
WORKING NOTE AC53
Alan Creak

28 May 1986

EVALUATING EXPRESSIONS IN ECCLES.

Here's the Eccles Logic Processor

(I've been saving that for years ! (5))

One of the problems with the Eccles way of evaluating expressions is combinatorial explosion. To work
out the disjunctive normal form expression corresponding to the conjoined assertion of several
statements, one must somehow evaluate all possible "cross-products" of the terms in the individual
statements, so that a very large number of terms may be produced. The problem isn't new, of course : it's
mentioned by Chang and Lee (1) (interestingly, with conjunction and disjunction interchanged) as the
"multiplication method"; they also give some "rules" which purport to avoid the explosion. Unfortunately,
these rules are no good to Eccles, as they are directed simply at demonstrating the unsatisfiability of a set
of clauses; Eccles needs to finish up with the set of solutions, if there is one, so there's no simple way to
translate the Chang and Lee rules to an Eccles equivalent.

NOTICE

I am also in trouble with a terminological explosion. I have statements, terms,
assertions, simple statements, composite statements … - and I've no idea which
means what, or when to use each. I think I've got atoms right; literals (which I rarely
seem to talk about) are atoms or negated atoms; clauses are disjunctions of literals,
so probably inappropriate for Eccles. Help ?

Nevertheless, not all is necessarily lost. While we can't in general avoid the explosion completely,

we can at least hope to control it a little, and we can even in principle cope with it if it happens.

Working note AC53 : page 2

CONTROLLING THE EXPLOSION.

The order in which we incorporate the initial statements into the final result is immaterial; so we can
choose an order which looks as if it might muffle the explosion as much as possible. The obvious way of
doing so is to choose terms which lead to as much cancellation of terms (that is, appearance of false
terms which we can omit) as possible. Therefore, if we find that an atom X is frequently asserted in the
composite statement, we look for a statement in which X is frequently denied, and combine that next.
(There may be other ways, but I think this is the obvious one.) It's worth observing that this has
something in common with the resolution method (4), with the difference that we carry on all the
arguments in parallel rather than following a single thread.

This one certainly works. Here are some measurements I made on my ancient IBM1130 version of

Eccles, where the explosion really was a problem (2).

The experiments were on the chemical reaction mechanism system (which I briefly described (3),

but really should do properly some day). The direct input to the Eccles part was the disjunctive form bit
array representation, which was not congenial for manual use, so I used an indirect method throughout - I
entered data as chemical reaction equations, and left the "front end" software convert that into the Eccles
representation. The equivalent of the "cancellation of terms" was, reasonably enough, a sort of
"cancellation of chemicals" - roughly, making sure that substances which had appeared as reactants also
appeared as products. (In fact, it worked by making statements alternately about reactions and about
compounds, but that's what it amounted to.)

IBM1130 Eccles carried only a single statement, which was the conclusion so far : individual

statements were not stored. The statement was stored in an array which could accommodate a few
hundred simple statements; as the old and new statements were both held in the array (one at each end)
during a calculation, congestion was acute. I "solved" the explosion problem very simply : when the array
became full I stopped evaluating. (This is a rather crude version of the "store part of the intermediate
expression while you finish off the calculation on the rest" idea, described below - though as I didn't
actually store any of it, big calculations tended to finish up with all terms eliminated.)

For the relevant experiments, I compared the performance of IBM1130 Eccles on working out

reaction mechanisms giving the same set of reactants in two different orders - one random, and one
ordered to encourage cancellation where possible. The result was, in one way at least, as expected : the
order of presentation of the reactions had a profound effect on the performance of the system. For the first
try, the numbers of simple statements in the compound statement after each step for the two methods
were :

Random order : 2 3 3 5 13 13 26 39 104 104
"Optimum" order : 2 5 2 4 6 6 8 14 8 8

Random order : 169 133 165 133 164 133 171 133 171 77
"Optimum" order : 8 9 11 20 9 7 14 14 22 22

Random order : 5 5 8 3 1 1 2 2 0 -
"Optimum" order : 44 44 76 76 140 133 176 133 177 133

There are reasons for believing that neither result is perfect (the "170 - 130" alternation is

symptomatic of a full array, with room for about 300 elementary statements), but clearly the ordered
calculation takes much longer to fill up the array, and does eventually arrive at a result; the random
calculation doesn't. The order of evaluation does indeed make a big difference to the behaviour of the
growing composite statement. It is unfortunate that the next experiment gave exactly the opposite result !
- but the strong effect of order of evaluation on the explosion remains clear.

Working note AC53 : page 3

COPING WITH THE EXPLOSION.

If even with the best avoidance strategy which we can find the explosion is still serious, there is a way
round. (Though one could wonder if a serious explosion might not mean that the question itself is
somehow silly : are we really likely to be interested in problems with thousands of solutions ?) This
detour is based on the observation that we don't actually need to do all the evaluations in parallel; if it's
convenient, we can do some in series. Indeed, at any point in the evaluation, we have a composite
statement C, say, which must be combined with further statements S1, S2, … to give the answer C & S1
& S2 & …. We are equally entitled to express C as (C1 v C2), and to perform the evaluation as (C1 & S1
& S2 & …) v (C2 & S1 & S2 & …). To do that, we would remember - perhaps as a disc file - part of C
and the remaining statements Si, complete the evaluation with the rest of C, store the result, retrieve the
stored fragment of C, complete the calculation on that, and finally combine together the two partial
results.

This wouldn't solve all our problems - it wouldn't cope with a really serious explosion - but it

would be feasible as a way of increasing the effective storage by a factor of 10 or so.

RELEVANCE TO NEGATION.

The same comments apply, more or less, to negation. We can illustrate the phenomenon using the
statement :

 { (a & b & c) v (d & e) v (f & g & h) } (A)

Negated, that becomes :

 ~ { (a & b & c) v (d & e) v (f & g & h) } (B)

= ~(a & b & c) & ~(d & e) & ~(f & g & h)

= { ~(a) v ~(b) v ~(c) } & { ~(d) v ~(e) } & { ~(f) v ~(g) v ~(h) }
 (C)

The inner brackets in the final statement C emphasise that, in Eccles terms, each of the individual atoms
occupies a statement of its own. The result obtained in the next step contains (assuming no cancellation)
three statements after the first term, six after the second, 18 after the third, and so on.

But the point is that statement C is a "conjoined assertion of several statements" - which is exactly
the same operation as we had before, and the same arguments apply. This time, though, it's perhaps a
little easier, because the initial expression A presents us with a lot of information about the statements to
be conjoined in a rather compact form (so the assertion (d & e) in the original A shows that we
shall have a statement (~(d) v ~(e)) in the final C), and each component of a statement (such
as (a)) contains only a single assertion or denial. It follows that the original statement is a direct
representation of the final, provided that we use an appropriate interpretation - so one way of representing
the result would be simply to note that the original representation was to be interpreted in a different way
!

This is not really adequate, though, because sometime we are going to have to do the calculation if

we are to get the answer we want. (It may nevertheless be worth considering as an intermediate
representation, which we only actually evaluate when we're forced to - see below.) So we return to the
idea that evaluating the negation operator is in essence the same as evaluating the conjunction of a bunch
of statements, and that therefore we can use the same techniques to control the possible explosion : we
can select the order of combination of the statements - and this is made easier, because we now have a
very simple way of checking for the occurrence of suitably negated atoms in the component terms; or we
can perform the evaluation in parts.

Working note AC53 : page 4

There is one further possibility, which may be applicable in certain circumstances. If the statement

is being negated in a context where it will immediately be conjoined with other statements, then it could
be convenient to stop the negation at the last point of the example above (corresponding to C), and then
to include all the component statements simply as additional terms to be conjoined with the others. In this
case, it might well be advantageous to regard the original statement as a separate notation for the final set,
in accordance with the suggestion made earlier.

REFERENCES.

(1) C-L. Chang, R.C-T. Lee : Symbolic logic and mechanical theorem proving,
 Academic press (1973), p63.

(2) G.A. Creak : Experiment notes, 7 September 1972.

(3) G.A. Creak : ECCLES, Working note AC50, 12 May 1986.

(4) E. Rich : Artificial intelligence (McGraw-Hill, 1983), p153.

(5) New Zealand Listener 91 #2044, 10 March 1979.

