
WORKING NOTE AC126
Alan Creak

1999 April 13

REGAL AND IMPERIAL

Regal and Imperial are names for different generations of a document formatter on
which I have been working from time to time since 1988. In this note they are

presented for public view for the first time; it contains a brief description of my
reasons for embarking on the development, and a similarly brief (and probably

unreliable) history of the work I've done.

I thought I could describe the Regal and Imperial saga as "the things I do for fun while on leave", and
certainly that's a good approximation. On looking at my notes, though, I find that, as well as extensive
entries for 1988 and 1996 when I was on leave in Reading and York respectively, there's quite a bit of
evidence of work done throughout 1989; I think that was mainly to produce a version of Regal which I
could use to format some technical reports written during, and as a consequence of, work done at Reading
in 1988 (and for our annual family newsletter, which imposed some interesting and significant
constraints). In the main, though, the "fun on leave" description is fairly accurate, and I didn't think it
justifiable to spend university time on it.

HISTORY.

My first contact with a computer formatting programme was with Runoff on the DEC-10 system (unless
it was the Prime) which was used in the Computer Centre somewhere around 1980. Given that all the
characters were the same size, it did a surprisingly good job. It used a very simple markup language to
indicate margins, indenting, and other such requirements, and worked. A tiny editor on the BBC
microcomputer1 provided similar facilities, and produced similarly good results. I don't remember enough
about Runoff to comment further, but a very satisfactory feature of the BBC's editor was its provision of
parameters to operators which could either set an absolute value (4) or change the existing value (+3, –
2). As an example of the value of this provision, notice that a whole section of text could easily be
indented en bloc, retaining the relative formatting structure, by adding a single pair of left-shift and right
shift operators in the right places. As I'm fond of indenting as a means of indicating structure (doubtless a
consequence of early exposure to Algol), I thought that was good.

The next significant event was my first encounter with MacWrite – and, most notably, with rulers
and styles. The idea of storing a set of paragraph attributes as an entity with a name struck me as one of
those ideas that's perfectly obvious once someone has told you about it, and which you would have been
very pleased to have worked out for yourself. But someone had forgotten to make them cumulative (so
you couldn't make a ruler which meant "centre this paragraph within the parameters set by the ruler
currently in force", or "move the left boundary 1cm right without changing anything else"), so they
wouldn't adapt to make sense of formatting changes as they were required.

Further experience with WYSIWYG formatters convinced me, rather quickly, that a markup
system was infinitely preferable. All too often, what I saw wasn't what I got; even when I could manage to
achieve the page layout I wanted (usually possible, though not always easily), there were far too many
instances of the layout changing when the document was printed. This is one phenomenon which has
become worse and worse through the years – as new useless feature piles on new useless feature in Word,
any chance of printing what you want seems to diminish. (More recently, with frames and pictures
anchored to various things, it has become far more difficult sometimes to achieve the desired layout in the
first place.)

The experience did make me think about my requirements, and I worked out a fairly accurate
specification of what I wanted. The central point was that I wanted to be relieved of the tedious details of
formatting to the extent that they could be worked out automatically by simple and obvious algorithms. I
was generally happy with the level of control provided by MacWrite, and similar systems; I don't have
much requirement for mathematical typesetting, and the few equations I need can generally be handled
with superscripts and subscripts, and I don't use decorative features like illuminated capital letters or
wiggly lines of type or other devices invented to make text hard to read. On the other hand, if I use
equations I do want the equation numbers (and diagram numbers and table numbers ...) to be assigned
systematically, and to adjust themselves if I choose to insert another number, I want to be able to refer to
other parts of the document by page number and know it's going to work, I want citations to be handled

Working note AC126 : page 2.

automatically and converted into nice reference lists, I want to be able to state that ordinary parentheses
and colons and question marks and some other characters should always be spaced from the associated
text in certain ways which I like. And so on. All these things are in principle easy to manage, but very
tedious to do by hand, so they're just what computers should be doing for me.

Another significant principle is worth mentioning, for it affects my attitude to LaTeX. When I'm
preparing a document, I know that I'm preparing a document, and I adjust my language and literary style
accordingly. Also, I expect to adjust the presentation of the text accordingly, so I don't mind admitting that
I'm dabbling in typesetting, so I don't mind knowing explicitly about line spacing and indenting and
skipping spaces and such things. A principle of LaTeX is that you shouldn't have to worry about such
details; instead, you should simply be able to identify parts of your text according to their functions –
headings at different levels, ordinary text, and so on – and rely on the system to work out the details. I
have some sympathy with this notion in principle, but in practice the result, perhaps inevitably, is that
LaTeX accepts your specification of structure, then formats the text according to Leslie Lamport's
preferences. And his preferences are not mine. In practice, I do the same thing with Regal, and doubtless
other people do it with TeX, but I build up my preferences as a set of rulers with fairly structural names
(title, heading, newitem, miditem, etc.), and use them as required by the document structure.

Cursory inspection of markup systems – which is to say TeX2 and LaTeX3 – further convinced me
that they were the wrong markup systems; for what I wanted to do they were either unreasonably
complicated, or inadequate, respectively. I therefore had to choose between putting up with something not
to my liking, or writing my own system. (Another possibility was to search further in the hope of finding
a markup system which I could accept, but general opinion seemed to be that it would be a waste of
time.) Being more than adequately busy, writing my own system wasn't a serious possibility, so I put up
with circumstances. Part of the circumstances was that I had to produce quite a lot of smallish documents
fairly quickly (notes, assignments, letters, etc.), and MacWrite – later, Word – would do that well
enough, so that's what I did. I often thought of a comment I'd seen attributed to Donald Knuth, I think in
an interview reported in some journal : it was to the effect that when he realised that it would be a good
idea to write TeX, he took six months off his other activities to study typography and do it. (That's from
memory; the details might be wrong, but the tenor is right.) That seemed to be the right way to organise a
university, but I didn't belong to that one, so nothing more happened.

- until I went on sabbatical leave in 1988. I still didn't think I could conscientiously take six months
off to spend on a formatter which would be unlikely to represent a great leap forward in computing
research, but I did have much more control over my time, so started on the formatter as a sort of hobby. I
was encouraged by moving from a Macintosh system to a MS-DOS portable machine with no provided
formatting tools except yet another markup editor. That's when Regal came into being.

The name, for once, is not primarily an acronym (though I toyed with "Rather Elegantly Generated
Attractive Layout"); it is merely that anything so closely concerned with rulers must surely be Regal.
Rulers are indeed a major formatting tool in Regal, but it is still primarily a markup language, with rulers
used as custom-built markup tools for certain purposes. A few details follow; briefly, paragraph attributes
can be defined and stored as rulers which can be invoked at any time. Numeric attribute values can be
presented as constants or expressions; attributes defined by expressions can depend on their own previous
values and thereby take effect cumulatively.

One might ask whether "ruler" is still a sensible name for the construct. After
all, it presumably took that name from its appearance as it is displayed on the

graphical screen of a word processor. In reply, one might answer that the
appearance is immaterial; it is a ruler because it rules the format of the text
which follows, and that it is that sense of the word which leads to the name

"Regal".

Despite my taking some care before the event to study the problem and to devise a sound structure
for the programme, it turned out to be far more difficult than I'd expected, and the first development
dragged on – as I remarked above – into 1989, when I was certainly not on leave, but had in effect
committed my reports of my leave activities to Regal form so had to get it into at least a working state
before I could print them. After 1989, though, there was a decrease in activity. I still used it occasionally,
but for the most part reverted to Word because Regal wasn't really satisfactory and I hadn't time to finish
it.

Working note AC126 : page 3.

In 1996, I went on leave again. This time, I thought, I'd do the job properly. Drawing on previous
experience, I started again, and designed Imperial. The name is chosen for the obvious reason; there is as
yet no acronym. (I Must Promptly Effect Regal's Implementation At Last ?) Imperial retains the basic
ideas of Regal at the level of formatting paragraphs, but deals with perhaps the greatest source of trouble
for Regal – the interaction of page layout and paragraph formatting – in a much more satisfactory way.
That is a great improvement, but by the time I'd worked it out there wasn't enough time to write the
programme. I guess I reached about half way through by the end of 1996, and have done nothing since.

But it's 1999, and I'm on leave for ever, so I'm having another try. This note is to present a short
description of the background, facilities, and structures of Regal, and I hope to enlarge on it in the future
development of Imperial.

WHAT ARE THEY ?

Both Regal and Imperial are text formatters, designed to handle a markup language not entirely different
in style from LaTeX, but more flexible and not tied to fixed formats. They work from definitions of rulers
and page layouts and printer characteristics, and accept marked-up text files for formatting. Markup codes
are provided to invoke rulers, and to control other formatting characteristics such as character style and
page skips.

So much is common. For the rest, I'll concentrate on describing the facilities of Regal, because
that's what I want to get on record and because Imperial is still in a state of flux. To show how Regal is
used, a fragment of a marked-up text file, with annotations to explain the functions of the markup
notation, is presented in the table on the next page. The text file has been slightly edited to collect some
interesting features into a comparatively small compass, but is otherwise almost a real example. The only
significant departure from reality is the introduction of empty lines in the interests of aligning the columns
of the table; the convention in Regal, as with some other markup systems, is that isolated line ends are
ignored, but a pair of adjacent line ends marks the end of a paragraph.

It will be clear that rulers are stacked, with the ruler currently at the top of the stack controlling the
formatting. It is not clear from the example (though details given below illustrate the point) that
installing a new ruler in general involves computing the new parameters from those in force before – so a
ruler which moves the left margin right by 0.5 cm will always do so, until there remains less than 0.5 cm
of available space. In fact, therefore, what is stacked is not the ruler identified in the instruction; it is the
result of operating on the previous item at the top of the stack with the new ruler. (I have sometimes
distinguished the stacked entities by calling them "active rulers".) The use of a ruler stack is perhaps the
obvious way to implement the requirements, but I was predisposed towards the notion by having used
Burroughs compilers, where setting and popping attributes was the convention, and worked very well.
Later experience of implementing a punched-card text editing programme MERGER4 which followed the
same conventions fully confirmed my approval. The ruler attributes control the placing of text lines on the
page (margins and line spacing), properties of paragraphs (spaces before and after, first line indenting),
layout within the lines (tabulation), typeface, and whether or not text should be formatted.

The markup language deals with local requirements. As well as managing the rulers, its facilities
cover local character style (bold, italic), line skips and page skips, file insertion, citations, and variables.
All markup symbols are prefaced by the backstroke, \. The examples which appear in the sample text are
explained in the comment column.

Working note AC126 : page 4.

Text Comment

\rs<paper>\rs<right>seeds:faster.ppr\rp\rs<centre>

MAKING COMMUNICATION FASTER.
\rp

SPEECH.
\rs<newitem>
Moffat and Jolleff\nc<\{M&J}V. Moffat, N. Jolleff :

\siSpecial needs of physically
handicapped severely speech impaired children when
considering a communication
aid\ei, in ref. \nc<\{ACA}> page 37.> give the output of

an "average communication aid"
as 1 to 10 words per minute, and compare this with the
100 or so words per
minute of normal speech.
\rr<miditem>

Szeto, Allen, and Littrell\nc<A.Y.Z. Szeto, E.J. Allen,
M.C. Littrell :
"Comparison of speed and accuracy for selected electronic
communication devices
and input methods", \wiAAC \cb9, 229 (1993).> have

compared the speed of
different interface devices.

Stack ruler (\rs< .. >) "paper"
(stays in control throughout);

Stack ruler (\rs< .. >) "right";
Text "seeds:faster.ppr" (will be

right-justified, because of
"right");

Pop (\rp) top ruler (right) from
stack;

Stack ruler (\rs< .. >) "centre".
This text will be centred.
Pop (\rp) top ruler (centre) from

stack.
Text formatted by "paper".
Stack ruler (\rs< .. >) "newitem".
Define a citation (\nc< .. >) and an

abbreviated name for future use
(\{M&J}).

Start italic (\si).

End italic (\ei); citations can be
nested, and note the use of an
abbreviated name (<\{ACA}>).

Replace the ruler (\rr< .. >) at the
top of the stack (newitem) by
"miditem".

Italics for one word (\wi);
bold type for one character (\cb).

Working note AC126 : page 5.

THE MARKUP INSTRUCTIONS.

The markup instructions provided are listed in the table below.

Item number Meaning
1 2 3

c Select the following character.
e End the selected string.
s Start the selected string.
w Select the following word.

b boldface.
d down (subscript).
i italic.
u up (superscript).

f Something to do with files.
i<filename> include.

l About layout.
n new line.
p page.

<pagecount> skip one or more pages.

e new page at line end.
n new page now.

s skip space (vertically).
e<howfar> skip at line end.

n<howfar> skip now.

| partitions the line.
* repeat a character.

<repeatcount>character repeat so many times.
character repeat to line end.

n A note.
c<text> a citation.

!<text> define a text variable.

?<text> use a text variable.

p About pages.
n<pagenumber> set the page number.

r Change the ruler.
i<rulername> insert the new ruler.

p pop the ruler stack.
r<rulername> replace the current ruler.

s<rulername> stack the new ruler.

Set or read a number.
!<string> define a numeric variable.

?<string> use a numeric variable.

An instruction is formed by concatenating items. For example, \lse<1.1> means "insert a vertical gap of
1.1 cm at the end of the current text line".

Words shown in italic style are metalinguistic symbols to be replaced by instances of the object
they describe; the rest is literal text, including the brackets < ... >. Brackets are always balanced. <
characters are only recognised as brackets when they are used in one of these instructions; > characters are
only recognised as brackets if a < character has been recognised as a bracket and not yet matched. If you
want to put a > character within a bracketed piece of text, you have to make your own arrangements; in
practice, as the material within the brackets is usually fairly precisely defined, this doesn't cause much
trouble.

Working note AC126 : page 6.

A few of the instructions call for more comment than is implied in the table above or in the earlier
example text.

Text styles : The first four entries in column 1 control the type style used with the text elements
identified. They are used in conjunction with the four following entries in column 2; thus, \cbX will
display the character X in bold type. The markup symbols can be used anywhere, so int\cbense will
be displayed as "intense", and in\siten\eise will be displayed as "intense". The \s and \e brackets
need not be nested; the line

A \sbmixture of \sibold\eb type and italic\ei type

is displayed as

A mixture of bold type and italic type

- or at least it should be. (I did test it, but that was a long time ago.)

A word is identified as the string of characters beginning immediately after the \w? markup
symbol and ending at the first space found – so if the symbol is immediately followed by a space,
no formatting happens. Another consequence is that the word includes any immediately following
punctuation mark, which can be a nuisance, but at least means that a number including commas
and a decimal point is regarded as a single word. I chose the convention because it has the desirable
property of being clear and simple, but a case can be made out for adding an additional category
which is something like "the string of characters beginning immediately after the markup symbol
and ending before the first character that is clearly intended to end what is going on".

Inserting files : The instruction \fi<xxx> causes text input to be taken from the file xxx until the end of
xxx, at which point the source of input reverts to the file from which the \fi instruction was taken.
An inserted file may itself contain \fi instructions.

I had originally intended that this operation should be quite invisible to the formatting
routines, which would simply receive the stream of characters from the inserted file in place of the
\fi<fff> instruction. Experience demonstrated that, while elegant, this wasn't a good idea in
practice. The main reason was that it left the formatting very sensitive to the correctness of the
inserted file; in particular, if the pushes and pops of rulers in the inserted file were not precisely
balanced, the text sections immediately before and after the original \fi might find themselves
governed by different rulers. One could undoubtedly use this property to play clever tricks, and
some of them might even be effective in some circumstances, but in general one wishes to know
from the beginning how the original file is going to be formatted. Care is therefore taken that the
inserted file cannot pop the ruler stack below its level at the \fi<fff> instruction, and also that the
stack is cut back to that level if necessary – that is, if the inserted file has left more rulers on the
stack. As a corollary of this decision, the \fi<fff> instruction, and the end of the inserted file, are
both taken as paragraph breaks. In practice, these constraints have made no difference to the
effectiveness of file insertion.

I note that if you really want to do silly things with unbalanced rulers and so on, you can
still do it with the variables to be defined shortly. If you take advantage of this facility, you're
asking for trouble.

Inserting and replacing rulers : The obvious operations on the ruler stack are provided by \rs<rrr>
(stack ruler rrr) and \rp (pop the stack). Two other operations were found to be useful in practice.

Most text has a hierarchic structure : paragraphs come within sections, which in turn come
within chapters, and so on. It is common to distinguish the levels by some formatting convention,
so it is usual to find a new ruler used at the beginning of each level. Pushing and popping make
sense in this context of orderly nesting.

But rulers do not control these abstract levels; they are concerned with the format, not the
semantics, of the text, and there are several occasions where a ruler is succeeded by another which
depends on it but is in a real sense at the same logical level. This text provides several examples.

Working note AC126 : page 7.

Perhaps the most obvious is that the first paragraph after a heading is indented on the left from the
boundary of the heading, but the first line is not additionally indented; in subsequent paragraphs
under the same heading, the line boundaries of the first paragraph are retained, but an indent for the
first line is added. This behaviour could be managed with no special operations, but the result is
sometimes – not always – to introduce a level in the ruler stack which does not correspond to the
text semantics. Therefore, immediately before the next heading one requires one \rp (pop)
operator if the preceding section contained only one paragraph, but two if it contained more than
one. This behaviour is surprisingly confusing, and it is easy to make mistakes with such structures
when inserting or deleting paragraphs. On recognising that so far as stacking styles is concerned
the change from heading to paragraph is significant while the addition of the indented first line
isn't, it makes sense to provide the "replace ruler" operator \rr<nnn>, which computes the new
paragraph attributes from the previous ruler in just the same way as if the new ruler were to be
stacked, but then replaces the old ruler parameters instead of simply stacking the new parameters
on top. This reflects the real style stacking in the text rather than imposing a mechanical stacking
which does not correspond to the writer's intentions.

Another solution which I considered, but never implemented, would be to
provide each ruler with a "next paragraph" attribute, which could be used to
specify the ruler to be used for the paragraph following the current one. In

principle, judicious choice of next rulers could be used to implement most of
the formatting of a document, with intervention needed only to identify steps

"down" the stack – new chapters, new main headings, etc. I didn't do it
because of the potential confusion of levels mentioned above; how do I know
at the end of a (say) chapter how many pops to insert ? Of course, there are
answers – some sort of stack marker, with a "pop to marker" operator, for

example – but that's a level of complexity for which I wasn't ready.

The reason for introducing the second novelty can be seen from this example. Sometimes it
happens that while writing a paragraph one wishes to insert a comment which is to be seen as a
parenthesis without interfering with the paragraph formatting.

This might be seen as an odd thing to do – after all, why not use a
footnote ? A footnote would not break the text in the way described, so

arguably be less intrusive. The answer must be that, in practice, it
seems to be a useful way to introduce commentary in some

circumstances.

Then after the comment the paragraph should simply continue; it is not a new paragraph, so should
not have any special features, such as indenting, in its "first" line. To format such paragraphs, I
have provided the "insert ruler" operator, \ri<iii>. This is a true stacking operator, as is appropriate
for a new semantic level, differing from the ordinary stacking operator \rs<rrr> only in the action
taken when it is popped.

Citations : The \nc<ccc> instruction identifies the text ccc as a citation which is to be listed in full at the
end of the document, and linked to the point of appearance of the \nc by one of the customary
references links. In practice, only the method based on numerical links numbered in order of
appearance (as used in this document) was ever implemented, though one reason for that was
perhaps that the method implemented is my preference.

The text within the < and > brackets is stored, with the appropriate reference numbers, until
the end of the main text, then formatted as an appendage to the main text. Because of this, all
normal formatting machinery works still, so the layout is determined by whatever ruler is in force
at the end of the main text. Also, as the brackets are counted and balanced, citations may include
further citations, which are handled normally. (That's another good reason for using the order-of-
appearance reference numbers.)

Sources with more than one citation are handled by permitting any citation to be labelled. If
the first item within the citation text is of the form \{ttt}, the text ttt is stored as the citation's label.
Further citations including only this label as the citation text will be given the same reference
number.

Working note AC126 : page 8.

Variables : Two sorts of variable are provided, one for text and one for numbers. In each case, there are
instructions to define the value of a variable and to insert its current value into the text. Both were
introduced from need rather than on principle.

The text variables can have values which are any text strings, perhaps including Regal
instructions to control what happens. They were originally used to provide a standard format for
chapter headings; my standard variable for this purpose is defined as a string including a page skip,
ruler invocations for the different lines of the heading, standard text, and references to other text
variables (for the name of the chapter) and numeric variables (for the chapter number). No text
operators are defined.

Text variables are simply interpreted by taking the Regal input from the variable text
instead of the previous source until the text is finished; this automatically provides the recursive
properties desired, but does impose certain constraints on the character input system, which I
describe further below.

The numeric variables were originally introduced to record page numbers for remote page
references. Numeric variables are evaluated by a simple operator-precedence interpreter, which
handles standard arithmetic operations, parentheses, and references to other variables, which can
include the variable being defined.

Both sorts of variable are undefined at the beginning of a run, with the exception of the page
number variable, which is set by Regal as formatting proceeds. The defining instructions are
executed when they are encountered in the input stream, and can be used as often as required – so
each should be regarded as a redefinition rather than the assignment of an absolute value.

Variable names can be single uppercase or lowercase letters. When I first implemented this
part of the system, I thought that would be enough; I was wrong.

Multiple passes : To use a numeric variable for a remote page reference, one must assign its value from
the page number variable somewhere on the required page, then use the value where the reference
is required. This is (reasonably) straightforward if the reference is required after the object of the
reference, but not so straightforward if the positions are reversed.

There are two reasons for the difficulty. The major reason is that, with a forward reference,
we don't know the number to insert at the point where it must be inserted. The minor reason is that
we don't even know how much space the number will occupy, so we can't do the formatting
anyway. It is significant that there are two reasons, because they could in principle interact in an
awkward way.

In the first pass through the text, Regal will discover that the required number is undefined
when the reference is made; it is therefore obvious that the formatting is unsatisfactory when we
come to the end of the run. To deal with the minor problem, it will guess a plausible size for the
number so that it can go on with its immediate activities, but this might not be right. Regal will also
notice when each variable is defined. If no variable has been defined in the run, the forward
reference will never be resolved, so formatting fails, and the process stops. All being well, though,
the number has been defined, so Regal can continue. (In practice, it only checks that some variable
has been defined with a changed value; keeping track of just which is required and which has been
defined didn't seem worth while.)

Regal therefore knows when a second pass through the text is needed, and starts again from
the beginning if necessary – without resetting the values of the variables. (This sounds like an
accident waiting to happen; perhaps you could forget to set the initial value of, say, a chapter
number, in which case it would restart from its previous final value and continue to count upwards
on the second pass. In fact, that can't happen, because unless it is explicitly set to some value in the
first pass it will always remain undefined.) This time the forward reference can be resolved, and
correctly formatted. It is now possible, though, that the correct formatting differs from the previous
guess sufficiently to change the page numbers later in the document, so the correct reference could
be different from that defined in the first pass. In this case, another pass will be needed – so Regal
must check whether the value at the end of the pass has been changed, and repeat if necessary.

Working note AC126 : page 9.

It is also possible that a chain of forward references could take several passes to resolve
completely, so Regal keeps going provided that at least one variable has been newly defined in
each pass.

The process stops either when all seems to be well, or when two passes have been made
with no improvement – that is, changes in value but no new definitions. This can happen if there
are circular definitions – or (this is the awkward interaction) if a formatting change affects a
reference in such a way as to undo the change on the next pass. (A reference to a page number
might change from 9 to 10, the additional character might then affect the formatting in such a way
that the point of reference moves in such a way that the reference in the next pass changes back
from 10 to 9. Recall that we can do arithmetic on the values.)

A NOTE ON INPUT STREAM MANAGEMENT.

It might be clear from the descriptions above that input to the formatting procedures can be acquired from
several different sources. These are :

Files : Input is initially taken from a primary file, which in the simplest case can be the only source. For
any but a very small document, though, it is often convenient to split the source text into several
files each corresponding to one part of the material and to use the initial file simply as a
coordinating device, including the other files as required. As file inclusion is in principle recursive
several files can be active at the same time.

Variables : A text variable is included in the document by simply taking input from the declared variable
string instead of from the current character source. A numeric variable is converted into text by a
procedure, and the output from the procedure used as input to the formatter. In the Regal
implementation, the output is first written to a character buffer, which is then used as the input
source. Variables are also recursive, so several variables can be active at the same time. There is
nothing in principle to prevent a text variable from including a file. I don't think I've ever tried it,
but it should work.

References : As citations are handled by the formatter a string of text for the reference list is constructed.
This is appended to the input text after the initial file is ended.

Originally, I underestimated the potential complexity of this stream-management problem, and matters
became unsatisfactorily complicated, with many fairly arbitrary variables used to hold various pieces of
the system state and rather little in the way of orderly structure. Different variables were introduced to
record essentially the same information at different steps in the process, and their values were not always
well coordinated; much confusion ensued.

The situation was greatly improved when I changed the input system to use my Stream utilities5,
with which all these input requirements could be handled simply and uniformly.

DEFINING RULERS : AN EXAMPLE.

Rulers to be used in a formatting run are defined in a ruler definition file. Here is an example of such a
file; it is sufficient to format the text file example given above. The right-hand column is not part of the
file.

Working note AC126 : page 10.

% PAPER.RLR. Comment
% Use "paper" first, then stack others as

required.
Comment

#n paper Define a ruler called "paper".
=lb \c 15 Line boundaries : 15 cm line, centred.
=le i Single end-of-line symbols ignored.
=lj b Lines are justified at both ends.
=pi 0 Paragraph indent is 0.
%%% End of definition.

#n newitem Define a ruler called "newitem".
=lb @+1 @ Move the line left boundary 1 cm right; leave

the right boundary unchanged. (Arithmetic
expressions can always be used for numeric
values; @ in an expression always means
"the current value".)

=pi 0 Paragraph indent is 0.
%%% End of definition.

#n miditem Define a ruler called "miditem".
=pi 1.5 Paragraph indent is 1.5 cm.
%%% End of definition.

#n centre Define a ruler called "centre".
=lj c Centre the lines.
=pi 0 No indenting.
%%% End of definition.

#n right Define a ruler called "right".
=lj r Right-justify the lines.
%%% End of definition.

The example shows that properties of several sorts can be defined for a ruler. It also shows that not all
properties need be defined for every ruler. That is because (as explained above) a ruler specifies the
operations which must be applied to the parameters, not the parameters themselves. The complete set of
paragraph properties (the "active ruler") is computed by Regal when the ruler is invoked.

Working note AC126 : page 11.

DEFINING THE RULERS : NOTATION.

It will be clear from that example that the language used in constructing the file is not specially self-
explanatory. A fairly complete specification of the definitions which can be expressed in the language
follows. It must be admitted that there is an element of reverse engineering in some of the details,
corresponding to a similar element of vagueness in (or in some cases absence from) the existing
documentation. Still, the true ambience of Regal is preserved throughout.

Character position Parameters Meaning
1 2 3
% Special.

% none End of this picture.
not % none A comment line

Start a new definition.
d none A device parameter.
n none A ruler's name.
m none A page map.

= Item within a definition.
c Things about characters.

e string of instances of "cpqrs" –
c is a character;
p is "~" (at least) or absent;
q is spaces before c;
r is "~" (at least) or absent;
s is spaces after c.

Character environment; defines
characters which must have
spaces left before and after.

l Things about lines.
b \c n where n is length of centred line; or

n m where n and m are positions of left and
right boundaries.

Line boundaries.

e i for ignore, or
o for observe.

End of input line is significant ?

j l for left, or
r for right, or
c for centre, or
b for both.

Justifying.

s line spacing required. Separation.
t \N if values are in ens;

* n for every n units;
list of numbers, each identifying one

tabulation stop.

Tabulating.

p Things about paragraphs.
b how many blank lines to leave before the

paragraph text.
Lines before paragraphs.

c how many columns on the page. Columns of text.
g width of gap between columns. Gap between columns.
i magnitude (possibly negative) of first

line's indenting.
Paragraph indenting.

m none Paragraph is monolithic.
s Things about spaces.

f factor for scaling vertical skips when using
nonstandard line spacing.

Factor for \ls.

u Things universally effective.
f yes or

no
Formatting.

t name of typeface Typeface.

The entries are for the most part adequately self-explanatory, but those corresponding to initial character #
deserve comment. In the development of Regal, the ruler file came first, then when additional

Working note AC126 : page 12.

specifications for page layout and device information were required I added them to the ruler file. In
hindsight, that was silly, as the different items of information are only remotely connected, and their
treatment in Regal happened in quite different parts of the programme. In practice, it didn't matter much
because hardly any information was given in the page and device parts, so I haven't described these any
further. (While page and device information was used, it was almost all written into the programme to
match my printer, and I never got round to changing it until Imperial was under development; I say a little
more about this topic below.)

The two entries (=pc and =pg) which control presentation in columns are more of a curiosity than
a reality, though they do represent good intentions. I had intended that a section to be presented in (say)
two columns would be introduced by a ruler which was quite likely to contain only the instruction =pc2,
and left in the usual way by popping. I spent quite some time on the implementation, and it worked quite
well – provided that you were happy to have each paragraph formatted separately into two columns. I
wasn't; the effect was bizarre. I never had time (nor inclination) to work out how to get round the
strongly paragraph-based structure of Regal to achieve the required effect. The question is sidestepped in
Imperial by moving the page format into a separate category, independent of the text formatting; this
works much better.

WHAT'S IN THE RULER.

The active ruler is implemented as a C structure, and its declaration appears below.

typedef struct /* Active ruler components. */
{
char * arname; /* The ruler name. */
nots * archarwidth; /* Current character widths. */
nots arennots; /* Size of an en. */
int arfont; /* Number of the font. */
log arformat; /* Formatting. */
int arlinel, arliner; /* Line boundaries. */
log arsameline; /* Preserve end-of-line. */
int artabs[artabmax]; /* Tabulation positions. */
int arntabs; /* How many tabulation stops. */
int arlinedy; /* Line spacing in nots. */
float arskipfactor; /* Factor for vertical skips. */
int arparbetween; /* Lines between paragraphs. */
int arparindent; /* Paragraph first line column. */
int arcolumns; /* How many columns in the page. */
int arcolumngap; /* Nots between the columns. */
int arjustif; /* Justification code. */
log arsplit; /* An inserted paragraph. */
log armonolithic; /* Don't split between pages. */
char arspecials[128]; /* Special characters. */
char arspbefore[128]; /* How many spaces before. */
char arspafter[128]; /* How many spaces after. */
} ACTIVERULER;

"nots" are "notional dots". (Compare "bits" for "binary digits".) I worried a lot about how to measure
positions of elements of the formatted material on the page. While it is sensible to require that all
dimensions supplied to the system are in standard units (centimetres), I was using a dot-matrix
character printer, in which the real units were either the distances between dots of the matrix or
current character sizes, and I had a lot of trouble with rounding errors shifting material either one
dot or one character out of place. It was therefore sensible to express some of the measurements in
terms which reflected the discreteness of the printed representation, and nots (with sizes defined in
the printer definition) were used for this purpose.

Fonts are identified by number; they are defined in the device definition, discussed below. They are
always associated with rulers because all my attempts to make my printers change font within a
line failed.

Working note AC126 : page 13.

I think that many of the other definitions have little but historical significance now, and there's not much
point in describing them all.

PAGE LAYOUT.

Regal's facilities for defining page layout are primitive, but useful. That's because I only implemented the
bits I really wanted to use; plans for future development were always future plans for development. They
are strongly flavoured with the dot matrix printers at my disposal, all of which could print only a few fonts
in each of which all characters were of the same width (though the widths were different for the different
fonts), and it is quite possible that the many oddities of these devices distracted me from a more orderly
approach to the problems.

The Regal view of page layout is based on a model in which text is placed within a frame, which in
turn can be positioned on a page. I have unwisely not been careful to preserve the distinction between
pages and frames, perhaps because of the pressing problem of working out just where text should appear
on a page in which both structures are important, and the result is something of a mess. Here, though, is
the structure of the page map for a Regal file. It is clear that the information contained is derived from
both frame and page specifications.

typedef struct /* Page maps. */
{
float ampagelength; /* Centimetres down a page. */
float ampagewidth; /* Centimetres across a page. */
float amframetop; /* Space in page above frame. */
float amframebottom; /* Space in page below frame. */
float amframeleft; /* Margin at left of frame. */
float amframeright; /* Margin at right of frame. */
float amtexttop; /* Space in frame above text. */
float amtextbottom; /* Space in frame below text. */
int amlinesperpage; /* Total lines in a page. */
int ampagelnlength; /* Total nots in a line. */
log amp1header; /* Put header on first page. */
char * amheader; /* Points to the header. */
} ACTIVEMAP;

A single map is used for the whole file, which is why it contains a flag controlling the appearance or
otherwise of the header on the first page. It became clear before very long that this was quite inadequate,
and some sort of hierarchic structure was needed in which a standard pattern, corresponding roughly to
this page map, could be amended as required for different pages, but this extension was never
implemented.

Attributes of the map can be defined in the ruler definition file, after the #m header. The definitions
available are tabulated :

Character
position

Parameters Meaning

1 2

= Item within a definition.
h string – typically a variable. The page header.
l frame length, cm. Length of the page frame.
t position of top line, cm. The top of text in the frame.
w frame width, cm. Width of the page frame.
1 yes or no. Print a header on page 1.

It is interesting that, without specific planning, these definitions do separate the frame layout from the
page size imposed by the printer.

One more peculiarity of the interaction between printer size and frame layout in Regal deserves
mention, for it is something which I haven't come across anywhere else. (That isn't an assertion that my

Working note AC126 : page 14.

implementation is unique – only that my familiarity with other approaches to such problems is limited.) It
is the ability to print frames larger than the maximum page size.

This is where the family newsletter comes in. The newsletter is a fairly considerable document,
typically around twenty pages in length and distributed to around fifty people. With a production of that
size, the amount of paper consumed is considerable, and for environmental and photocopying cost reasons
I would like to reduce it as far as is reasonably possible. With a modern printer I can simply use a smaller
font; what I had was a dot-matrix printer, with essentially a fixed character size. That in itself is not a
serious problem, as I can reduce the size of the original printed document by photocopying so that more
fits on a page. The obvious simple method (assuming that one can print on continuous stationery) is to
print the text continuously on the printer, then to slice it into segments of suitable length and reduce those
as required. To do so with Regal, one simply declares the page frame longer than the notional printer page
length; as I never used page skips – because of constant confusion between A4 and quarto pages – that
was straightforward.

Unfortunately, it is only half satisfactory, as without further changes the printed width remains the
same, so the reduction economises in only one dimension, and blatantly wastes space in unnecessarily
large margins. If reduction by a factor of two is feasible, one could try pasting up the reduced version with
two columns per page. Page numbers would then become column numbers (odd, but comprehensible) –
but in practice the reduction is too extreme, and the resulting text is far from easy to read.

I therefore spent quite a lot of time and ingenuity causing Regal to handle over-sized page frames
by printing in such a way that each frame was produced as two (or more, if required) parallel columns
(with some overlap for convenience) which could be cut out and stuck together to make a large page
ready for reducing. It worked surprisingly well; occasional unevenness in line spacing caused by
somewhat sloppy tractor action in the printer led to occasional little jumps in the lines, but they were
tolerable, and otherwise all was well.

DEVICE DEFINITION.

Proper device definitions were never used in Regal, but there was some preparation for them. Most of this
was in the structure reproduced below; the comment on the second line is almost true.

typedef struct /* Describes the output device. */
{ /* ***************** NOT YET USED ***************** */
float dvlinecms; /* Line length, centimetres. */
float dvlfcms; /* Line advance, centimetres. */
int dvlinenots; /* Line length, nots. */
int dvlfnots; /* Line advance, nots. */
int dvdeltaymax; /* Maximum (y) skip, nots. */
log dvfixedwidth; /* All characters are the same width. */
} DEVICEVALUES;

The items included are simply a selection of those which had turned out to be significant in the
development of Regal. I don't remember how I chose the selection; certainly, there is much more in Regal
that is specific to the printer I most commonly used, such as the control strings to be used for forward
skips of various sizes, changing type styles (italic, bold, etc.), and so on.

There is a little more in the font definition, shown below. This was used to switch between
different fonts available on the printer, and it works. Though it was not used with the printer, as the
character width was fixed for each font, there is provision for the definition of individual character widths.
The items tfstart and tfstop are, respectively, control strings to be sent to the printer to change the
font and return the printer to a standard state.

typedef struct /* Describes the font. */
{
char tfname[rulernamelength]; /* Name of the font. */
int tfennots; /* "Standard" width, nots. */
nots tfcharwidth[128]; /* Character width, nots. */
char tfstart[tfcodemax]; /* Codes to start font. */

Working note AC126 : page 15.

char tfstop[tfcodemax]; /* Codes to stop font. */
} FONT;

IMPERIAL AND THE FUTURE.

That is a rough account of the state of Regal in its most developed form. It attained this optimum state
around the middle of 1989, while undergoing development for use in formatting some technical reports
(including that on the Stream utilities). Unwisely, in my concern to get the reports completed, I departed
from my policy up to that time and took some short cuts in the development; it worked for the reports, but
Regal was never quite the same again. After 1989 I didn't have time to go back to Regal, undo the hasty
additions, and do the job properly, so it remained in its slightly crippled state. The basic formatting
machinery was unharmed, and it was used for our family newsletters until December 1993; in 1994, my
Zenith portable computer, which was the machine on which Regal had been developed, broke down, and I
did nothing with Regal for some years.

As I mentioned earlier, I returned to Regal in 1996, but with the benefit of my previous practical
experience, and – most important – the careful notes I'd made in 1988 and 1989. From these sources, I
was able to recapture my ideas about Regal and also to identify aspects of the original system which could
be significantly improved. After this review, I decided that it would be best to start again rather than to try
to rescue Regal, so Imperial was born. Full specifications will appear if I ever get it finished, and in any
case this note is really about Regal, but here is a short list of some of the changes. Notice that none of
these is about the basic formatting; Regal did that pretty well on the whole, and the developments are
mostly concerned with improving other parts of the system and – particularly – with decoupling them as
far as possible from the formatting.

• Different parts of the document – main text, headers, footers, pictures, references, etc. – are
regarded as separate streams and formatted independently. This solves the significant problems
associated with such things as preserving continuity of formatting over page boundaries, when in
Regal a complicated transition to a different form to manage the page header proved to be the
source of many problems.

• The page map is much more flexible. Each page has a separate map (so that pictures or different
numbers of columns or whatever can be laid out properly) in which an arbitrary number of panels
can be defined. Each panel is linked to one of the document's streams, and much of the formatting
of a particular stream can be done independently of the others. In practice, certain interactions are
necessary, and provision is made for these.

• The output is no longer tied to a specific printer. Printer declarations receive proper attention, and
in principle any sort of printer or printing technique can be used for the target; the original
intention was to use TeX to finish off the process, but other forms of display such as postscript,
screen displays, etc. are possibilities.

MORAL.

Now I know :

• why TeX is so complicated – you do want to manage a surprisingly large number of things, and
exercising all the management and text input through a single text channel forces the use of
complicated codes;

• why Word can't get its formatting right – even slight changes in page layout or pixel size can
change the formatting details;

• why Word got worse and worse – the interactions are such that merely addressing symptoms is
almost guaranteed to make the problem worse;

• why both accrete more and more bits and pieces as they are made more elaborate – you do need a
lot of information.

- but not why Word is so enormous.

Working note AC126 : page 16.

REFERENCES.

1 : Acorn Computers Ltd. : The BBC Microcomputer System Master Series Reference Manual, Part 2
(1986).

2 : D.E. Knuth : TEX and METAFONT : new directions in typesetting (Digital Press, 1979).

3 : L. Lamport : LATEX : a document preparation system (Addison-Wesley, 1986).

4 : G.A. Creak : U/MERGER (Auckland University Computer Centre Usernotes 209, 209A, and
209B, 1976).

5 : G.A. Creak : The Stream Utilities Manual (Auckland University Computer Science Department
Technical Report #42, 1990).

