WORKING NOTE AC47
Alan Creak
5 March 1986

REPRESENTATIONS FOR COMPOUND STATEMENTS

(This note preserves in more accessible form, and with minor amendments for clarification, a document which I first
wrote on 24 October 1970.)

NOTE ON POSITIONAL VERSUS LIST LOGIC PROCESSORS.

The logic processing required in the system is basically a set of
operations on various compound statements which involve elemental statements
A, B, C.... The compound statements are manipulated in various ways to produce
results which are also in terms of the elemental statements, and some
discussion of the most convenient realisation of these processes on the
computer is in place.

Two methods suggest themselves : a list method, corresponding closely to
the "pen-and-paper" methods of symbolic logic; and a method involving
positional notation to distinguish the elemental statements. These methods
will first be outlined.

THE LIST METHOD.

Each elemental statement is associated with two symbols : A and -A, for
example. A compound statement is composed of several elemental statements and
appropriate Boolean connectives & and v. (We avoid the use of brackets
throughout, in the hope of avoiding unnecessary complication. This undoubtedly
leads to some inefficiency in the use of storage space - thus, the statement
A v (B & C) must be replaced by the conjoint assertion of the two compound
statements A v B and A v C - but 1is accepted in the interests of simpler
programming.) In the "list" method, each compound statement is stored as a
character string, much as it would be written on paper. The important
characteristic of this mode of storage, for present purposes, is that each
statement included must be explicitly specified by some suitable coding
method. At the same time, elemental statements not involved in the current
compound statement need not be included.

THE POSITIONAL NOTATION.

Each compound statement is represented by a vector, with one element for
each elemental statement. As each elemental statement is distinguished only by
its position in the vector, every compound statement must include space for
every elemental statement. An elemental statement can therefore now be
associated with three different symbols : A, -A, and (A), say, where the
last denotes the absence of A from the compound statement. The points in
favour of this notation are that, as the symbol is denoted by the position in
the vector, it need not be specified explicitly, and, in consequence, many
statements can be parsed into a single computer word, thus saving processing
time by allowing several elemental statements to be processed simultaneously.
Several different ways of coding the statements in detail can be devised; each
(short of extensive coding and decoding programmes) will use two bits for
each statement. The scheme adopted for this programme is to denote assertions

Working note AC47 : page 2

and denials of individual elemental statements by 1 bits in separate vectors,
all other bits being set to zero; assertion, denial, and non-involvement are
thus represented by the bit pairs (1,0), (0,1), and (0,0); the fourth
possibility, (1,1), is a contradiction, and its detection is used to
initiate deletion of the compound statement in which it is found.

The positional notation was chosen for use in this work mainly for its
simplicity from the programming point of view, and for its economy of storage.
To demonstrate the economy achieved, consider a fairly typical case involving
20 elemental statements. (This number is deliberately chosen to exceed the
number of bits in a computer word; 16 statements is an especially favourable
case for the positional notation.) We will suppose, again typically, that a
compound statement contains 3 elemental statements; as compound statements are
combined together in the course of the processing, new statements are produced
which may finally involve all 20 original statements, and we will also
consider the case of compound statements containing 15 elemental statements.

We note first that the minimum storage required to provide separate codes
for 20 statements is 5 bits, and, as each statement can be asserted or denied,
6 bits will be required altogether; it follows that, unless the codes are
allowed to spread from one computer word to the next, which would introduce an
extra complication into the programming, two elemental statements can be
accommodated in each computer word. (Observe that a restriction to 16
elemental statements would be favourable to the list method too, as it would
allow three statements to be packed into a single word; on the other hand,
this would involve either special programming for systems of 16 or fewer
statements, or restriction of the application of the programmes to logical
systems with fewer than 17 statements, and neither of these alternatives was
thought acceptable.) The compound statement with three elements will
therefore occupy two computer words, that with 15 statements, 8 words. (The
mild deception apparently introduced by using odd numbers is only apparent;
any string of this sort would necessarily require a count of elements, and
this could hardly occupy less than a half-word without introducing either
further restrictions or programming complications.)

For the positional notation, on the other hand, each compound statement,
no matter how many elemental statements are involved, requires four words of
storage (again eschewing any packing economies). There is thus an advantage
to the list method for the shorter compound statements, and to the positional
notation for the longer ones. The balance is turned markedly in favour of the
positional notation by the observation that, in actual calculations, the bulk
of the storage difficulties arise towards the end of the process, when the
statements being handled already contain references to most of the elemental
statements; and, finally, that the programming is very much easier - and
certainly very much faster in execution - for the positional notation.

