find split points within a given cached hash tree node

nh. When Cnode(nh) triggers a chunk boundary, the node nh

is split before the hash value hs ∈ nh that triggered the chunk

boundary. Thus, hs is the first hash in the next chunk (see

Figure 3a).

Figures 2b and 2c illustrate how insert operations only affect

some parts of the cached hash tree. This makes it efficient to

calculate the top hash when data is edited since only a few

nodes need to be considered.

D. Chunk Encryption

To ensure data confidentiality, data chunks are encrypted.

Although there are a number of options to achieve data confi-

dentiality, convergent encryption [14] could be applied to store

chunks efficiently. In convergent encryption, the encryption

key is the data chunk hash H(chunk) and thus same data

chunks results in the same ciphertext. However, convergent

encryption is vulnerable to certain attacks, e.g., dictionary

and other attacks [15], [16]. We use a different encryption

strategy that uses a private key K in combination with the hash

H(chunk) of the encrypted chunk. The chunk is encrypted

with a pseudorandom permutation function:

E(K,H(chunk), chunk).

that results into the same ciphertext for same chunks when

using the same K [4].

E. Chunk Container

Recall that we split data into a set of data chunks and

encrypt these chunks. In the following, we describe how these

data chunks are managed in a chunk container. We have two

design goals for a chunk container: First, reading from a chunk

container or writing to a chunk container must be efficient.

Second, chunks to chunk container mapping and the structure

of the chunk container must be kept confidential.

Fig. 4. Data chunks are organised in a chunk container. The size value of
a chunk pointer (CP ) (displayed in the right-top corner of a CP ) makes it
easy to seek to a certain data position. For example, the total size of the data
stored in the chunk container is: (2+ 5) + (1+ 3+ 3+ 2)+ (3+ 4+ 1) =
(7 + 9 + 8) = 24. The position 12 is located in chunk C4; C4 starts at
position 7 + 1 + 3 = 11 and the size of C4 is 3.

A chunk container is organised in a height balanced tree

with its leaf nodes pointing to data chunks. Each chunk

container node is a chunk that is encrypted and stored in the

chunk store. A chunk container node contains a list of chunk

pointers, which either point to other chunk container nodes or

to data chunks. In this way, to access a file, only the root chunk

container node is required to navigate to all associated data

chunks (Figure 4). The chunk container tree structure (Figure

4) mirrors the data’s cached hash tree structure (Figure 2), i.e.,

every chunk container node has a corresponding node in the

cached hash tree (Figure 3).

A chunk pointer (Figure 5) contains a reference IDchunk

to an encrypted chunk in the chunk store. To decrypt the



Fig. 5. A chunk pointer (CP ) points to an encrypted chunk stored in the
chunk store. The CP contains the chunk hash H(chunk) to decrypt the
referred chunk, a chunk data integrity value h, and a data size value.

referred chunk, the chunk pointer contains H(chunk) (see

Section IV-D). The chunk pointer also contains the corre-

sponding h value from the cached hash tree. Furthermore, the

chunk pointer contains a data size value. Since chunk pointers

are stored in encrypted chunk container nodes, no information

on how chunks are related is revealed.

If the chunk pointer refers to a data chunk, the size value

gives the size of the data chunk. If the chunk pointer refers to

a child node, the size value gives the sum of the size values

of the child’s chunk pointers. This makes it easy to seek and

modify data in the chunk container tree (Figure 4).

Like normal chunk pointers, we define a chunk container

pointer which points to the root node of the chunk container.

The only difference to a normal chunk pointer is that the size

value represents the height of the chunk container tree.

The size of a CP , i.e., the size to store a CP , is larger than

the size of a cached hash tree value h. This results in “large”

chunk container nodes with sizes a multiple of the chunk

pointer size. This raises a privacy issue since an attacker may

distinguish between data chunks and chunk container nodes

and may deduce further information from that.

For this reason, the average size of chunk container nodes is

adjusted to match the average size of data chunks. To achieve

this, the k scaling factor in the cached hash chunking algorithm

Cnode(k ·s, k ·Tmin, k ·Tmax) is set to k = size(h)/size(CP )
(Section IV-C). Cached hash tree nodes are split before the

trigger point and thus chunk container nodes are generally too

small. For this reason, we pad the chunk container nodes with

random data with a random length in the range [0, size(CP ))
(Figure 3b).

V. FILE SYSTEM OBJECT MODEL

Chunk containers can hold an arbitrary amount of encrypted

data. In this section, we use chunk containers to define a file

system object model. This model, similar to other successful

models1 [17], [18], manages files and directories as well as

integrity and provenance information. Compared to previous

work, we require that all objects are encrypted and that the

information how objects are related is not leaked.

There are three types of objects: namely files, directories

and commits. A commit marks a version of the current

directory structure. A commit contains a reference to previous

parent commits and to a root directory while directories can

contain files or subdirectories. As illustrated in Figure 6,

1Git:git-scm.com

Fig. 6. The file system structure is organised in directory and file objects.
Commit objects are used to refer to the certain version of a directory structure.
Objects can be reused between versions. For example, in Commit 2 only
File C has been modified and the unchanged directory Dir B is reused from
the previous version. From the latest commit, all previous versions can be
accessed.

objects can refer to objects from previous commits, this is

what makes the object model storage efficient [17]. The linked

list of commit objects is called a branch.

Every object in our object model is stored in a chunk

container. Furthermore, every type of object defines a plain

data hash Hobj . This hash value uniquely identifies an object

based on the containing plain data and is used to build a

specialised Merkel tree [18]. This means that Hobj of a commit

depends on the Hobj values of the parent commits and the root

directory. The Hobj value of a directory depends on the hash

values of all its children while Hobj of a file object is simply

the cached hash of the file chunk container.

A. Integrity and Provenance

Using the object model described above, it becomes very

easy to ensure the integrity and to provide provenance infor-

mation. Given the hierarchical structure, knowing the commit

hash Hobj is enough to verify the integrity of all object

belonging to this commit as well as of all parent commits.

Provenance information can easily be integrated into a

commit object. To do so, the user who is about to add a

new commit compiles a message that contains the hashes of

the direct parent commits and the current root directory. The

message is then signed. In this way, the user can ensure what

changes in the current version has been made relative to a

previous version, i.e., the changes are the differences to the

previous version.

Since Hobj only depends on plain object data, our model

allows re-encryption without losing integrity and provenance

data.

B. Key Management

To manage and share a large set of encryption keys, we

propose to store keys securely at the CSP [19], [8]. This can

be done by storing keys in a “key store” branch. The key

store branch is protected using the branch key Kbranch, i.e.,

all objects in the key store branch are encrypted with Kbranch.



In this way, a user only needs to know Kbranch to gain access

to all user’s keys.

C. Access Control

In general, it is desirable that only eligible contacts are able

to access/add chunks from/to the chunk store [20]. However,

if the number of chunks is large, managing access becomes

expensive both in terms of storing the access policy as well

as in terms of verifying that a contact has access to a set of

chunks. Furthermore, if not properly protected, the CSP can

learn who has access to which chunks.

We propose a simple access model. The user just has to

prove that she has read and/or write access to a certain branch.

Once read or write access is granted, a user is allowed to access

all chunks in that branch.

Since all chunks are encrypted with a private key and stored

under the hash H(chunk), guessing an existing chunk without

knowledge of the private key is only possible with a negligible

probability. However, if the private key is known to the user,

the user can launch confirmation of data attacks [15]. For this

reason, it is important that a private key is not used for chunks

that are not supposed to be shared with users who know the

private key.

To revoke user access to certain objects, we propose a lazy

revocation strategy [1], [21]. For this, we assume that the user

already knows the file content before the access is revoked.

Thus, we only need to ensure that the user cannot access newer

file versions. The lazy revocation scheme works simply by

changing the encryption key for the file. Using this strategy

all new chunks of a modified version of the file cannot be

located or decrypted by the user.

D. Data Sharing

At this stage, we did not discuss how users can keep track of

the latest commit objects, which are needed to access the latest

changes. One solution is that the user who made a change

is responsible for notifying all other users about the newest

commit via a secure channel. However, this approach may not

always be practical and we propose a simpler solution.

In CloudEFS, the CSP maintains a branch log for each

branch. When making a change, the user encrypts the chunk

container pointer of the latest commit and appends the en-

crypted pointer to the branch log. This way all users, who

have access to the branch, can query and decrypt the latest

chunk container pointer. The disadvantage is that the CSP

learns about changes made to a particular branch.

VI. PERFORMANCE ANALYSIS

In this section, the performance of the cached hash function

(as described in Section IV-C) is evaluated. First, we analyse

how the cached hash function performs without caching.

Second, we measure the cached hash performance when data

updates are made.

For our analysis, we used a Java implementation of the

cached hash algorithm. We used a Rabin rolling hash function

for the chunking algorithm C [12] and SHA256 for the

hash function H . For the maximum chunk size, we chose

Tmax = 512kB (see Section IV-B). As a minimum chunk

size, we chose Tmin = 2kB, which is consistent with previous

work [11]. We performed our measurements on a machine

running Linux having 1.9Ghz CPU and 8GB of RAM.

Fig. 7. Performance analysis of the cached hash algorithm without caching.

In our first analysis, we compared the performance of the

cached hash algorithm and the default Java implementation

of SHA256. We applied both hash functions to random data.

To minimise IO latency, data was kept in memory. Figure 7

shows the average times for two different average chunk

sizes s̄. SHA256 function performs better. This is expected

since the cached hash function applies the Rabin rolling hash

function in conjunction with a SHA256 hash. Interestingly, a

larger average chunk size s̄ decreases the performance slightly,

although fewer nodes are needed for the cached hash tree. We

assume that the reason for this is that, in the range (0, Tmin),
no Rabin rolling hash is applied and a test with Tmin = 4KB
improves the performance, which confirms this assumption

(see Figure 7).

Fig. 8. Performance of the hash calculation using the cached hash function and
SHA256 after performing random write operations. Variables are the number
of writes and the size of modified data.



Next, we perform random writes to data and calculate

the new data hash using the cached hash and the SHA256

algorithm. For the calculation of the cached hash value, we use

a Java implementation of a chunk container that stores data on

disk. Every write to the chunk container automatically updates

the data hash. For SHA256, data is modified in an ordinary

data file and then the file hash is calculated. To simulate a

more realistic scenario, we perform multiple write operations

before starting the hash calculation. However, due to the nature

of a chunk container, the cached hash is automatically updated

after each write operation. Figure 8 shows that the performance

of a chunk container is generally lower than the SHA256

performance and scales very well to large data sizes, i.e., the

time to update data in a chunk container only grows slightly.

For large files, calculating the SHA256 value makes writes to

a file very expensive.

VII. DISCUSSION

In this section, we discuss how CloudEFS fulfils the re-

quirements defined in Section II.

Privacy. The confidentiality of all data and metadata is pre-

served since all data is stored in encrypted chunk containers.

Sizes of data chunks are chosen such that they reveal little

about the actual data size. That is, data that is too small

to trigger a chunk boundary is padded and chunk container

nodes are made in such a way that they are indistinguishable

from data chunks. However, using a data depending chunking

algorithm always leaks a controlled amount of information [4].

CloudEFS stores equal chunks only once and thus does not

reveal information about repeating data.

When analysing access pattern, an attacker can gain infor-

mation about the stored data, i.e., what chunks may belong to

the same data. If a whole file is accessed, the size of the file

is revealed [22]. However, in CloudEFS, data can be accessed

selectively, which makes it more difficult for an attacker to

correctly map chunks to a certain file. A solution to mitigate

this problem is to retrieve additional random chunks that do

not belong to the actual data [23].

Integrity and Authenticity. Integrity and provenance is pro-

vided by the used object model (Section V). The provenance

information includes the identity of the user who made a

change. Thus, the data owner and the users can verify if

unauthorised changes were made to the data. However, the

CSP can revert to a previous storage stage, which may get

unnoticed by the users.

Efficiency. The chunk container allows accessing and updat-

ing large data efficiently without touching the whole data and

the cached hash algorithm allows efficient hash calculation

for dynamic data. A drawback of the cached hash function is

the overhead when calculating the initial data hash. However,

the cached hash tree is reused to set up a chunk container

and thus to split data into chunks. This is required for

storage efficiency [24] and reduced network bandwidth [11]. A

drawback of the chunk container tree structure is that multiple

requests are necessary to navigate to a data chunk. However,

for sequential operations, this can be mitigated by reading

upcoming chunk container nodes ahead of time.

VIII. RELATED WORK

Splitting dynamic data into multiple chunks that are stable

against small data modification has various advantages and has

been used to efficiently transfer files across a network [11],

[5]. By storing duplicated chunks only once, data and the data

history can be stored more efficiently [17], [4]. Even for fixed

sized chunks, this can help to reduce storage requirements of

dynamic data [17], [24]. We store data chunks in a key-value

store database and it has been shown that such a store can

efficiently be used for distributed file systems [25].

For large chunked files the required chunk map can become

very large [26]. This makes accessing a file slow since the

whole chunk map needs to be retrieved. In comparison, chunk

containers allow users to efficiently seek to a certain file

position only accessing required chunks.

To ensure confidentiality, data chunks need to be encrypted.

To manage encryption keys, they can efficiently be derived

from a master key [21]. Another method to encrypted data

chunks is convergent encryption, which has the property that

same chunks have the same ciphertext [27]. This property is

particularly used to perform de-duplication of encrypted data

for chunk based storage solutions as well as to find duplicate

encrypted files from multiple users [6], [28], [29], [15], [30],

[14]. In our work, we use a convergent encryption technique

that uses an additional private key [4].

There are many storage solutions that ensure data con-

fidentiality by employing encryption techniques [31], [32],

[1]. Even in distributed cloud storage environments, data

confidentiality can be ensured [33], [34]. However, above

solutions do not attempt to hide directory structure, file size or

the number of files. The distributed file system BRAVE [35]

uses an object store to store encrypted file and directory

objects. However, the size and number of objects are not

hidden. Blind Storage scatters blocks of files on the storage

server and even mixes blocks of multiple files. While initially

the number and sizes of stored files are hidden, a file size

is revealed when a file is accessed [23]. Storer et al. use a

chunk store to store encrypted chunks of a file [10]. However,

the used metadata store reveals file names, the number of files,

information about access rights, and the size of an encrypted

chunk map indirectly reveals the size of the file. In contrast,

we never reveal the existence and size of a file.

While full disk encryption systems, such as the Linux Uni-

fied Key Setup (LUKS)2, VeraCrypt3 or BitLocker4, provide a

transparent block encryption, they have various disadvantages

when used in a cloud environment. Basically, data within one

partition or storage file is encrypted with a single key, which

can be problematic if data is shared between multiple users.

Furthermore, data integrity or provenance information is not

provided.

2https://gitlab.com/cryptsetup/cryptsetup/wikis/home
3https://veracrypt.codeplex.com/
4https://technet.microsoft.com/en-us/library/cc732774.aspx



IX. CONCLUSION

Updating large encrypted data can become inefficient since

small changes in the plaintext can result in significant changes

in the corresponding ciphertext. In order to provide integrity

and provenance information, calculating the hash of large data

is time-consuming. In this work, we presented CloudEFS, a

novel storage framework for storing encrypted dynamic data

and ensuring data integrity and provenance. Large dynamic

data can efficiently be accessed and modified. To update

integrity and provenance information, we presented a general

purpose cached hash function to efficiently calculate the hash

of updated data. CloudEFS provides improved privacy by

concealing not only the content but also the metadata such as

file sizes and file structure. Our performance analysis shows

that the cached hash function is only a constant factor slower

than the underlying hash function (such as SHA265). However,

it performs significantly better when updating the data hash of

modified data.

In future, we plan to evaluate the effectiveness of CloudEFS

for real-world applications.
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