
Evaluating Direct Manipulation Operations
for Constraint-Based Layout

Clemens Zeidler
1

, Christof Lutteroth
1

, Wolfgang Stuerzlinger
2

and Gerald Weber
1

1

 University of Auckland, 38 Princes Street, Auckland 1010, New Zealand

czei002@aucklanduni.ac.nz, {lutteroth,g.weber}@cs.auckland.ac.nz

2

York University, 4700 Keele St., Toronto, Canada M3J 1P3

wolfgang@cse.yorku.ca

Abstract. Layout managers are used to control the placement of widgets in
graphical user interfaces (GUIs). Constraint-based layout managers are more
powerful than other ones. However, they are also more complex and their lay-
outs are prone to problems that usually require direct editing of constraints. To-
day, designers commonly use GUI builders to specify GUIs. The complexities
of traditional approaches to constraint-based layouts pose challenges for GUI
builders.

We evaluate a novel GUI builder, the Auckland Layout Editor (ALE), which
addresses these challenges by enabling GUI designers to specify constraint-
based layouts via direct manipulation using simple, mouse-based operations.
These operations hide the complexity of the constraint-based layout model,
while giving designers access to its benefits.

In a user evaluation we compared ALE with two other mainstream layout
builders, a grid-based and a constraint-based one. The time taken to create real-
istic sample layouts with our builder was significantly shorter, and most partici-
pants preferred ALE’s approach. The evaluation demonstrates that good usabil-
ity for authoring constraint-based layouts is possible.

Keywords: GUI builder; layout editing; layout manager; constraint-based lay-
out; layout preview; evaluation

1 Introduction

Graphical user interfaces (GUI) are widespread, even on web and mobile plat-
forms. WYSIWYG GUI builders facilitate the creation of such GUIs by developers
and designers. In GUI builders, the user can drag & drop widgets from a palette onto
a GUI canvas and adjust their properties.

Today’s applications are used across a wide range of screen sizes, and users often
use multiple applications concurrently on the same screen. Thus users expect that
GUIs can be resized and that widgets use the space allocated to an application judi-
ciously. Early drag & drop GUI builders enabled only the creation of static layouts
that are unable to adapt to window resizing or other changes to the distribution of
screen space. In order to create resizable GUIs with dynamic layouts, a layout manag-
er has to be used, which implements a layout model. The latter defines how objects in
a layout, the widgets, can be arranged and how their resize behavior can be specified.

Constraint-based layout models are naturally powerful: with the notable exception
of flow layouts, many other layout models including gridbag layout [15] can be re-
duced to constraint-based layouts, see also Figure 1. Many other layout models rely
on a hierarchy of nested layouts to define more complex layouts. Within nested lay-
outs, widgets typically cannot be aligned across different levels of the hierarchy. In
contrast, constraint-based layouts can align widgets that are situated in completely
different parts of a layout [10], which greatly reduces the need for nested layouts.

Fig. 1. Example of a constraint-based layout. When resizing, the middle row moves inde-

pendently of the top and bottom rows. This layout is impossible to achieve with a single grid-
bag layout, e.g. as the radio button is not constrained to a column.

While constraint-based layouts are more powerful, their creation may be more

complex and poses challenges. General constraints are difficult to visualize and even
harder to manipulate directly. Specifying individual constraints can be tedious and
error-prone, as they are situated at a low level of abstraction. Moreover, specifications
may become over-constrained, i.e. have no solution, or permit widgets to overlap each
other. Presumably it is for such reasons that support for constraint-based layouts in
GUI builders is less developed than for other layout models. This makes it harder for
GUI designers to leverage the advantages of constraint-based layouts.

In this paper we evaluate the use of simple drag & drop operations for the manipu-
lation of constraint-based layouts. These operations are sufficient to create a wide
variety of constraint-based layouts, including layouts where widgets are aligned to
other widgets and no additional constraints exist between them. Our operations are
designed to prevent situations where widgets can overlap. To test these operations
with regard to their usability, we created a novel GUI builder – the Auckland Layout
Editor (ALE) – that implements these operations. In ALE there is no need for the de-
signer to know about the underlying constraint-based layout model.

In two controlled experiments we compared ALE with two state-of-the-art GUI
builders. The experiments target the question if ALEs operations are effective for
editing of constraint-based layouts. The first experiment compares ALE against a GUI

builder that uses the gridbag layout model, which is currently one of the most fre-
quently used layout models. The second experiment compares ALE against a GUI
builder that supports constraint-based layouts. The evaluations show the promise of
our new approach, with significantly shorter completion times for typical layout crea-
tion and editing tasks, and a strong preference from most of the participants for ALE.

Section 2 reviews related work. Section 3 presents ALE and Section 4 the edit op-
erations used in ALE. The evaluation that compares ALE to a gridbag-based and a
constraint-based GUI builder is described in Section 5. Section 6 finishes with con-
clusions.

2 Related Work

There are various non-constraint-based graphical GUI builders. Myers [11] sum-
marized various techniques to create GUIs, including graphical tools to place inter-
face objects on screens. IBuild [14] enabled the creation of complex GUIs in a
WYSIWYG manner. It already supported nested layouts and spring-like “glue” layout
elements. Moreover, IBuild enabled interactive testing of the resize behavior. Dru-
id [13] predicted the intended alignment and spacing of a widget during editing, fa-
cilitating widget placement. FormsVBT [1] supported simultaneous editing of a textu-
al and a graphical representation of a layout.

Some graphical GUI builders permit manual constraint editing. Lapidary [16] sup-
ported editing of constraint-based layouts with rich editing functions for constraints.
In the constraint-based Gilt system [6], widgets could be aligned relative to user-
specified tabstops or other widgets. In contrast to ALE, users had to manage tabstops
themselves. In the Intui GUI builder [12] layout constraints can be edited directly by
toggling between struts (fixed-size constraints) and springs (variable-size constraints)
defined between and inside of widgets. However, only one constraint per widget side
is supported. Finally, Rockit [9] automatically infers constraints from static drawings,
using hard-coded rules and heuristics. These approaches require the user to edit or
handle individual constraints. In contrast, ALE makes it possible to create constraint-
based layouts without knowledge of the (somewhat complex) underlying constraint
system.

Today, there are many open-source GUI builders, such as WindowBuilder Pro 1,
Matisse/Swing2, and Qt Designer3 . There are also many commercial GUI builders,
such as MS Expression Blend4, Visual Studio5, and the Apple Xcode Interface Build-
er6. Most of them support aligning widgets via snapping. With the exception of the
Xcode Interface Builder, where Apple added support for constraints in 2012, none of
them support the interactive construction or maintenance of constraint-based layouts.

1 eclipse.org/windowbuilder
2 netbeans.org/features/java/swing.html
3 qt.nokia.com
4 microsoft.com/expression/products/Blend_Overview.aspx
5 microsoft.com/visualstudio/en-us
6 developer.apple.com/technologies/tools

In Xcode widgets can be placed “freely” onto the editing canvas, and constraints can
be added between the widgets. However, common GUI design guidelines such as [5],
which guide designers towards appropriate layouts, generally emphasize that it is not
desirable to place widgets completely “freely”, i.e. at an arbitrary position in a layout.
Aligned layouts are more compact and easier to understand [7]. ALE automatically
keeps widgets aligned, which can lead to a faster layout creation and editing process.

Supple is an automated system that can adapt layouts to changes in display size, in
particular to different devices. The system supports discrete changes of widgets, i.e. it
changes the controls that are used within an input form depending on the available
space [4]. However, the designer has less influence on the actual layout.

A previous usability comparison between constraint-based and grid-based layout
models [19] used printed screenshots and sketching. This comparison found that the
constraint-based layout model is a competitive alternative to the grid-bag layout mod-
el and performs better for editing existing layouts. The current paper compares con-
straint-based and grid-bag layout model editing directly in interactive GUI builders.

3 The Auckland Layout Editor (ALE)

Similar to other GUI builders, ALE’s user interface consists of a component palette
and an editing canvas (Figure 2). New widgets can be dragged from the palette into
the editing canvas, where the designer can change the layout using a rich set of edit
operations, as described in the next section. Here we first define the terms used to
describe ALE.

In the underlying constraint-based layout model, each widget has a minimum, a
preferred and a maximum size, also called intrinsic sizes. A widget should assume its
preferred size if there are no other constraints for it, similar to the behavior of a
sponge. By default, widgets are surrounded by a small margin, as visible in Figure 1.

There are two common types of linear constraints: hard constraints, which have to
be satisfied, and soft constraints, which may be violated if necessary. When inserting
a widget into a layout, some constraints are automatically derived from the intrinsic
sizes of a widget: a hard inequality is created for the minimum size, and soft equali-
ties for the preferred and the maximum size. These constraints are added in both the
horizontal and vertical direction. As ALE inserts these constraints automatically, us-
ers do not need to manage the constraints for intrinsic sizes manually. The preferred
size of each widget can be fine-tuned, which is comparable to changing the “weight”
of a row or column in a grid-bag layout.

Fig. 2. Screenshot of the ALE GUI builder. New widgets can be inserted into the editing

canvas (left) via drag & drop from the component palette (right).

Variables in a constraint are called tabstops and represent horizontal or vertical
grid lines. Other frequently used names for the same concept are aligners, guides,
snap lines or anchor lines. The edges of each widget are always connected to two hor-
izontal (top and bottom) and two vertical (left and right) tabstops, which form a rec-
tangular area. Connecting widgets to the same tabstop aligns them. Figure 3 shows a
simple layout and its tabstops. Each GUI container, such as a panel or a window, de-
fines tabstops for its four borders.

Fig. 3. Widgets are aligned to tabstops. In the picture there are four outer tabstops (L, T, R

and B) and two inner tabstops (x1 and y1).

If all widgets are connected to at least one horizontal and one vertical tabstop, the

whole layout can be computed directly. The reason for this is that the intrinsic sizes
determine the size and the tabstops the x and y position of each widget. The chosen
constraint solver controls how soft constraints are handled, which determines the final
visual appearance of the layout. In our GUI builder and in the final applications, the

quadratic active set method is used for solving [3]. In contrast to a linear approach,
this leads to unique and aesthetically more pleasant layouts [17]. An overview of dif-
ferent solving techniques can be found in other works [2, 8].

The minimum size of widgets is guaranteed by a sufficiently large minimum size
of the outermost container, e.g. the window. With this, a layout always stays solvable
as only a soft inequality constraint is used for the maximum size. If a maximum size
constraint is violated, then more space is allocated than a given widget is able to use.
In this case, the widget is by default aligned in the center of its allocated space. The
right side of Figure 1 illustrates this. The two buttons at the top share the full window
width, and the maximum width constraints of the buttons are violated here. Thus, the
buttons are centered in their allocated space, as visualized by the light gray areas.

4 ALE Layout Edit Operations

Ideally, a GUI builder should make the creation of a layout easy to learn, simple to
achieve, and quick to perform. ALE’s edit operations for constraint-based layouts
automatically keep widgets aligned to each other as far as possible, by connecting
them to existing tabstops. This makes it easier to rearrange widgets while keeping the
layout consistent. Furthermore, the edit operations leave a widget connected to at least
one horizontal and one vertical tabstop. This ensures that the position of a widget is
always well-defined. The edit operations provided are moving, swapping, resizing,
inserting, and removing of widgets. These operations enable the user to create com-
plex layouts without manual constraint authoring.

As in most GUI builders, a GUI can be created and edited by drag &
drop operations. Edit operations are started by dragging an already placed widget or
the border of a widget. Then, ALE checks at each mouse position if an operation can
be applied and gives corresponding visual feedback (Figure 4). For this, the operation
is applied tentatively in the background. If an operation is appropriate, the user can
commit the operation by “dropping” the dragged item and the result becomes visible.
In general, edit operations can affect multiple widgets and a layout may differ in sev-
eral places after an operation. To help the user understand such changes, a short ani-
mation visualizes how the affected widgets are changed.

Moving a Widget While dragging a widget, its shape is visualized as a dotted rec-
tangle. We limit the size of the dragged outline to a reasonable size to avoid problems
with very large widgets. Two cases need to be considered when moving a widget
from one position to another.

First, a widget can be inserted into an empty area (Figure 4). To identify the correct
empty area, we attempt to snap the dragged rectangle to existing tabstops. If the
widget can only be snapped on one side in a certain direction, horizontally or vertical-
ly, a new tabstop is inserted at the opposite side. If a widget cannot be snapped to any
tabstop in a certain direction, then two other suitable tabstops have to be found. These
are the respective tabstops of the largest empty rectangular area at the pointer posi-
tion.

The combination of snapping widgets to existing tabstops and placing them into
the largest empty area at the pointer makes the move operation quite versatile. For
example, it is possible to place a small item accurately into the corner of an empty
area by snapping it on two borders. Dropping a widget roughly in the middle of an
empty area will fill the area with the widget. Furthermore, a widget can, e.g., be
placed in the left half of an empty area by moving the item’s left border close to the
area’s left border midway between top and bottom. ALE visualizes the location where
a widget will be placed when “dropped” with a green rectangle (Figure 4).

Fig. 4. Move operation: Dragging the button to the bottom-right of the empty area. The area

where the button will be inserted when dropped is highlighted in green.

Second, a widget can be placed between an existing tabstop and a widget adjacent

to that tabstop. This happens when a widget is dropped close to an existing tabstop
and on the adjacent existing widget (Figure 5). In the following, only the insertion at a
vertical tabstop is described; the horizontal case works analogously. When dropping
the dragged widget, it is inserted so that its top and/or bottom are connected to those
of the existing widget, using the same rules as in the first case: if the top or bottom of
the dragged rectangle is close to the top or bottom of the existing widget, then they
are snapped together. If only one side is snapped, either top or bottom, a new tabstop
is created at the opposite side. If the dragged rectangle is not close enough to the top
or bottom of the existing widget, then the dragged widget is connected to both the top
and bottom of the existing widget. In Figure 5, the string view is snapped to the bot-
tom of the right button. The left and right tabstops of the moved widget are then set so
that the widget is placed between the vertical tabstop and the existing widget.

Fig. 5. Move operation: Moving a string view between two buttons.

Swapping Two Widgets This operation is triggered by dropping a widget onto an-

other existing widget. It simply swaps the position of the two involved widgets. Here
it is sufficient to connect the moved widget to the tabstops of the other widget, and
vice versa.

Resizing a Widget Dragging one of the borders or corners resizes a widget and al-
lows the user to connect the dragged borders to different tabstops. During resizing, all
relevant tabstops are visualized as light blue lines to aid alignment. A resize operation
is aborted if an enlarged widget would overlap other widgets.

There are two cases to consider for resizing. First, a widget can be resized to an ex-
isting tabstop, by dragging and snapping it to said tabstop (Figure 6). Second, an item
can be resized to match its preferred size when a dragged border is released without
snapping it to a tabstop. In this case, a new tabstop is inserted for the dragged border
and its position is calculated so that the widget gets its preferred size. Finally, the
resize behavior of widgets can be controlled manually via the preferred size settings
in a properties window (see right side of Figure 2).

Fig. 6. Resizing the top of the list widget to the bottom tabstop of the string view.

Inserting and Removing Widgets Inserting a new widget is practically identical

to the move operation. A widget can be removed from the layout by dragging it out-
side of the layout and dropping it.

4.1 Filling Gaps

A move, resize or remove operation can disconnect adjacent widgets that were on-
ly connected through the one widget that was edited. In this case, a gap may appear in
the layout (Figure 7) and the position of some widgets may become undefined in the
constraint system; the widgets are “floating”.

ALE avoids such situations by checking for disconnected widgets after move,
resize and remove operations. If the layout contains widgets or groups of widgets that
are disconnected, then these widgets are moved one after another into the direction of
the removed or resized widget. If a group was connected to the right side of the re-
moved or resized item, the group is moved to the left, and similarly for other direc-
tions (Figure 7). All disconnected groups are moved until they are connected directly
or indirectly to at least one horizontal and one vertical layout border.

Fig. 7. Filling gaps: Upon removal of the list widget (left), the two buttons are both “float-
ing” vertically. Moving the group of the two buttons to the top fills the gap. The top of the but-
tons is now connected to the bottom tabstop of the combo box (right).

4.2 Non-Overlapping Layouts

ALE guarantees that all created layouts are non-overlapping. In other words, widg-
ets do not intersect each other, regardless of the window size. This ensures that all
widgets are completely visible and accessible at all GUI sizes. Non-overlap for a lay-
out also implies that no widget intersects the boundaries of the GUI. Note that we
need to differentiate between concrete layouts, as they are rendered on a screen, and
layout specifications, which can be rendered at many different sizes and hence lead to
many concrete layouts. For example, the layout in Figure 8 is non-overlapping, but as
the layout size is reduced, the check boxes overlap the buttons due to a missing con-
straint.

Fig. 8. The constraint-based layout on the left appears sound. Yet, when decreasing its size,
as shown on the right, overlap between widgets occurs due to a missing constraint. The used
constraint-based GUI builder, Apple Xcode, gave no indication of this issue.

ALE’s operations are designed to avoid overlap. For this, the layout is tested after
each operation for possible overlap. If necessary, additional constraints are added. For
example, if the user resizes the layout in Figure 8 during the build process as shown,
ALE would add a constraint that keeps a positive distance between the checkbox and
the buttons.

5 Evaluation

We considered two hypotheses, addressed in the following Experiments 1 and 2:

H1 ALE makes it easier to create layouts from scratch compared to other available

GUI builders.
H2 ALE makes it easier to edit existing layouts compared to other available GUI

builders.

Experiment 1 compared layout creation in ALE with a popular gridbag GUI build-
er (H1). Experiment 2 compared ALE with a modern constraint-based GUI builder,
considering both creation of new layouts and editing of existing layouts (H1 and H2).

5.1 Experiment 1: Comparison with a Gridbag GUI Builder

In the first experiment, we targeted H1 by investigating how our approach per-
forms in comparison to a state-of-the art GUI builder. For this comparison we chose
the GUI builder in MS Visual Studio 2010 (VS) as a representative for the state of the
art, since it was popular at the time of the study. A prior study compared the usability
of the gridbag and the constraint-based layout model, finding that the gridbag layout
model has advantages in the creation of new layouts [19]. This supports our choice of
a gridbag GUI builder such as VS for comparison with ALE when investigating H1.

16 participants, mostly software engineering students with experience in GUI de-
velopment, were asked to perform four GUI creation tasks, each either with ALE or
with VS. In each task, they were asked to rebuild a realistic GUI layout from a sample
screenshot. Figures 9, 10 and 11 show the four tasks. We measured task completion
time as an indicator of efficiency, and used a post-questionnaire to determine partici-
pants’ preferences.

With the VS GUI builder it is not easy to modify the row- and column-span in a
gridbag layout, since this cannot be done visually. It can only be achieved by opening
a properties dialog. Thus, participants were instructed to nest multiple gridbag lay-
outs, permitting users to recreate the target layouts more easily.

For both ALE and VS, a training task was given before the respective main tasks to
ensure a reasonable amount of training with both tools. To counteract potential learn-
ing effects, half the participants were allocated to a group which first performed the
training and tasks I and II with ALE, and then the training and tasks III and IV with
VS. The second half used the tools in the opposite order.

If there were errors in the layout after the participants had finished a task, e.g. a
widget was placed erroneously, the experimenter indicated the errors to them. After-
wards, timing continued and the participants had to fix these errors. In this way, all
participants were able to succeed in all tasks.

Fig. 9. Experiment 1, Task I: VS on the left and ALE on the right side.

Fig. 10. Experiment 1: Task II for VS on the left and Task III for ALE on the right side.

Fig. 11. Experiment 1, Task IV: VS on the left and ALE on the right side.

Results and Discussion The measurements were not normally distributed. The

medians of ALE and VS were 74 and 188 seconds, respectively. A Wilcoxon signed-
rank test identified a significant effect of the GUI builder (Z = -5.31, p < 0.0001),
which supports H1. Pairwise Wilcoxon signed-rank tests show that ALE was signifi-
cantly faster than VS for every task, with p < 0.01 or better. Figure 12 shows the in-
dividual times broken down by task. According to the post-questionnaire, 11 of the 16
participants preferred ALE over VS. A separate study is necessary to determine what
exactly made ALE perform better than VS. It was not the aim of our current work, as
we only aimed to evaluate how ALE competes with the gridbag-based VS builder at
the task level.

One potential threat to validity is the fact that in VS participants did not use a sin-
gle gridbag layout, but a nested gridbag layout with a column- and row-span of one.
According to observations during the experiment, many participants had difficulties

when nesting multiple layouts to create the desired outcome with VS, even though
this was easier in the VS GUI builder compared to creating a single gridbag layout. A
possible explanation is that a gridbag layout specification has to be understood more
thoroughly upfront, and cannot easily be developed on the fly during the design pro-
cess as with a constraint-based layout approach.

Note that for this experiment, a slightly older ALE version was used [18] than for
Experiment 2. Although this version was less polished and had some small usability
problems, all operations discussed here were available. It is possible that the different
versions of ALE would differ slightly in their performance.

Fig. 12. Boxplot of the task completion times for all four tasks of Experiment 1.

5.2 Experiment 2: Comparison with a Constraint-Based GUI Builder

In a second experiment, we tested both H1 and H2. Apple’s Xcode offers currently
the only easily available GUI builder for constraint-based layouts. Xcode’s layout
model is similar to ALE’s layout model, supporting simple linear hard and soft con-
straints. Also, Xcode permits free placement and resizing of widgets on the editing
canvas. Consequently, we compared ALE with Xcode in this experiment.

The evaluation involved two main tasks (Task V and VI), preceded by a training
task that was similar to the main tasks. Each participant performed all tasks once with
ALE and once with Xcode. To eliminate order effects, half of the participants started
with ALE, the other half with Xcode. Each task was divided into a layout creation
subtask and three editing subtasks.

The first editing subtask (a) required swapping two widgets; the second editing
subtask (b) required moving a widget to a position between two other widgets (see
Figure 5). For these two subtasks, we expected ALE to perform better because users
need only a single operation, while in Xcode multiple operations are necessary. With
the free placement approach of Xcode, moving a widget between two other widgets
requires the user to first move at least one of the other widgets aside to make room for
said widget. Furthermore, it is necessary to manually fill the empty space that the

moved widget has left behind. The last editing subtask (c) was more complex and
required a combination of multiple edit operations. Figure 13 shows the layout for the
creation subtask for Task V, and Figure 14 shows the editing subtask (c) for Task VI.
In Xcode, participants were asked to align widgets as well as possible via the snap-
ping functionality provided by the builder. As with the previous experiment, after
each task, timing stopped, the experimenter pointed out layout errors to the partici-
pants, timing continued and participants had to fix the errors.

After finishing the tasks using Xcode and ALE, the participants were given a Lik-
ert-scale questionnaire to gather general information and to analyze their preferences.
Furthermore, they were asked for comments in an open-ended question.

Fig. 13. Experiment 2, Task V: Xcode on the left and ALE on the right side.

Fig. 14. Experiment 2, Task VI (c): The complex editing subtask.

Fig. 15. Results for the general Likert-scale questions of Experiment 2.

Results and Discussion For this study, 14 participants were recruited, mostly gradu-
ate Computer Science students. All of them stated that they had understood the tasks.
Most participants had experience with user interface design and were familiar with
creating GUIs using a GUI builder. Four participants had used Xcode before, while
only one participant had used ALE before (see Figure 15).

Overall, the measured task completion times were not normally distributed. The re-
sults for the creation tasks are shown in Figure 16.

The medians of all creation times for ALE and Xcode were 66 and 80 seconds, and
for all editing times 9 and 38 seconds, respectively. Figure 17 depicts the results for
the editing subtasks of Task V. The results for the editing subtasks of Task VI are
shown in Figure 18. A Wilcoxon signed-rank test identifies a significant effect of the
GUI builder for creation (Z = -2.05, p < 0.05), which supports H1. There is also a
significant effect for editing tasks (Z = -9.19, p < 0.0001), which supports H2. For
layout creation and layout editing, ALE was clearly faster for Task V and Task VI.
Pairwise Wilcoxon signed-rank tests show that ALE was significantly faster than
Xcode for every creation and editing subtask, with p < 0.01 or better. The swapping
(a) and the moving (b) subtasks were much faster using ALE.

Fig. 16. Task completion times for layout creation in Experiment 2, Task V and VI.

Fig. 17. Task completion times for layout editing in Experiment 2, Task V.

Fig. 18. Task completion times for layout editing in Experiment 2, Task VI.

The results from the post-experiment questionnaire show a consistently positive re-
sponse (Figure 19). Most participants preferred ALE and found it easier for creating
and editing layouts. Furthermore, participants enjoyed ALE more than the Xcode
builder.

Several participants commented in the open-ended question that they liked the
swap operation and that layout editing was easier. Other comments pointed out that
“one first had to get used to the different concepts of ALE, e.g. that [a widget] cannot
be placed freely.” Another stated: “I would imagine that ALE may perhaps be very
efficient when acquainted with.” This is consistent with our observations that partici-
pants needed more time to get used to ALE. However, after the training phase most
participants were able to perform all tasks without problems.

Fig. 19. Results for the Likert-scale usability questions of Experiment 2.

One noteworthy observation is that with the free placement approach of Xcode it
was more difficult to align items precisely. Participants made many erroneous align-
ments or seemed to be unaware of misalignments in the layout. Another observation
is that when using Xcode, participants often first aligned a newly inserted or modified
widget precisely to some other widgets, and realized only later that they had to align
said widget again to achieve the target layout. ALE avoids this problem by automati-
cally keeping widgets aligned, which is one contributor to the much shorter comple-
tion times. A threat to validity is that in Xcode, resizing a text or list widget was
sometimes difficult, as users had difficulties clicking the resize handles. However,
users also experienced similar minor usability problems in ALE.

Another threat is that layouts in both experiments were relatively small. Since the
evaluation took already about an hour we tried to keep the layouts small. However,
we believe that the layouts have a reasonable size because for larger layouts one
would naturally start to use nested layouts.

6 Conclusion

We presented ALE, a GUI builder that makes it possible to quickly create and edit
constraint-based layouts with simple mouse operations. ALE defines a set of layout
edit operations that hide much of the complexity of constraint-based layouts from the
designer. These edit operations are moving, swapping, resizing, inserting and remov-
ing of widgets. All operations maintain alignment and establish appropriate con-
straints automatically. ALE automatically aligns widgets to each other when placing
a widget. It also moves other widgets aside if necessary. Swapping of widgets does
not require manual resizing or moving of the adjacent widgets. Additionally, ALE
automatically keeps layouts non-overlapping.

In two comparative evaluations, we found that ALE permitted participants to con-
struct several realistic layouts significantly faster than with current commercial solu-
tions, both for a gridbag and a constraint-based layout. Furthermore, we found that
editing existing constraint-based layouts is also significantly faster with ALE. Partici-
pants enjoyed using ALE, and once familiar with the new edit operations, found it
easier to use.

This evaluation demonstrates that it is feasible to utilize the power of constraint-
based layouts in graphical GUI builders. The encouraging results from the experi-
ments illustrate also that operations that automatically keep widgets aligned can result
in a substantial boost in productivity. Overall, we see this as an indication that there is
ample potential for improvements in today’s GUI builders.

Future work Ideally, a GUI builder should be able to guarantee that all created
layouts are non-overlapping, regardless of window size. ALE addresses this by auto-
matically adding constraints when potential overlap is detected. We will describe this
functionality in more detail in future work.

ALE’s edit operations are already powerful enough to create many common lay-
outs. However, a constraint-based system can be used to create far more complex
layouts. For that, general constraint editing has to be integrated into ALE. We will
investigate this in the future as well.

7 Acknowledgements

We would like to thank Rishika Mukerjee and Keerthana Puppala for helping to
design and perform the first experiment.

References

1. Avrahami, G., Brooks, K.P., Brown, M.H.: A two-view approach to constructing user in-
terfaces. SIGGRAPH Comput. Graph. 23(3), pp. 137–146 (Jul 1989),

2. Badros, G.J., Borning, A.: The Cassowary Linear Arithmetic Constraint Solving Algo-
rithm: Interface and Implementation. Tech. rep., ACM TRANSACTIONS ON COMPUT-
ER HUMAN INTERACTION (1998)

3. Fletcher, R.: Practical methods of optimization; (2nd ed.), chap. 10.3. Wiley-Interscience
(1987)

4. Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: Proc. 9th in-
ternational conference on Intelligent user interfaces. pp. 93–100. IUI ’04, ACM, New York
(2004)

5. Galitz, W.: The essential guide to user interface design: an introduction to GUI design
principles and techniques. Wiley (2007)

6. Hashimoto, O., Myers, B.A.: Graphical styles for building interfaces by demonstration. In:
Proc. 5th annual ACM symposium on User interface software and technology. pp. 117–
124. UIST ’92, ACM (1992)

7. Heim, S.: The resonant interface: HCI foundations for interaction design, chap. 6.6. Pear-
son/Addison Wesley (2007)

8. Jamil, N., Müller, J., Lutteroth, C., Weber, G.: Extending linear relaxation for user inter-
face layout. In: IEEE 24rd International Conference on Tools with Artificial Intelligence,
ICTAI 2012, Athens, Greece (2012)

9. Karsenty, S., Weikart, C., Landay, J.A.: Inferring graphical constraints with Rockit. In:
Proc. INTERACT ’93 and CHI ’93 conference on Human factors in computing systems.
CHI ’93, ACM (1993)

10. Lutteroth, C., Strandh, R., Weber, G.: Domain Specific High-Level Constraints for User
Interface Layout. Constraints 13(3) (2008)

11. Myers, B.A.: User-Interface Tools: Introduction and Survey. IEEE Software 6, pp. 15–23
(1989)

12. Scoditti, A., Stuerzlinger, W.: A new layout method for graphical user interfaces. In: Sci-
ence and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Confer-
ence. pp. 642–647. IEEE (2009)

13. Singh, G., Kok, C.H., Ngan, T.Y.: Druid: a system for demonstrational rapid user interface
development. In: Proc. 3rd annual ACM SIGGRAPH symposium on User interface soft-
ware and technology. pp. 167–177. UIST ’90, ACM (1990)

14. Vlissides, J.M., Tang, S.: A unidraw-based user interface builder. In: Proc. 4th annual
ACM symposium on User interface software and technology. pp. 201–210. UIST ’91,
ACM (1991)

15. Weber, G.: A reduction of grid-bag layout to auckland layout. In: Software Engineering
Conference (ASWEC), 2010 21st Australian. pp. 67 –74 (April 2010)

16. Zanden, B.V., Myers, B.A.: The Lapidary graphical interface design tool. In:
Proc. SIGCHI conference on Human factors in computing systems: Reaching through
technology. pp. 465–466. CHI ’91, ACM (1991)

17. Zeidler, C., Lutteroth, C., Weber, G.: Constraint solving for beautiful user interfaces: how
solving strategies support layout aesthetics. In: Proc. 13th International Conference of the
NZ Chapter of the ACM’s Special Interest Group on HCI. pp. 72–79. CHINZ ’12, ACM
(2012)

18. Zeidler, C., Lutteroth, C., Weber, G., Stürzlinger, W.: The Auckland layout editor: an im-
proved gui layout specification process. In: Proc. 13th International Conference of the NZ
Chapter of the ACM’s Special Interest Group on Human-Computer Interaction. pp. 103–
103. CHINZ ’12, ACM, New York (2012)

19. Zeidler, C., Müller, J., Lutteroth, C., Weber, G.: Comparing the usability of grid-bag and
constraint-based layouts. In: Proc. 24th Australian Computer-Human Interaction Confer-
ence. pp. 674–682. OzCHI ’12, ACM, New York (2012)

