
Information Visualisation Utilising

3D Computer Game Engines

Case Study: A source code comprehension tool
Blazej Kot

bkot002@ec.auckland.ac.nz

Burkhard Wuensche
burkhard@cs.auckland.ac.nz

John Grundy
john-g@cs.auckland.ac.nz

John Hosking
john@cs.auckland.ac.nz

Department of Computer Science

The University of Auckland

ABSTRACT

Information visualisation applications have been facing ever-

increasing demands as the amount of available information has

increased exponentially. With this, the number and complexity of

visualisation tools for analysing and exploring data has also

increased dramatically, making development and evolution of

these systems difficult. We describe an investigation into reusing

technology developed for computer games to create collaborative

information visualisation tools. A framework for using game

engines for information visualisation is presented together with an

analysis of how the capabilities and constraints of a game engine

influence the mapping of data into graphical representations and

the interaction with it. Based on this research a source code

comprehension tool was implemented using the Quake 3

computer game engine. It was found that game engines can be a

good basis for an information visualisation tool, provided that the

visualisations and interactions required meet certain criteria,

mainly that the visualisation can be represented in terms of a

limited number of discrete, interactive, and physical entities

placed in a static 3-dimensional world of limited size.

Categories and Subject Descriptors
H.1.2 [User/Machine System]: Human factors; H.5.2 [User

Interfaces] Graphical User Interfaces (GUI), Interaction styles;

H.5.3 [Group and Organization Interfaces] Collaborative

Computing; I.3.6 [Methodology and Techniques] Interaction

Techniques; I.3.8 [Computer Graphics] Applications; K.8.0

[General] Games.

General Terms
Algorithms, Human Factors.

Keywords
Information visualisation, human-computer interaction, game

engines, collaborative visualisation, software visualisation.

1. INTRODUCTION

Modern computer games make use of technologies from almost

all areas of computer science: graphics, artificial intelligence,

network programming, operating systems, languages and

algorithms. A modern computer game engine, such as Doom 3

[13] or Unreal Tournament 2004 [15] contains efficient, very

well-tested implementations of a wide range of powerful

information visualisation and interaction techniques. These are

generally focused on rendering realistic 3D “worlds” and

supporting navigation within and interaction with elements in the

visualisation. Given the power, flexibility and maturity of these

game engines, we wanted to investigate possible ways of reusing

these implementations for other information visualisation tasks,

thus potentially saving large amounts of development time.

Computer game implementations have been successfully applied

by other researchers to tasks they were not originally designed

for, such as architectural design critique [1], military simulations

[2], landscape planning [3], and as an interface for Unix process

management [4]. In these applications game engines were utilised

to render very domain-specific information spaces which were

then navigated and interacted with by users.

Our research focuses on utilising computer game implementations

for more general information visualisation tasks. This seems to be

a relatively unexplored area, as we could only find a few

examples of work related to this topic [4,5]. We present a

framework for information visualisation using game engines and

we apply it in practice by developing a source code

comprehension tool based on the Quake 3 engine. This example

was chosen because code comprehension requires the user to

explore a structure, and to remember the locations of various

items in it. Hence this information can be mapped into a 3D

environment, where the spatial memory of the user can be

engaged to remember the layout of the code structure.

We provide a motivation for this research and survey game

engine technologies and related research. We then introduce an

architectural approach to information visualisation using games

engines. We illustrate the application of this architecture to the

code comprehension information visualisation domain, describe a

proof-of-concept prototype we developed to illustrate its

feasibility, and describe an evaluation of this prototype. Further

details of the research presented in this paper are available in [11].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CHINZ '05, July 6-8, 2005 Auckland, NZ

Copyright 2005 ACM 1-59593-036-1/04/10"

2. MOTIVATION AND BACKGROUND

2.1 Source Code Comprehension Tools
Source code comprehension involves taking a complex data set

(program source code), translating this into a data model with

relationships between source code items represented (which might

include type dependency, operation invocation, data flow, thread

synchronisation, resource utilisation and so on), and visualising

this data model. Users (typically designers and programmers)

often want to visualise the data model in various ways, navigate

the model from high-level to low-level relationships and vice-

versa, and perform tasks on selected data model items e.g.

viewing a file [29]. Most existing source code comprehension

tools use textual or 2D diagrammatic renderings, with associated

navigation and interaction paradigms. A few examples, like

Shrimp [30] and Bloom [31], use 3D, zoomable renderings.

However, these tools are built with bespoke techniques and

require ad-hoc design and implementation techniques to realise

their 3D user interfaces. Most existing tools provide very limited

support for multi-user source code comprehension tasks.

We wanted to develop a source code comprehension tool that

used 3D, virtual environment metaphors to both present source

code relationships and support end user browsing and interaction

with information items. We also wanted to support multiple users

working together to comprehend code, including code walk-

throughs, code annotation and communication. To avoid building

our own support for these features from scratch we wanted to

leverage game engine technologies. Thus our tool needed to use a

visualisation metaphor that maps simply and naturally into a static

3D world occupied by dynamic, interactive entities, as found in

most current game engines. Key functional requirements of the

tool included: rendering source code files as 3D entities in a

suitable 3D world; relationship rendering and hyperlinks between

dependencies; support for multiple user interaction, including

identifying places of current interest of other users, guided tours

of code, and on-line communication in the virtual world.

2.2 Game Genres
Out of the computer game genres which use graphics (as opposed

to text-based games) the main ones are First Person Shooter

(FPS), Real Time Strategy (RTS) and Role Playing Game (RPG).

Computer games can be classified further into single player

(wherein other players are simulated using artificial intelligence),

multi-player (where several players can interact in the same

virtual world via a computer network), or both.

In a FPS game, the player travels around in a three dimensional

world, shooting enemies. In a RTS game, the player views a two

dimensional map with many units (for example, of an army) on it.

Players control their own units and use them to attack and defeat

their opponents. A RPG is similar, except the player controls only

one unit, their “character”, via which they explore a 2D (e.g. Age

of Empires II [6]) or 3D (e.g. World of Warcraft [7]) world.

2.3 Game Architecture
Most modern computer games can be split into three parts: the

game engine, the game logic and the game art. The game engine

is the main executable file which runs on the computer. It

provides an environment within which the game logic runs, as

well as basic mathematics, graphics, audio, user input and

network functions. The game logic may take the form of scripts,

bytecode for a virtual machine, or a library (a DLL for example).

The game logic's task is to control the game play, and to use the

engine to display the game art as appropriate. The game art

consists of things such as pictures (textures in game parlance),

maps (layouts of virtual worlds), models (3D representations of

things inhabiting the world, for example players, weapons or

flowerpots) and sounds.

2.4 Available Game Engines
Game engines can be divided into two categories: open source

and closed source.

Open-source game engines are either ones written by amateurs, or

older commercial engines which the developer decided to open-

source. In the former category, some of the more popular engines

are: OGRE [8], Crystal Space [9], Irrlicht [10], and The Nebula

Device 2 [12]. In addition to these, there are the Doom, Doom 2,

Quake and Quake 2 engines which have been open sourced by id

Software [13]. These use the OpenGL library for rendering, and

since they are from a commercial game they include support for

all the gaming features such as physics, audio, network, 2D and

GUI. None of the four amateur engines mentioned above have as

much functionality as the id Software engines built-in, however

they may be combined with external libraries to provide the

missing functions. The id Software engines suffer from being

older, providing poorer rendering quality than the newer open

source engines.

There are currently three main closed-source game engine

families in the FPS genre, each from a different developer: Doom

3 and Quake 3 engines from id Software, Half Life and Half Life

2 engines from Valve Software [14] and Unreal Tournament (UT)

and Unreal Tournament 2004 (UT2004) engines by Epic Games

[15]. Doom 3, Half Life 2 and UT2004 represent the latest

generation from each developer, and are the best game engines

available.

All of these closed-source engines are fully-featured, and there

exist one or more complete games based on each of these engines.

This is in contrast to most of the amateur engines mentioned

above, which provide more basic functionality. The amateur

engines often need to be combined with other libraries and

toolkits to create a playable game, while the six closed-source

engines listed here have all of the required functions built-in. Out

of these six, Quake 3 deserves special mention as id Software

plans to open source it in the near future [16]. This would mean

that, unlike the other engines here, extensive modifications to the

game engine would be possible. (Mods for the other ones are

restricted to altering the game logic and art.)

3. RELATED WORK

3.1 Using Game Engines for Visualisation
PSDoom [4] is a utility for process visualisation and management,

implemented as a modification of the Doom computer game. It

provides the functionality of the Unix ps command via a 3D user
interface. Running processes are represented as monsters

(enemies), which can be shot and killed, thereby terminating the

associated process. Monsters can fight back, and more important

processes are represented by bigger monsters (which are more

difficult to kill), thereby reducing the chance that they will be

terminated. Interestingly, when many processes are running, and

the 3D space becomes crowded with monsters, the monsters start

attacking each other (a normal Doom behaviour). This provides a

natural control mechanism for processes in a heavily loaded

system - less important monsters will be killed first, since the

important monsters are represented by stronger monsters.

Heckenberg et al. [5] implement a visualisation of a simplified

financial market (“The Minority Game”) using a modification of

the Unreal Tournament 2003 computer game. The Minority Game

consists of two teams of agents. These agents are represented as

3D players in the game. The Minority Game centres on the agents

making decisions so as to end up on the winning team (which is

defined as the team with the least agents). Future work is

suggested to make use of other game features, such as players

being able to throw stocks and money at each other, to perform

trading.

Computer games can also be used to visualise less abstract

concepts, such as 3D battlefields in military simulations [2],

landscape design and planning [3], and architectural designs [1].

3.2 Software Visualisation
A substantial amount of research has been done in the area of

software visualisation using 3D graphics. The tool sv3D [22]

represents one source file as a group of cuboids, one for each line

of code. The colour of the cuboid may represents various

attributes of the corresponding line, such as the control structure

type to which this line belongs, while the height can represent the

nesting level of the line. The sv3D implementation allows the user

to arbitrarily map other attributes of the code lines to various

graphical attributes, such as transparency.

Another interesting 3D visualisation is ArchView [23]. Here,

individual source code modules are represented by “LEGO

blocks” floating in a 3D space. Import relationships between

modules are shown by arrows, while the type of module (a user-

specified categorisation) is represented by the colour and shape of

the bricks.

Panas et al. [24] use a 3D city metaphor to represent a software

project. Java classes are represented by individual buildings,

whose size represents the number of source code lines in that

class. The spacing of buildings shows the amount of coupling

between the classes, and the type of building indicates the quality

of the code - old and collapsed buildings represent code which

needs to be refactored. Cars travelling within this city show the

dynamic execution path of the visualised program. Since the cars

leave traces, places of heavy traffic can be identified, and these

correspond to heavy communication between classes. Various

aspects related to software project management are then

superimposed on top of this view, such as surrounding often

executed classes by flames and colouring parts of the code which

are not used brown.

4. INFORMATION VISUALISATION
USING A GAME ENGINE

4.1 The Visualisation Pipeline
The visualisation process can be represented by a pipeline which

performs a data encoding and a data decoding step as shown in

figure 1. The first stage of the data encoding step is the data

transformation stage that converts information into a form more

suitable for visualisation. This can involve the creation of new

quantities and subsets, data type changes, and modelling

operations (e.g. model a directory structure as a tree). The

subsequent visualisation mapping converts the transformed data

into graphical representations which the rendering stage then

displays on a screen or by printing.

For information visualisation applications some authors [27,28]

prefer to subdivide the mapping stage further into visual

transformation (or data modelling) and visual mapping. However,

in many applications these two stages are combined: the available

models are fixed and the parameters of a model (shape, size,

colour, texture) represent the encoded information. The data

decoding step describes how visual information is perceived and

processed and consists of visual perception and cognition.

Figure 1: The Visualisation Pipeline.

The encoding and decoding are connected via visual attributes

such as shape, position, and colour, and textual attributes such as

text and symbols which themselves are represented by simple

visual attributes. A visualisation is effective if the decoding can

be performed efficiently and correctly. “Correctly” means that

perceived data quantities and relationships between data reflect

the actual data. “Efficiently” means that a maximum amount of

information is perceived in a minimal time.

4.2 Integrating a Game Engine into an
Information Visualisation Framework
There are two main ways in which a FPS game engine can be

used for information visualisation. One way is to modify an

existing game which is implemented on top of the engine, and

only add the features necessary for the visualisation, leaving the

basic style of interaction with the 3D world intact. The other way

is to write totally new code for the game logic, and only make use

of the graphics, audio and networking functionality provided by

the engine itself. This approach is more flexible with regards to

what visualisations can be created, however it requires a lot more

work on the part of the developer. In fact, this approach is similar

to using a visualisation toolkit or engine, such as OpenSG[25]. In

this paper, only the former approach is considered, as this is the

option that allows maximal reuse of the computer game

implementation.

4.3 Information Mapping
The main challenge met when using a game engine for

information visualisation is that the set of available visual

attributes, textual attributes and interaction techniques is limited

as explained below. Hence it is imperative to take these

limitations into account when transforming and mapping the raw

data into graphical representations.

In an FPS game, there are two primary types of elements: a static,

or almost static, map (3D layout of rooms) and dynamic,

interactive entities occupying positions in this map.

There are many different ways to represent parts of an

information visualisation by game elements. The particular

mapping chosen depends on the particular visualisation. For

example, in a visualisation of a file hierarchy, the layout of

directories could be represented by the layout of the rooms (that

is, the map), while files are entities occupying positions within

these rooms.

Limitations imposed by game engines must be taken into

consideration when designing this mapping. One example is that

in most current FPS games (specifically, Quake 3), the map can

not be altered during a game session. This could be partly

worked-around, as players can be moved between maps relatively

easily, so that one map could be altered while the players are in

another map, creating the illusion of a dynamic world. This has

the disadvantage that the game will pause while switching maps.

Additionally, Quake 3 maps are limited in size. A solution is to

split a large map into several smaller maps, but with the same

problem of the game pausing between map changes.

Another limitation of FPS games is that they are designed for a

relatively low number of entities; Quake 3 only allows a

maximum of 1024 entities in a map. With access to the game

engine source code, this limitation may be removed, but this may

introduce a performance hit. Thus, in some cases it may make

more sense to represent parts of the visualisation as dynamically

generated textures (e.g. a diagram of a graph structure) rather than

as separate entities. Again, this could be worked around by using

multiple maps, or by spending some time extending the engine.

Yet another peculiarity of game engines is that they are designed

to only support one style of interaction, that defined by the game

logic. For example, in Quake 3 each entity usually has a fixed

appearance, and a fixed behaviour throughout a game session. (It

is actually possible to alter these programmatically during a game

session in the game logic, if desired.) The problem is that the

engine does not provide any "multiple view types" support. So, if

the visualisation to be implemented relies on multiple view types

(e.g. seeing files first as parts of a pie chart of disk usage, and

then as entities inhibiting 3D rooms), one must be prepared to

code a framework on top of the engine which will keep track of

what view is being currently used, and tell the game logic which

representations and behaviours to use for which entity.

5. A SOFTWARE COMPREHENSION
TOOL BASED ON A GAME ENGINE

5.1 General Requirements
The initial choice we faced was how to map important features of

code visualisation to a 3D game engine metaphor. The metaphor

we chose is to represent source code files as entities that can be

interacted with (viewed, moved, arranged) in an otherwise static

3D world. Although we have chosen source files as the principal

entity, we could easily have chosen class definitionsor any other

primary modularisation mechanism to similar effect. File entities

can be moved around at will, to arrange them in logical

groupings. They can be viewed by walking up to them. The

source files are cross-referenced using hyperlinks, so that clicking

on a symbol in the source code takes the user to a definition of

that symbol. Also, back and forward buttons exist so that users

can walk through their histories. The metaphor used by the tool is

essentially just a 3D version of a web browser, using cross-

referenced source files as the web pages. The advantages of using

a game engine instead of a normal browser are mainly: multi-user

support either via a LAN or the internet, so one user can guide

another user via the code; and utilisation of the user's spatial

memory, since closely-related files can be placed together in the

3D world - hopefully making it easier for the user to comprehend

the structure of the source code.

It is important to note that care must be taken when using 3D

interfaces for information visualisation applications. Results of

Cockburn et al. [21] suggest that users often find a 3D user

interface confusing and cluttered. However, the authors also

mention that adding semantic labels to elements in a 3D space

may improve user performance to above that of a standard 2D

interface. The tool implemented in the present project places the

elements in virtual rooms and hallways in a 3D world, unlike the

experiment by Cockburn et al. where the items were all floating in

space. The implementation hence provides a type of semantic

label and utilises the users’ spatial memory abilities [19,20].

Throughout the design of the tool, the main usage scenario

considered was that of a new employee, or group of employees,

arriving to work at a company, and being given a guided tour of

the company's source code base by an existing employee. The

main functional requirements thus identified included:

♦ A web browser like interface, but with webpages (source

code files) represented as movable 3D entities in a 3D world.

Syntax highlighting and hyperlinks are to be displayed when

a source code file is shown.

♦ Ability for users to identify, by their appearance (model),

other users in the world.

♦ Ability for a user to give a guided tour - so that new

employees can automatically follow experienced employees.

♦ Ability for users to point out specific parts of the code to

each other during a guided tour - by circling parts of code on

their screen, and by having the same drawing appear on the

other player's screens.

♦ Communication between users (via a chat facility)

5.2 Requirements for the Game Engine and
Engine Choice

The game engine used needs to be multi-user capable, stable, and

well tested. Since as discussed in Section 4 the tool will be

implemented by modifying an existing game running on the

chosen game engine, there must be a well-tested, open-source,

implementation of a game for the chosen game engine. This is

required since this project aims to reuse as much of the 3D First

Person Shooter style of interaction as possible. Because of this, it

makes sense to reuse an existing FPS implementation, rather than

spending time writing one for a game engine which has no such

existing implementation.

The game engine which seemed to best meet these requirements is

the Quake 3 engine, with the corresponding game

implementation, Quake 3 Arena [17,18],. The Quake 3 engine

source code is at the moment not available to the public. The

Quake 3 Arena source code is available, under a limited licence

(which does appear to permit modifying the source code and

distributing the modified game virtual machine bytecode).

Several open source game engines, such as OGRE, Crystal Space

and Irrlicht (see section 2.3), were investigated, however most of

them lacked crucial features (such as networking support), or had

no well-tested game implemented using them.

Quake 3 uses the standard FPS game control system: mouse and

keyboard. Moving the mouse around changes the direction the

player looks in. The mouse buttons are typically used for walking

forwards and for shooting. Various keys on the keyboard are used

for crouching, jumping, moving backwards, strafing and

switching weapons. The keys can be remapped to different in-

game functions via a process known as key binding.

Quake 3 is by design a network-oriented (LAN or internet) game,

using the client-server model of communications. Each computer

running Quake 3 runs an instance of quake3.exe, the game
engine. This executable is capable of running bytecode for three

virtual machines: game, cgame and UI. These are referred to as
QVMs, for Quake Virtual Machine. The game qvm is the server
part of the game. It is responsible for maintaining the state of the

game world, such as positions of all entities, and sending

messages to the clients. It also has the final say on issues such as

whether a certain bullet hit a certain player or not. Game does not
do any rendering; it only communicates with clients. cgame is
the client QVM - there is one running on each computer

connected to a particular game. The client is responsible for

rendering the map and entities, according to data sent by the

server. Finally, the UI qvm is responsible for displaying the in-
game menus. Within the QVM environment there are several

available system calls or traps. These are functions that can be

called within the code of the QVM, to pass control into the main

quake3.exe executable. This is how tasks such as drawing on
the screen, file and network access are carried out.

Internally, the main message passing mechanism (or rather, the

most easily accessible and modifiable one) is based on passing

variable-length, null-terminated strings. These can be sent from

the server to the client or vice-versa.

Currently, only the Quake 3 game logic code is open to the

public. This consists of a total of approximately 100 000 lines of

ANSI C code running on the three Quake 3 virtual machines.

5.3 The User Interface and Interaction
Metaphor - Single User

The tool is based on displaying source code files as individual

entities within a 3D world. These entities can be moved around,

much like icons can be moved around on a 2D desktop. The

entities are drawn as floating “T” shapes, for no reason other than

that this seemed to be the most appropriate of the existing entity

models in Quake 3. Another model could be easily substituted in

the future. The size of the drawn entity indicates the size of the

corresponding source file. All file entities have their filename

displayed above them. In order to improve the readability this is

done in a way such that the text always faces the player, and is of

constant size, irrespective of the distance between the player and

the file. Additionally, header files (detected as those files whose

name ends in “.h”) have their filenames displayed in red, and their

“T” shapes surrounded by a spheroid, while other files have their

filenames in blue, and have no surrounding spheroid, so that they

may be easily distinguished as illustrated in figure 2.

Files can be picked up by shooting at them. When this occurs, the

file disappears from the map, in all players' views, but a “T” icon

appears on the side of the screen of the player who is now holding

the file. The player can then walk anywhere on the map, and press

the item use key to drop the file at the new location. The file than

appears at this new place in the map. In the current

implementation, there is no way for players to distinguish if a

certain player is carrying a file. This may cause some confusion

due to “missing” files, so this feature should be added in a later

version.

Figure 2: A small header file (left) and a large .c file.

Figure 3: Viewing a source code file.

To view the contents of a file, players just walk into a file. When

they are close enough, the file is displayed on the screen, as

shown in figure 3, in a scrollable box. The file may be scrolled

using the arrow and page up and down keys. The current position

in the file is indicated by a scrollbar on the left and as line and

column numbers at the top of the screen.

The displayed text is shown using syntax highlighting, for easier

comprehension. Function invocations and uses of variables are

displayed as hyperlinks - by being underlined in blue. The

hyperlinks are generated by using the doxygen [26]

documentation tool, in conjunction with a purpose-written parsing

tool. Clicking on a hyperlink will take the user to where the

symbol in question is defined in the source code. If the definition

is within the same file, the file is scrolled so that the definition is

at the top of the screen. If the definition is in another file, the file

view is closed, so that the user sees the 3D world. The user's view

is than slowly panned around so that the file in which the symbol

is defined is centred on the screen. The player is then slid towards

the file, and upon reaching it the file is displayed, with the

definition of the symbol at the top of the screen. In the present

implementation, if the files are in different rooms separated by a

wall, the player will be slid through the wall, which may be

disorientating to the player. In future, part of the AI route-finding

algorithm in Quake 3 could be reused to have the player follow a

path to the destination file without crossing any walls.

Each time a player clicks on a hyperlink, the currently viewed

file, and their position therein, is added to their history. The

history operates exactly like a web browser's history, via a back

and forward button.

5.4 Multi-User Features

Most of the multi-user features present in Quake 3 remain

unaltered. These include the ability of players to see other players

in the 3D world, to chat with them, and to view the names of all

players in the current game by pressing the F1 key (the

scoreboard key). In Quake 3, each player can choose a 3D model

that will be their avatar in the 3D world. Each player also can set

their name - this is the name that will be displayed in the

scoreboard and in the chat dialog.

The standard Quake 3 interaction provides a simple way of seeing

what file another player is looking at - one can walk around the

map, looking for that player's model, and see what file they are

standing at. Unfortunately, the standard Quake 3 multi-user

system does not provide a simple way of seeing which part of the

file another user is looking at, and also there is no simple way of

pointing out certain lines of code to another user.

Therefore, two new multi-user features were added to Quake 3 for

this tool: a way of "locking" one's view with another player's, so

that your screen shows exactly what the other player is seeing;

and a way of "drawing" on the file display, so that one can point

out parts of the source code to other users.

The lock view feature works as follows: when viewing a file (ie.

when standing very near to it), portraits of all other players also

viewing the same file are displayed at the bottom of the screen.

Clicking on a portrait locks your view with that player's. This is

indicated by the background of that player's portrait flashing.

When your view is locked with another players', you cannot

scroll, but your view shows exactly what the other player sees - if

they scroll, your view also scrolls to the same position.

One can point out parts of source code to other users currently

viewing a file. This is done by dragging the mouse cursor with the

right mouse button held down. This leaves behind a long trail of

squares, which fade out over time. This can be used for example

for circling or underlining certain items. In the present

implementation, if one player viewing a file draws on it, the same

trail of squares appears in the view of all other players also

viewing the source file, irrespective of whether their views are

locked or not. Whether the trail drawing should be restricted to

only the players with locked views is something to be investigated

in the future. Each player has a unique colour, which is used as

the background of their portrait, as well as for the colour of the

trail of squares. This is so users can easily identify who is

drawing. See Figure 4.

Figure 4: Detail of the source file view. The player with the

green background is pointing out the “unzip” link using a

trail.

6. EVALUATION

6.1 Evaluation of the Tool
The implemented tool met all the major functional requirements

listed in the design section: source code files are represented as

physical, movable 3D entities in a 3D world. They can be

navigated via a web browser like interface which displays the

files with syntax highlighting and hyperlinks. Users can see each

other, and can customise their appearance to be unique using the

normal Quake 3 model choosing system. A player can lock their

view with another player, so that giving guided tours is possible.

Users can “draw” on the source files, thereby indicating important

parts of the code to other players also viewing that file (the

“drawing” fades over time to reduce clutter). The chat

functionality is not completely implemented yet, as it does not

work correctly for users who are viewing contents of files,

however it does work well in the normal 3D view.

There was no real usability trial done. However, during

debugging, the help of several people was enlisted, and the

following observations were made:

♦ Since everyone was in the same physical room, no-one

bothered using the chat functionality, and just communicated

using voice.

♦ Sometimes in a place where there were lots of files, the file

name labels would overlap, being difficult to read. One

person came up with an interesting use of the Quake 3 'zoom'

function to overcome this. By holding down the 'Ctrl' key,

the player's view is magnified, showing less files, and

separating the filenames labels more, making them easier to

read.

♦ An unplanned feature was discovered: a player who is

currently carrying a file can run up to another player, and

drop the file onto him. The other player's view will then

show the contents of that dropped file. It is interesting to

note that this feature arose by itself due to basing the tool on

a 3D physical world metaphor. In the future, this sort of

interaction could be used, for example, for a 3D interface to

a source code version control system: a user walks up to a

“vault”, where the checked-out files are dispensed, picks one

up, carries it to their virtual workplace to work on it, and

then carries it back and “drops” it into a chute leading back

to the vault, to check-in the changes.

♦ In an early version of the tool, the lock view feature was

only implemented within one source file view - as soon as

the tour guide clicked on a link, the other participants' views

became unlocked, and they did not automatically follow the

tour guide to the destination of the clicked link. The

participants found this annoying, so the lock view feature

was changed in the current version, to allow groups to follow

the leader between files automatically. Unfortunately, this

seems to have had the effect of turning the players who are

being guided around into “zombies” - all that they do is look

at the screen, and have no control of what they are looking

at. This may lead them to losing attention quickly. Perhaps

an intermediate solution could be implemented, where if the

leader clicks on a link, that link is highlighted on the other

player's screens, but then they have to click on it. Whether

this is a good solution needs further investigation.

6.2 Evaluation of Quake 3 Game Engine
Suitability
We found that Quake 3 was a good choice for the underlying

implementation platform. Some minor problems were

encountered with using this engine as listed below.

Learning to modify the game engine took time, and was mostly

done through trial and error. There is no documentation of the

code provided by idSoftware. There are basic third party

resources [17,18] that serve as a good introduction to the basics.

However, it was often necessary to walk through the existing code

by hand and figure out how it worked and how best to modify it.

The game code which runs on the VMs is written in C. This has

the usual side-effect of having the implementation of a particular

entity split across many different files. This is not necessarily a

bad thing in itself, but sometimes this leads to subtle bugs where

some other part of the code in another file unexpectedly alters the

state of an entity.

The lack of dynamic memory allocation in the VMs is a

limitation, but can be easily worked around. Either a large static

array can be used and memory allocated out of that by hand (as

was done in the cgame.qvm modification), or once the game

engine source code is opened, this functionality may be added.

However, such an addition would need to be carefully planned,

since presumably there was a good reason for not including this

functionality in the first place. Another way to work around this

issue, which is not optimal, is to compile the game code as a

win32 DLL. This can be loaded by Quake 3, and can make use of

all native win32 functions such as dynamic memory allocation.

However, this solution is non-portable, and removes the security

barrier which is provided by executing the code in a QVM.

There seems to be a bug in the game engine itself, whose source

code is not currently available to the public. This bug manifests

itself when a large number (> 8000) of triangles are drawn from

within the UI QVM. This is an important example of how using

the engine for what it was not designed for (displaying lots of text

in the UI) may test the engine in ways that a normal game

wouldn't, revealing hidden bugs. Since the Quake 3 game engine

should be open-sourced soon, this bug should be able to be fixed.

Another result of the game engine code being, for the moment,

closed, is that the network protocol is fixed. New character string

messages can be added easily, but these need to be assembled at

one end, and parsed at the other. In addition, these messages are

not associated with any particular entity (other than, in the case of

client-originating messages, which player sent them). This was a

problem in the implementation of the tool since the new itemid
field of sourcefile entities had to be communicated from the
server to the client. Fortunately, a field in the existing packet

structure was found which was rarely used, and so was reused to

transmit the itemid. While this worked for this particular tool,
the available space is very limited, and may not be sufficient for

other visualisation tools. A workaround based on sending the

extra information via text messages and storing them in a look up

table at the destination could be implemented, or, better, the

network protocol could be made more flexible once access to the

game engine source code is available.

The last significant problem encountered was the limited

capability of the UI system built into the game, specifically that it

did not have a text scroll box element. However, all functions

needed for implementing such an element were easily accessible,

so there were no problems with coding this by hand (other than

the 8000-triangle limit mentioned above).

7. CONCLUSION
It is possible to use a game engine as the basis for an information

visualisation tool, and thereby save a lot of implementation time

by reusing the functionality already implemented in the game

engine. The biggest benefit is obtained when as much of the game

engine functionality is reused as possible, i.e. in 3D, interactive,

multi-user visualisations based on a metaphor involving physical

entities.

In order to simplify the implementation process, it is important to

choose a visualisation which uses a metaphor of there being

several distinct dynamic entities in a static 3D world that the users

can interact with. There should typically be much less than 500 of

these entities, but this limit depends on the game engine chosen,

the amount of modifications needed, and the performance and

hardware requirements of the result. There typically is also a

limitation on the maximum allowed map (3D world) size,

although this can be usually worked around by stitching together

several smaller maps.

Out of the two ways of reusing a game engine, those being either

writing a new set of source code which uses the engine, or

modifying an existing game to customise it for producing the

desired visualisation, the second is much easier and was therefore

used in this project. There is still considerable work involved in

customising an existing game, especially as in this case, where

there was very little documentation of the code available.

The tool which was implemented in this project seems to work

well as a source comprehension tool, this observation being based

on an informal trial. It closely resembles browsing a cross-

referenced source code base via a web browser, with the addition

of multi-user capability and the ability to use one's spatial

memory to remember the structure of the code.

8. FUTURE WORK
The implemented tool may make a good basis for future software

visualisation projects, wherein various graphical representations

of information could be superimposed on top of the existing

visualisation. If users have already stored the basic structure of

the source code files in their spatial memory, they could easily

identify what parts of the source code the superimposed

information relates to. It may also be worth investigating the use

of a tool similar to this for browsing other repositories of

hyperlinked documents - for example, using hyperlinks to show

citations between scientific papers.

The tool itself could be extended in several ways, such as adding

support for “notes”, which could be used to annotate the 3D

spaces with information about what function the source code files

placed there perform. Also, the map generation could be

automated by analysing the source code. Further improvements

could include VOIP support for voice chat capability, and adding

a 2D overview map so that the location of files and other players

could be quickly ascertained. Other future research could involve

seeing how well game engines of other genres (RPG, RTS) are

suited for information visualisation.

9. ACKNOWLEDGMENTS
We gratefully acknowledge that this research was supported by a

grant from the Faculty of Science of the U of Auckland.

10. REFERENCES
[1] Moloney, J., Amor, R., Furness, J., and Moores, B. Design

Critique Inside a Multi-Player Game Engine, Proceedings of

the CIB W78 Conference on IT in Construction, Waiheke

Island, New Zealand, 23-25 April, 2003, pp. 255-262.

[2] Manojlovich, J., Prasithsangaree, P., Hughes, S., Chen, J.
and Lewis, M. UTSAF: A Multi-Agent-Based Framework

for Supporting Military-Based Distributed Interactive

Simulations in 3D Virtual Environments, Proceedings of the

Winter Simulation Conference, New Orleans, LA, 7-10

December, 2003, pp. 960-968.

[3] Herwig, A., Paar, P. Game Engines: Tools for Landscape
Visualization and Planning?, Trends in GIS and

Virtualization in Environmental Planning and Design,

Wichmann Verlag, Heidelberg, 2002, pp. 161-172.

[4] Chao, D., Doom as an Interface for Process Management,
Proceedings of SIGCHI'01, Seattle, WA, 31 March-1 April

2001, pp. 152-157.

[5] Heckenberg, S.G., Herbert, R.D. and Webber, R. (2004).
Visualisation of the Minority Game Using a Mod. In Proc.

Australasian Symposium on Information Visualisation,

(invis.au'04), Christchurch, New Zealand. Conferences in

Research and Practice in Information Technology, 35.

Churcher, N. and Churcher, C., Eds., ACS, pp. 157-163.

[6] Age of Empires II, www.microsoft.com/games/age2.

[7] World of Warcraft, www.worldofwarcraft.com.

[8] OGRE Object-oriented Graphics Rendering Engine,
www.ogre3d.org.

[9] Crystal Space 3D, crystal.sourceforge.net.

[10] Irrlicht Engine - A free open source 3d engine,
irrlicht.sourceforge.net.

[11] Blazej Kot, " Information Visualisation Utilising 3D
Computer Game Engines ", FoS Scholarship Report,

University of Auckland, February 2005, www.cs.aucklan

d.ac.nz/~burkhard/Reports/SS2004_BlazejKot.doc

[12] The Nebula Device 2, nebuladevice.cubik.org.

[13] id Software, www.idsoftware.com.

[14] Valve Corporation, www.valvesoftware.com.

[15] Epic Games, www.epicgames.com.

[16] John Carmack’s Blog, www.armadilloaerospace.com/n.x/
johnc/Recent%20Updates.

[17] Quake III: Arena, baseq3 mod commentary,
www.icculus.org/~phaethon/q3mc/q3mc.html

[18] Code3Arena, www.planetquake.com/code3arena/

[19] Gagnon, D. Videogames and Spatial Skills: An Exploratory
Study. Educational Communication and Technology, 33, 4

(1985), pp. 263-275.

[20] Leitheiser, B. and Munro, D. An Experimental Study of the
Relationship Between Spatial Ability and the Learning of a

Graphical User Interface, Proceedings of the Inaugural

Americas Conference on Information Systems, Pittsburgh,

PA, 25-27 August, 1995, pp. 122-124.

[21] Cockburn, A., and McKenzie, B., Evaluating the
Effectiveness of Spatial Memory in 2D and 3D Physical and

Virtual Environments, Spatial Cognition, 4, 1 (April 2002),

pp. 203-210.

[22] Marcus, A., Feng, L., and Maletic, J. I., 3D Representations
for Software Visualization, Proceedings of the 2003 ACM

Symposium on Software Visualization, San Diego, CA, 11-13

June, 2003, pp. 27-36.

[23] Feijs, L. M. G., de Jong, R., 3D Visualization of Software
Architectures, Communications of the ACM, 41, 12

(December 1998), pp. 73-78.

[24] Panas, T., Berrigan, R., Grundy, J., A 3D Metaphor for
Software Production Visualization, Proceedings of the

Seventh International Conference on Information

Visualization (IV'03), London, England, 16-18 July, 2003, p.

314.

[25] OpenSG Home, www.opensg.org.

[26] Doxygen, www.doxygen.org.

[27] Ed Chi, A Taxonomy of Visualization Techniques using the
Data State Reference Model, Proceedings of the Symposium

on Information Visualization (InfoVis '00), Salt Lake City,

Utah, October 9-10, 2000, pp 69-75..

[28] Colin Ware, Ed Chi, Rich Gossweiler, Visual Perception for
Data Visualization, Tutorial for Human Factors in

Computing Systems Conference (CHI 2000), 2000, www-

users.cs.umn.edu/~echi/tutorial/perception2000.

[29] Storey, M.-A., Wong, K. and Muller, H.A. How Do Program
Understanding Tools Affect How Programmers Understand

Programs, Proceedings of the Fourth Working Conference on

Reverse Engineering, October 6-8 1997, IEEE CS Press.

[30] Lintern R., J. Michaud, M.-A. Storey and X. Wu, “Plugging-
in Visualization: Experiences Integrating a Visualization

Tool with Eclipse”, ACM Symposium on Software

Visualization, (Softvis’2003), San Diego, pp. 47-56.

[31] Reiss, S.P. and Renieris, M. The BLOOM Software
Visualization System, in Software Visualization - From

Theory to Practice, MIT Press, 2003.

