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AN ORDERLY APPROACH TO PATTERN PERCEPTION 

 
PREPREAMBLE. 
 

I think I started writing this in 1987, while Lex Miller was working on his thesis1. The intention was to 
clarify my mind on the subject of pattern perception, but it got out of hand. Now I'm not so much tying 
up loose ends as cutting them off, just to get the Note out of draft form and into a state of presentability 
which will justify my letting it die. It may be no more than a collection of half-baked ideas; please don't 
try to read more than that into it. If it means anything to you, I'm glad – it probably means that you've 
perceived a pattern that I didn't. Tell me about it. 
 

PREAMBLE. 
 
These ideas grew from an attempt to follow the consequence of this proposition :  

 
if all artificial intelligence can be regarded as search in some appropriate 
problem space, and if the activity of perceiving patterns in collections of 

data is a proper part of artificial intelligence, then there must be a 
corresponding problem space, and there must be ways of moving about 

within that space to approach a goal.  
 

( There must, for that matter, be a goal, but for the moment I'll take that as self-evident. Later on, I'll have 
to try to define it. ) One can quibble about details in the proposition : "must" may be too strong a word, 
perhaps not all artificial intelligence can be represented as a problem of search – but that isn't the point. 
The point at issue is that it's a plausible proposition, and it's a fruitful proposition, and for present 
purposes that's probably better than being right. 

 
The proposition was put forward in the particular context of Lex's thesis1. We were confronted 

with a large volume of recorded data, which happened to be about sailing boats ( that shouldn't be 
important, though it's useful to have a concrete representation to talk about ). It is essentially certain that 
there are patterns of some sort within the data – if the wind gets stronger, the boat will move faster in the 
direction of the wind – but we don't know what the patterns are. We want to write a programme which 
will inspect the data in search of patterns. 

 
I am being careful to write of "perceiving patterns" rather than "recognising patterns" because I 

want to emphasise that the problem is to discern any patterns that may be present in a mass of data, not to 
search the data for occurrences of some predefined pattern. 

 
A final qualification : I'm not discussing neural network methods. They're different. I would like 

to think that they will turn out to be good at perceiving patterns, but most of the work I'm aware of at the 
moment has more to do with recognising patterns. Some of the unsupervised learning techniques could be 
seen as pattern perception, but those I've read about don't in any sense look for patterns – they'll learn 
anything, rubbish or not. It seems to me that a pattern perceiver must have some idea of significance with 
which it can judge its perceived input, distinguishing significant patterns from noise. Neural networks 
don't seem to do this particularly well at present. John Jensen put some work into this approach, but 
without conspicuous success2. 

 
I am ready to believe that this activity of discerning patterns is reasonably described as intelligent, 

if only because it's something that people do startlingly well, and I think I'm being intelligent when I do 
it. We are even able to discern patterns that simply aren't there – which is where the Rorschach test comes 
from. ( Though maybe that's really a matter of pattern recognition ? No matter – the two are quite closely 
connected. I suppose ? ) Unfortunately, that's no help : introspection gives me no hint on how I do it. I'm 
certainly not conscious of any search activity; but then, I can say the same of most, if not all, of my 
experience at solving problems tackled by artificial intelligence programmes. 

 
What is the goal ? To find some patterns. What does that mean ? Er … So how can I define a 

problem space ? I can't. So where do we go from here ? 
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I must start by seeking definitions. A pattern-discerning programme requires certain basic 

operations appropriate to moving in the problem space. It requires some way of determining whether 
whatever it finds is significant. To define such ideas more clearly, I need answers to questions like these : 

 
What sorts of data are presented ? 
What sorts of pattern can be expected ? 
How do you look for them ? 
How do you recognise them ? 
How do you compare them ? 

 
In the rest of this note, I ruminate on these questions, and finally come back to the original question : 
what is the goal ? 
 

WHAT SORTS OF DATA ? 
 
If we're looking for a pattern, we have to start with a set of things to inspect. If you only have one thing, 
there's no non-trivial sense in which you can discern a pattern; if you only have two things, then the most 
you can say is that you can find some coincidences. ( "To lose one parent, Mr Worthing, may be regarded 
as a misfortune; to lose both looks like carelessness."3 ) Indeed, you need a sufficiently large number of 
things to be able to say that certain statements can be made about more of the things than you would 
expect under some form of null hypothesis. I am not at all clear just what form the null hypothesis should 
take, but it must be able to cope with quite qualitative descriptions, if only because the patterns I'm 
interested in are unlikely to be well quantified. If I have a lot of samples each of which shows about three 
points, then "about three points" is a sort of pattern, unless there's some mechanism which makes three 
points inevitable. ( Perhaps the experiment is just designed to count three points for each sample. ) "The 
three points always define a triangle" isn't a pattern, because that's inevitable. "The three points always 
define something quite close to an equilateral triangle" is a pattern, because it isn't inevitable, and one 
might expect triangles of all shapes and sizes – which is a sort of qualitative null hypothesis, but "quite 
close" is decidedly fuzzy.  

 
It seems to me that "Three points always make a triangle" isn't a pattern, but 

"all cats have four legs" is a pattern. What's the difference ? The triangle 
assertion is inevitable, but the cat assertion isn't far from inevitable. I think I 

give up. 
 

What do I mean by "thing" ? From the first paragraph in this section, it must be able to contain or 
represent or otherwise include approximately one pattern. I think it's something like "context in which a 
pattern might be found". There could therefore be many things in a stream of observations or a picture. 
The "definition" implies that the sorts of pattern we find are to some extent governed by the things we 
inspect. ( That's obvious, really : you can't find a big pattern in a small thing, and it's probably almost as 
hard to find a small pattern in a big thing. ) 

 
So the minimum we can get away with in the way of data is a set of things, and some expectations 

about the things on which we can base our assessments of likelihood and the null hypothesis. On the 
whole, the sets are easy; if we didn't have a set of something, we wouldn't be looking for patterns 
anyway. Notice that there is a sense of statistics – or, at least, probability – creeping in. Is that 
inevitable ? I suspect that it may be. 

 
The expectations are harder. If you accept the very-null-indeed hypothesis that everything is 

equally likely, you will find all manner of patterns – mainly patterns of omission – such as that there are 
no green cats, or houses built of jelly. ( Long, long ago, I tried to find patterns in properties of chemical 
materials. After a great deal of very hard work, my programme came up with its single result : that acids 
were not alkaline. I was delighted. ) Even these observations have their own peculiar significance, but we 
don't really want them, as they contribute nothing to what we know, and waste a lot of time. If, on the 
other hand, we derive our expectations from the sample itself, then everything will appear to be normal. 

 
People seem to see patterns in a set of things by appealing to their general knowledge of how 

things of that sort behave. If 10% of a sample of dogs have only three legs, one would regard it as 
noteworthy; we know that dogs normally have four legs, and that they don't drop off easily. If 10% of a 
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sample of animals of a hitherto unknown species have only three legs while the rest have four, one would 
probably still regard it as noteworthy, this time basing the expectation on knowledge that animals of a 
species usually have the same structure, at least so far as easily countable appendages are concerned. If 
our programme is to do this, we have to give it our expectations about the field before it starts work on 
the set of data. But unless we can somehow encode our whole knowledge about the objects concerned, 
we could omit the critical fact that makes a pattern noteworthy. ( Though does the noteworthiness have 
any connection with the patternness ? I really don't see that it does. ) 

 
The first sentence of the preceding paragraph is worth a second look. What is one's "general 

knowledge of how things of that sort behave" ? Well, it's a pattern. "Almost all dogs have four firmly 
attached legs" is certainly a pattern we discern in our observation of the world around us, and a 10% 
incidence of three-legged dogs in some sample, while part of a pattern in any circumstances, becomes 
significant because of the expectations raised by the broader pattern. Clearly, this collection of patterns 
which we call our general knowledge is of great importance in assessing the significance of our 
observations, which is one of the reasons why Lenat and others4 have been working on the Cyc project, 
aiming to codify general knowledge in a way which will make it accessible to artificial intelligence 
programmes. 

 
While this is an eminently desirable thing to have, it may not be what we want in our pattern 

recognition systems. The trouble with general knowledge is that it isn't general. For all the talk about 
global villages, the general knowledge of a North American is rather different from that of a New 
Zealander, and most probably even more different from that of an African or a Chinese. ( I'm sure that 
Lenat and co. will have thought of that, though I don't know what, if anything, they propose to do about 
it. ) There is, of course, a common subset – days and nights alternate, things drop if not supported – 
though it's by no means synonymous with, and may even contradict, qualitative physics. That's the point 
of Galileo's demonstration, apocryphal or not, in dropping weights from the tower of Pisa. Probably more 
significant for our immediate purpose, general knowledge is hierarchic. Within any field of expertise, 
there is a sort of specialist general knowledge shared by all practitioners and present as a background in 
their reasoning. Chemists, but not necessarily biologists, have a collection of general knowledge about 
atoms and chemical bonds; physical chemists, though not necessarily natural products chemists, have 
general knowledge about thermodynamics; and so on, perhaps through several levels of increasing 
specialisation. What we need is a way to describe the patterns we expect to find, so that the programme 
can use these to evaluate any patterns that it manages to perceive. ( Having said all that, though, it must 
be said that one would be very happy with a programme which managed to identify any pattern 
whatever ! ) 

 
In practice, we seem to get round this to some degree by only writing programmes which look for 

patterns of a certain kind. In effect, we build into our programmes a potentially interesting subset of our 
expectations. That's better than nothing – but people can do that, too, and have been known to miss very 
obvious features by concentrating on one thing5. 

 
"His observation in matters botanical was what the inferior sort of scientific 
people call a 'trained observation' – you look for certain things and neglect 

everything else." 6 
 

But how do we decide what's likely to be interesting ? Is it guesswork, or wishful thinking – or are we, in 
turn, discerning a pattern in something or other, and using that for guidance ? Whatever the answer to this 
question, it seems very likely that to include any such explicit knowledge of the field in the programme 
will introduce bias of one sort or another, perhaps making it harder for the programme to find certain 
patterns which we didn't expect. 

 
Some examples, and a sort of taxonomy. 

 
Enough of speculation; let's look at some realish examples. Here are some examples of the things which 
populate the sets which we might study – or, more precisely, observed properties of the things, as there 
are few things which we can study directly inside a computer. Some notes : 
 
• I have tried, not too hard, to stick to some conventions in my use of symbols. For values, x stands 

for anything, and a for something sortable; for subscripts, i distinguishes members of a set, while n 
implies that the order is significant. 
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• If you want to be careful, watch out for the distinction between sets and bags : I haven't worried 

about it, so many things I call sets can contain more than one copy of a value. 
 
• It is interesting that many of the items listed as "properties of interest" ( and occasionally under 

other headings ) can be regarded as properties of derived sets rather than as properties of the sets 
ostensibly under discussion. I shall return to this observation later, as I think that it holds the key 
to the nature of the problem space with which I began this note. For the moment, just observe the 
derived sets as they appear. 
 

Single independent observations : xi 
 
The observations are atomic; they have no internal structure. They are purely qualitative 
( green, apple ), and cannot be ordered in any significant way. ( So even "green" won't do if 
you define a spectrum. ) 
 

Examples : I can't think of any convincing collection of primary data which comes into this 
category. The sets are nevertheless significant as derived sets from more complex 
collections; for example, "the set of colours of all cars in the sample". 

 
Topics of interest : counting. 

 
Counting in fact gives us a new set of pairs, each pair containing an element of the original 
set ( in this case, certainly a bag ) and its frequency of occurrence. I think that's the only 
one. If we have a set of 25 reds, 4 greens, and 3 blues, then we can say that things seem 
likely to be red, but not whether that's at all remarkable. The only relationship between 
items on which we can build patterns is similarity; two items are either the same, or they 
are different.  
 
Unordered observations are likely to be expressed in terms of classifications : red, blue or 
green. The only patterns in such an environment are the collections of observations 
themselves, which we regard as indicative of the populations from which the observations 
were taken. "The things are most likely to be red." 

 
Methods : No method is required. 

 
Single observations, sortable : ai 

 
Like the sets we studied in the previous category, the items here have no internal structure; 
but they are quantitative, at least to the extent of defining an order ( 35, small, old ). In 
consequence, as well as possible identity with other items, each item now has neighbours – 
items identified as being in some sense "closer" to it than others. Notice that we have no 
idea whether or not the sorting is likely to be significant. 

 
Examples : examination marks, numbers of passengers per vehicle. 

 
Topics of interest : distribution. ( Counting, too, of course : generally, things to do with simple 

classes apply to more complicated ones, and I won't discuss them again explicitly. ) 
 
Here again, we are looking at properties of a derived set of pairs of values and 
corresponding frequencies. This time, the values are typically the midpoints of ranges of 
values of the observations, and the frequencies are the numbers of observations found in 
the ranges. 
 
For ordered observations, the same applies; but people perceive any departure from a 
"simple" distribution as an "interesting" pattern. Consider a sample with a fequency 
distribution something like this : 
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We are likely to describe it as "two strongly preferred values superimposed on a normal 
distribution", and forthwith start looking for reasons for the two special values. In practice, 
that seems to work rather well – the whole of spectroscopy is based on it, to give only one 
example – but that itself is a pattern ! ( "If we look for deviations from simple behaviour, 
we can find reasons for them." ) To justify that one, we have to make assumptions about 
the universe by default behaving in ways which we consider to be "simple". 
 
We are getting into deeper water than I'd intended. 
 
If we have something that looks rather like a normal distribution, but with two strong sharp 
peaks, then we see the peaks as the patterns. 
 
If they are numbers, we can also say how similar they are. 
 
It is not necessarily easy even to decide whether or not the observations fall into significant 
groups. Lex Miller1 addressed this problem, and found that a method based on successive 
local averages led to a useful classification. 
 

Methods : clustering theory. 
 

Collections of observations :  { xi, yi, zi … } 
 

Each observation contains several items; all observations normally contain items of the 
same types; missing values are possible. 

 
Examples : experimental results, survey results. 
 
Topics of interest : functional relationships, distribution of values. 

 
Now we have some structure within the observations, and we can look for internal 
regularities. More than that – we can always find some; there are always infinitely many 
mathematical ( including logical ) equations which are satisfied by all members of the set. 
Most such functions are not significant – we shall discuss examples later – but patterns 
correspond to more useful relationships. 
 
Generally we seek relationships between the measurements within an observation. In their 
simplest form, these are just statements of ( perhaps statistical ) fact : "Number of heads = 
number of bodies = ( number of legs ) / 4"; "If that's a face, there should be eyes there and 
there, and a nose there, and ..."; "Red sky at night, shepherd's delight"; "Absence makes the 
heart grow fonder". 
 
We can ( try to ) write them as functions ( mathematical, logical, etc. ) to make them more 
precise, and include measures of probability. 
 

Methods : Bacon, ID3. 
 

Collections of observations, with a distinguished variable : { xi, yi…, ti } 
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Collections of this sort constitute an important special case of the previous class. One of 
the observations is of special significance, for some reason connected with the nature of the 
observations. Typically it will be the independent variable; in a very common special 
special case, the independent variable is time, which is why I've called it t. 
 
An ordered set of collections of observations falls into this category, perhaps requiring the 
inclusion of an ordinal value within each collection. 
 
The ordering observation may make it possible to determine whether there are missing 
values. I'm not sure that that means a lot, except that there may be patterns in the 
omissions, but they would be a species of metapattern. 
 

Examples : Observations of a variable over time. ( Strictly, I don't suppose that there's anything 
special about time so far as patterns are concerned, but time series are common things. ). 
Seismograms, tides, binary signals – Morse code, spectra of related substances, variables 
measured in parallel, data logging, traffic lights, speech, writing. Examples not involving 
time : outline grammars, prescribing the order of features encountered as an outline is 
followed; character groups and sequences in text. 

 
Topics of interest : relationships between different variables, trends. 
 

Each sequence may be a candidate for study under the previous heading – or we may 
already know what its interesting features are. Notice too that we may not be able to 
identify features in one stream without cues from another- or, equivalently, that patterns 
spread over several collections and their neighbours in "time". 
 

Methods : As for the previous group, but with special attention to the distinguished variable. It is 
generally of interest to look for functional dependencies of the dependent variables, or 
combinations thereof, on the distinguished variable. 

 
Repeated patterns of behaviour are of considerable interest. This is what Lex Miller was 
doing\nc<Lex>. The repetitions need not be regular : consider prime pairs on the number 
line. 

 
Collections with several distinguished variables : { xi, yi, .. ti, ui, .. } 

 
I include these as an obvious extension of the previous category, but I don't propose to 
discuss them in detail. While basically similar to the previous class, they differ in that there 
may be relationships between the independent variables which define important special 
cases – so, for example, unusual behaviour may not be associated with any specific values 
of ti and ui but with any example in which ti = ui. 
 

Examples : Contour maps, phase diagrams. 
 

Sets of observations  { xij, j = 1, ni } 
 

Each set is just a collection of things which are associated in some way, each thing has its 
own properties. These sets differ from the collections of variables in that there can be any 
number of instances in a set; the collections of variables always contain the same number 
of components. 

 
Examples : plants found growing together within 1m squares. 
 
Topics of interest : which things are associated, under what circumstances. 

 
Regularities observed under this heading may become bases for further investigations of 
the "Collection of observations" sort – so, having found that certain plants are commonly 
found together, we may proceed to focus attention on those plants and gather more 
information on them alone. 
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"Where there's a will, there's a way"; "Two's company, three's a crowd". 
 
Methods : statistics ? clustering ? 
 

WHAT SORTS OF PATTERN ? 
 
The patterns in data are superficially of different sorts, but there is a common thread, which reduces 
everything to the behaviour of sets of single observations. What we can say in each of the more 
complicated cases is that – if we can find a pattern at all – we can define some function ( formal or 
informal ) of each thing in such a way that the set of function values shows some significant pattern – 
some predicate is almost always true, or some function has only three different values. ( Yes, that begs 
the question of what constitutes a "significant pattern". My "acids are not alkaline" falls into this 
category, and plenty of experimental measurements have been coerced into straight-line graphs, often by 
rejecting points which didn't fit as "obviously erroneous". There are reports that automatic rejection of 
"obviously erroneous" measurements delayed recognition of the upper atmospheric "ozone hole" for 
some years. ) We can then collect the function values for the members of the set into an auxiliary set of 
single observations, and deal with that in ways appropriate to such sets.  

 
Another sort of derived set is exemplified by the ( ni, ni+1 ) set which can be derived from a set in 

which order is significant : as well as combining elements within an observation, we can draw 
comparisons between observations. If there is a distinguished variable, it may give guidance as to which 
comparisons are likely to be significant – or it may not. That depends on what sort of behaviour underlies 
the patterns. If the behaviour is continuous, then presumably local correlations will be most informative; 
if the pattern is caused by some spasmodic event, then the interesting feature is the repetition of local 
structures over comparatively long, and possibly arbitrary, intervals. If there is no distinguished variable, 
then we may have to consider all possible pairs if we wish to give an honest treatment. 

 
There is, of course, no sense in which the derived set is unique; we can define such a set for any 

function defined over the original set, and unless we have reason to believe otherwise the derived sets are 
presumably of comparable significance. 

 
For example, if all the variables in a set of collections of observations are numeric, then for each 

collection evaluate the sum, Si. Now every collection satisfies the equation 
 

∏i( x + y + z + ... – Si ) = 0. 
 
If the variables are not numeric, then for each collection construct an expression in which each variable is 
equated to its value in that collection, and conjoin the resulting terms; then the disjunction of all the 
expressions so defined is satisfied by each member of the collection : 
 

∪i( ( x = xi ) & ( y = yi ) & ( z = zi ) & ... ). 
 
Of course, such expressions are vacuous, as they carry no more information than was present in the 
original set of data. They are not quite useless; they will reliably recognise members of the set if they 
appear for testing, but there is no reason to expect that newly generated collections will follow the same 
pattern. In short, they are ( probably ) not reliable generalisations of the patterns exhibited in the original 
set. I shall say more about this topic later while discussing the sorts of pattern which can sensibly be 
sought. 
 
• It is sometimes possible to demonstrate that expressions of the sort suggested are necessarily 

rubbish, provided that we have more information about the natures of the variables concerned. A 
good example is the requirement that addition and subtraction is only sensible if the quantities 
added and subtracted have the same dimensions. If x is a distance, y a speed, and z a time, then no 
expression of the form x + y + z can have any meaning at all. The best we can do is to use an 
expression which includes cooking constants – ax + by + cz – to fix the dimensions – thereby 
introducing yet more opportunities for engineering meaningless coincidences. 

 
• I said I wasn't going to talk about neural networks, but it's interesting that just this sort of 

behaviour is a problem in that area. If you train a large network on a comparatively small number 
of examples, it may learn to recognise the patterns individually in just this sort of way. It is 
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therefore better to use a smaller network, to force it to seek a more economical representation of 
the data which may turn out to be an effective generalisation. I have no idea whether anyone has 
checked whether neural network function generators do sensible things with dimensions. 

 
The question is : how can we be sure that an automatic procedure which we unleash on our set of data 
will not return some inane function of the sort I have described ? Empirically, we do so by insisting on a 
simple relationship defining the regular behaviour, so all we have to do now is define what we mean by 
"simple". The equation for the numeric collections above would fail because it has too many adjustable 
constants, and the expression for the logical case would fail because of its complexity. ( I know that begs 
the question, but you try to explain it. You can devise measure of the complexity of an expression in 
terms of the length of the shortest bit string required to define it, but I'd rather avoid that if I can. ) 

 
A difficulty here is that our own ideas of simplicity are not very well defined. There is an old 

example which goes like this : 
 
Q : What is the next number in the sequence { 1 2 4 8 16 ... } ? 
 
A : 32. 
 
Response : No. 

 
1. 32 is the next element of the exponential sequence 2n; 
 
2. there is a quartic polynomial through the points ( 1, 1 ), ( 2, 2 ), ( 3, 4 ), ( 4, 8 ), ( 5, 16 ), 

( 6, 31 ); 
 
3. a polynomial is generally regarded as a simpler function than an exponentiation; 
 
4. therefore the correct answer is 31. 

 
I shall shortly explain why I think that 32 is indeed the correct answer, but before that I want to remark 
on some interesting features of the argument. 
 

First, each step of the argument is acceptable in itself, so either the argument must be accepted, or 
it must have missed something. What's missing ? 

 
Second, it regards the sequence { 1 2 4 8 16 } as the same thing as the set of pairs ( ni, pi ), where 

the added item pi is something which determines the order of the elements – and in this case pi has been 
made equal to i, which certainly works, and gives the set { ( 1, 1 ), ( 2, 2 ), ( 4, 3 ), ( 8, 4 ), ( 16, 5 ) }. 
That's why I didn't include ordered sequences in the earlier, single variable, classes. The assertion that the 
order of the elements is significant is information over and above that contained in the values themselves. 
The same information is captured explicitly in the set representation, which identifies sequences as 
falling into the "collections of observations" category. ( However, there is more to say about that, so bear 
it in mind. ) Is there, after all, much difference between that sort of sequence and a sequence of 
observations of, say, the size of a population at a series of times, which we would quite happily accept as 
a set of pairs ( ni, ti ) ? 

 
Well, there's perhaps not much difference, but there is certainly some difference, and it lies in the 

interpretation of the second item in the pairs. In the case of the time series, ti is clearly numeric; there is 
no particular reason why it should increase in regular steps, provided that we know what the appropriate 
values of ti are. The second items of the series representing the powers-of-two sequence, pi, are only 
numbers by accident; their purpose is solely to establish the order of the first items, and we could have 
managed just as well in principle ( though rather less conveniently ) with { ( 1, + ), ( 2, /=+ ), ( 4, /=+- ), 
( 8, /=+-++ ), ( 16, +/=+-++ ) }. And that is why the answer is 32; the flaw in the argument above is in the 
unstated assumption that the numbers in the sequence must be determined by some function of their 
ordinal positions in the sequence, whereas all that is actually given is the order of numbers, so all we can 
really expect to find is some relationship between each number and the preceding numbers. 
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In other words, what we really want to find is some regular property in the pairs ( ni, ni+1 ) – that 
is, { ( 1, 2 ), ( 2, 4 ), ( 4, 8 ), ( 8, 16 ) }. Can we find such a property ? Yes, and without too much 
difficulty; the pattern is rather obviously determined by the equation 
 

ni+1 = 2 ni, 
 
and you can fill in the bits that lead to 32. 
 

What would we do if we didn't find such a pattern ? We'd try triplets ( ni, ni+1, ni+2 ) – think of 
Fibonacci numbers. If that didn't work, we'd try quadruplets – and so on. We wouldn't get anything like 
the quartic until we tried quintuplets, but then we only have the single example ( 1, 2, 4, 8, 16 ), so any 
relationship we find is, like the hopeful ones we began with, vacuous. 31 is wrong, for we have exactly 
no evidence that it conforms to any pattern at all. 

 
HOW DO YOU LOOK FOR PATTERNS ? 

 
People recognise patterns primarily with their eyes and their ears. Ears ( and a lot of associated neural 
machinery ) recognise words in speech, rhythm and melodic and harmonic patterns in music, and can 
separate significant sound patterns from meaningless background. We use an aural metaphor for 
meaningless signals in general – we call them noise. 

 
Nevertheless, we are even better at discerning patterns with our eyes, and even the sonic patterns 

can very easily be represented in graphical form. Perhaps that's why so much of pattern recognition is 
commonly assumed to be concerned with visual patterns, even when it isn't. There is a danger in relying 
on this visual metaphor, in that there may be patterns which have no visual representation. I can't think of 
any. If there are any, they will probably be abstract patterns rather than physical ones ( which we can 
always draw ); even with these, we indefatigably seek visual representations, and are commonly 
successful. Consider the periodic table in chemistry, prime pairs marked on a number line in 
mathematics, Venn diagrams ( or Euler's Circles7 ) and other patterns8 in logic. 

 
Assuming, then, that we can always draw some sort of picture, however symbolic, of our data, 

what does a pattern look like ? It always concerns ( at least ) two things. 
 
Patterns of more than two things exist, but they're much harder to see. 

 
The "standard" artificially intelligent method for exploring an unknown problem space is ( or, 

maybe, was ) the agenda method, as exemplified most dramatically in AM and Eurisko9. These 
programmes are experimenters and explorers; given a set of things they can do, they search for 
interesting ways of combining their possible operations, and follow up leads which seem promising. 
Indeed, they are doing something very close to the very pattern perception I require, though that isn't the 
way they're usually described. 

 
The problem space explored by AM and Eurisko is unknown, but it is not in any sense undefined. 

The consequences of applying an operator to some state are straightforward to compute; the clever trick 
is to reach a sequence of states which is deemed in some way to be interesting. It is not possible to 
associate an interestingness gradient with an operator, so we must have some way of estimating the 
interestingness of the states themselves, and we proceed by arranging known states in order of 
interestingness ( the agenda ) and generating a new state by applying some suitable operator to the most 
interesting state. Repeated application of this sequence ( with a few elaborations which make it work but 
don't change the idea ) leads us along interesting paths until either they peter out or some state of 
sufficient interest to be noteworthy is attained. 

 
Perhaps the major difference between this technique and other ways of searching problem spaces 

is in the absence of any systematic search of the possible transitions from any individual state. It is quite 
possible for the method to miss whole areas of exciting behaviour simply because the first few states on 
the way looked rather boring. This possibility is accepted as preferable to the alternative of missing 
whole areas of exciting behaviour simply because of an insistence on following up even the most boring 
paths on the off chance that something good might happen. 

 



Working note AC64 : page 10. 
 
 

 

How does the agenda method fit into pattern perception ? Pattern perception isn't quite the same as 
number theory ( AM ) or war games ( Eurisko ), in that the space to be explored isn't just abstract; 
instead, all proposals must conform, in some sense, to the data provided. I think that means we are 
exploring a two-component world. One component is the set of allowed operations, analogous to the 
abstract rules used by AM and Eurisko; but the other is the collection of data which constitute the raw 
material on which the programme must work. AM could generate examples of some concept by doing 
simple arithmetic; but the pattern perceiver can only "generate" examples of a hypothesis by actually 
finding them in the data.  

 
HOW CAN PATTERNS BE RECOGNISED ? 

 
The methods I have discussed are essentially those which I think I use when looking at various sorts of 
graphical representation of data. If these are to work, we must find a way to represent our data 
graphically, and it must be a way that works. It's unlikely to be useful just to type a list of facts as they 
come to mind and then to draw a circle round each one; that's a picture of the data, but we have no reason 
to believe that it will show up any order that might exist. 

 
Instead, we have to begin by representing any order we can see in the data. Then we hope that new 

regularities will become apparent. That's why we invented graphs ( the "plot x against y" sort ); we 
exploit some order we know about in the hope of finding order we don't know about. We plot x against y, 
and look at the graph.  

 
How not to do it. 
 

A paper10 presents another way of deciding whether experimental results conform to a pattern or are 
caused by random fluctuations. Unfortunately, that's all it does, because it's the most astonishing 
collection of tripe I've read in a "respectable" journal for some time. The author is a crank who doesn't 
believe in statistics; one can only guess what the referees are. A prime piece of "evidence" is gained by 
analysis of two bit strings, one of which is given by someone called Gleick, and purports to be a 
representation in Morse code of the message 
 

"All form is formless", 
 
while the other is generated as a psuedo-random ( sic ) string by a very peculiar looking Basic 
programme, and, of course, means nothing at all. 
 

In fact, the Gleick string is a concatenation of the Morse representations of the characters of the 
given string, with 0 for a dot and 1 for a dash, with no punctuation for gaps between characters or 
between words. It therefore means all sorts of things, such as 

 
"Entire item ten mess normless"; 
"Entire item kegs stem tap these". 

 
Further, the random string can be read as : 

 
"Men gut madam I set meek note at me"; 

"Men gut madam heat tin gone on". 
 

( There were more, but I'd wasted enough time. I didn't have to begin with "Entire item". ) If you want to 
quibble that they don't make sense, look at the original interpretation. 

 
The method depended on the accident that the Gleick string contained two sequences of at least 

seven adjacent zeros, which he thinks is unlikely in a truly random system. His "random" string, when 
split at 5-bit boundaries ( which just happened to be the way I copied it ) contains the substrings 11000, 
11100, and 11110 twice each – I haven't checked any other sort of partitioning. 

 
It's the March/April issue. Is it a joke ? It isn't witty enough. This man is working on medical 

statistics.  
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HOW CAN PATTERNS BE COMPARED ? 
 
We want to compare patterns so that we have a way to choose the "best" of a set of possibilities. We want 
to do that as a guide to the artificially intelligent programme which is supposed to be searching for the 
patterns. Eurisko needs some basis for arranging ideas in order of interestingness, and any reasonably 
plausible measure is better than none. 

 
What makes a pattern good ? There are several ways of looking at the satisfactoriness of a pattern 

imposed on a set of data. Here are some. 
 
The pattern is interesting in itself. 
The pattern conforms to some previous expectation. 
The pattern contradicts some previous expectation. 
The pattern happens a lot. 
The pattern fits the observations very well. 

 
WHAT IS THE GOAL ? 

 
I am now prepared to return to the original question, and to give a fairly formal definition of the goal of 
the search : it is to find an interesting set. 

 
An interesting set is a set of pairs of the sort which I called the "new set" in discussing the simplest 

set – the set of single independent observations. The new set contains pairs, each comprising a value and 
a frequency. The interestingness of the set depends on the set of frequencies. Suppose that there are n 
pairs in the "new set" and m elements in the parent set of single observations. Then the set of pairs is 
interesting if one or more of the frequencies in its elements significantly exceeds m/n – meaning that the 
values are distributed non-randomly over the range. ( It's also interesting if n is very small, for then we 
have found a function which classifies all the examples into a small number of sets. I've left that out 
because I can't work out what I mean by "small". ) 

 
That's hardly a rigorous definition, but it's a start on a definition of what might be called the 

intrinsic interestingness of the set. I pointed out earlier, though, that the actual interestingness depended 
on expectations too, so we have to assess this result against our general knowledge. This may convert an 
interesting set into an uninteresting one, or vice versa – or it may even convert an interesting set into a set 
which is interesting for a different reason ! An example is our set of dogs, 10% of which were three-
legged. The set is intrinsically interesting, because far more than half the dogs had four legs; the real 
interest lies in the unduly large proportion of dogs with three legs. I suppose that the point of that 
example is that the intrinsic interestingness is really pretty useless; general knowledge is very important, 
and we must find ways to use it wherever possible. 

 
On the other hand, the idea that interestingness is associated with sets of simple things is 

interesting. So to speak. It gives us a measure of interestingness which we can use to guide our 
development, and to grade operators. This is something not available to the AM and Eurisko 
programmes. Of course, this doesn't mean that only operators which reduce the sizes of set elements are 
interesting; the most interesting operator we found in the powers-of-2 example was that which associated 
adjacent pairs of elements to produce a set of pairs from the original sequence of single items, and in 
many circumstances it may be necessary to form more elaborate combinations before regularities can 
become apparent. 

 
The operations are clearly pretty well any operation which converts a set, or some sets, into 

another set. I have mentioned a number of such operations in this note; clearly, there are many sorts. Here 
are some : 
 

Projection : { xi, yi, ... } → { xi } 
 
Counting : { xi } → { Xj, |{ i | xi = Xj }| }, where Xj is a value taken by xi, and the second term is 

the number of instances of that value in the original set. 
 
Functions : { xi, yi, ... } → { f( xi, yi, ... ) } For the powers-of-2 pairs, f( xi, yi ) = xi / yi. 
 



Working note AC64 : page 12. 
 
 

 

Association : { xn } → { xn, xn+1 } 
 
Merging : { xi, yi, ... } ∪ { xi, zi, ... ) → { xi, yi, zi, .... } 
 
Selection : { xi, ... } → { xi, ... | xi ∈ S } 

 
We can now see the pattern perception process as a succession of set transformations chosen to isolate 
exceptional phenomena, and then to reduce the resulting set to some simple measure of interestingness. 
Clearly, we must guard against vacuous combinations of properties which have only accidental 
significance, and we must take into account our expectations gained from general knowledge. 

 
That does not constitute an algorithm for the job. It is far from clear how to choose "good" 

transformations, or how to ensure that we don't accidentally end up with a vacuous function. Even 
general knowledge has its traps; it's no use simply eliminating all the four-legged dogs from a sample 
without first checking their other attributes. ( Perhaps they all speak fluent English. ) In other words, 
there's lots of work to do yet, but at least I now have some idea of what it is. 

 
Well, that's what I thought in 1987 – 1991. Rereading it in 1995, I'm not sure 

that I'm quite so confident, but I still think that there's something in there 
somewhere if I could only find it. 

 
( And I read some other things which I haven't discussed11, 12, 13, but this sentence gives me a hook on 
which I can hang references in case anyone's interested. ) 
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