
Computer Science 773

Robotics and Real-time Control

INTELLIGENT FAILURE MANAGEMENT

It has always been clear that failure management is essentially difficult, because, while it
is straightforward ( though not necessarily quick ) to describe how a machine works, it
is essentially impossible to describe how it doesn't work – there are far too many
possibilities, many of which involve events in the environment which you cannot easily
take into account. There is no guaranteed systematic way to derive a list of all possible
faults. Recall that in Britton's specification scheme the procedure for identifying possible
exceptions was reduced to interviews rather than being carefully codified – and consider
how you would predict the Ariane 5 failure.

Conventional failure management is based on identifying possible faults, or classes
of fault, and providing explicit instructions for detecting them and dealing with them when
they occur. Many simple and obvious faults can be dealt with in this way, but there are
problems associated with this approach because of the combinatorial nature of the
problem. Followed exhaustively, the policy would result in a failure procedure for every
conceivable fault, and every combination of faults, under all possible condition. Such a
collection of failure procedures would be extremely expensive to write, occupy a lot of
space ( not as serious a problem as it used to be, but still significant for a large system ),
and hardly any of it would ever be used. This is poor economics. As well as that, the
sheer volume and the nature of faults themselves would make the failure code exceedingly
difficult to test – so when a fault was detected, the response would quite probably be to
execute some inadequately tested code !

Therefore, while it is recognised as sensible to provide explicit failure management
procedures for foreseeable and potentially dangerous faults, there has always been much
interest in providing more "intelligent" means for dealing with others which might occur.
It is accepted that even in a highly automated plant of any complexity you need people
around in case of emergency, because they are good at solving unforeseen problems;
intelligent fault handling can be seen as an attempt to find programmable ways of
automating these people.

SORTS OF INTELLIGENCE.

Two main levels of intelligence are recognised in discussions of intelligent failure
management. These are shallow intelligence, usually associated with the use of rule-based
systems, and deep intelligence, associated with the use of system models. Both levels are
useful, but they serve different functions.

Shallow intelligence is what we use when we learn simple "quick fix" responses to
indications of failure. If a box drops off a conveyor belt, we might know that it's
reasonable to put it back on; if the photocopier stops for some non-obvious reason, you
switch it off and on again. Both of these are learnt responses which don't require much
thought ( except perhaps the first time, but that might be deep intelligence – see below ),
neither is necessarily the right thing to do, but neither is likely to be programmed into the
ordinary control system. Perhaps more to the point, both are responses which you might
tell someone whom you noticed to be puzzling over a dropped box or recalcitrant
photocopier : "Just put it back on the conveyor"; "turn it off and on again".



773 Intelligent failure management : page 2.

Deep intelligence operates by analysis of a problem in terms of knowledge of the
structure of the system concerned. The first time you come across a box on the floor by a
conveyor belt, you might use your knowledge of the downstream process to work out that
the spacing and orientation of the boxes on the belt isn't particularly significant, so it
doesn't matter if you just put it back in an arbitrary position. The first time your
photocopier gets stuck in an incomprehensible way, you might use your general
knowledge that photocopier-like machines are unlikely to be damaged by being switched
off, and commonly automatically set themselves up in a sensible state when started, to
determine your course of action.

SHALLOW INTELLIGENCE.

There are, obviously enough, two steps to the shallow response to a fault : first the fault
must be detected, then the appropriate action must be executed. In principle, this can
always be written in the form of a simple rule :

when <condition observed>
execute <response>.

This makes it look very like an ordinary response to an event, such as might be found in
any but the simplest control system. The difference is that, first, an ordinary programmed
event response is expected to be executed under well defined conditions in a known
context, and, second, that with an ordinary programmed event you know that the event
itself can be detected.

The context is important because you know the conditions under which the required
code will be run; if the initiating condition is not well defined, it might be much less
obvious what you can do in <response>. That's why a lot of responses amount to
"ring a bell loudly"; though the failure has been detected, there's no way for the system to
determine just what's wrong in sufficient detail to correct itself.

The context is also important because you know where to put the instruction. What
do you do with an arbitrary set of rules like the example when you know that they might
be relevant pretty well anywhere ? You can collect them together in some sort of fault
block – that's a common device in languages which provide exception management – but
you still have to find some way to execute the test.

That brings us to the second qualification : can we detect the event ? The number of
manufacturing system controllers which can detect a box lying on the floor is likely to be
exceedingly small. ( I guess zero, but have no evidence in support. ) More realistically,
given a condition like temperature > 500 and flow valve open, where do you put
the test ? Presumably something, somewhere, can read the temperature and has a record
of the state of the flow valve, but how do you ensure that the test is executed sufficiently
frequently ? And, even if the temperature is polled often enough, how do you insert the
required code in the control software once you've determined that it's useful ?

( One of the desired features of PDL was the ability to add such rules easily and
quickly. That's one of the reasons for its rather simple structure. )



773 Intelligent failure management : page 3.

DEEP INTELLIGENCE.

Simple rule-based responses to detected fault conditions are very useful when you know
what you want to do, but they are limited in their scope. You still need a rule to cover
every possible failure mode, and the previous criticisms still apply. The idea of telling
your programme about the structure of the system and getting it to work out for itself how
to respond to faults is therefore very attractive.

It is also very difficult. One of the reasons why people are so good at this sort of
problem solving is that we carry around with us a vast quantity of information, and we
can retrieve relevant parts of it exceedingly efficiently. If we want computers to perform
as we do, we have to find ways of giving them the information and of using it efficiently.

The first of these requirements, so far as it applies to the plant and process, is
comparatively easy to handle; we do know what the plant is, and how it is used, and a
great deal of this information is written down explicitly somewhere or other. Getting this
into a machine-readable form might not be particularly easy, but the task is imaginable and
bounded. ( Recall the PDL databases, and the rule-based format of its programmes. )
The task is a lot harder if we also have to provide the commonsense knowledge which
people us in their reasoning, but it seems to be true that one can manage to a useful extent
without going to such lengths. The stored information can be in terms of straightforward
descriptions of the system, or it can be to some extent predigested into more immediately
useful forms; for example, fault trees and event trees might be used to organise possible
causes of faults and consequences of events.

Using the information is harder. Diagnosing the fault is a non-trivial problem in
artificial intelligence, even given all the available information. To make it tractable, it is
common to make assumptions such as that of "single point failure", which is the
assumption that only one fault is the cause of the observable symptoms. While that
sounds reasonable, in practice it is common for a real very deep cause to lead to several
fairly deep consequences perceived as causes from the viewpoint of the software. Not a
lot can be done about that.

Alan Creak,
April, 1997.


