
Computer Science 773

Robotics and Real-time Control

PDL

ORIGINS.

PDL (Process Description Language) grew from concern that software for control
purposes – particularly those for manufacturing systems – was becoming very complex,
and therefore very hard to change. At the same time, pressure for rapid change was
increasing, so programming departments were becoming overloaded with consequent
poor service and increased probability of errors.

A study of the problem suggested that a possible explanation was that the problems
come from the interment of much of the information about the manufacturing system in
the programme code. Though the programme is determined by information drawn from a
very wide range of sources, from the nature of the product to the geography of the plant,
very little of this appears explicitly in the programmes. Instead, much has been taken into
account in decisions taken before the code is designed. Because of that, any change in
such external conditions will require changes in the programme, but it is necessary to
work through the decisions again before it becomes clear what changes are necessary.

That's a gross oversimplification of the argument (or perhaps the argument is a
gross oversimplification of the problem), but there is some sense in the notion that more
explicit representations in programmes of factors which determine their constitution make
it easier to understand what's going on. Consider :

• If the engineers could see what the programme was about, they could check it;
• If the engineers could see what the programme was about, they could write little

bits;
• If the engineers could see what the programme was about, they would be able to

adapt it to new products and new machine tools;
• If the programmers could see what the programme was about, they could find faults

more easily;
• If the programmers could see what the programme was about, they could adapt it

more easily when new computers and software were acquired;
• If the system could see what the programme was about, there would be a chance of

automatic checking;
• If the system could see what the programme was about, there would be a chance of

automatic fault diagnosis;

PDL is therefore built on the notion of information accessibility.

It is argued that the information is important – that's what determines the
programme. Therefore, for a robust system, the programme must change "automatically"
as the information changes. So why don't we put the information in databases, and work
out the programme from there automatically ?

In a manner of speaking, that's what happens now. The database is the specification
and documentation (should there be any – one of our difficulties); "automatically"
means having some programmer decide every time there's a change how it should be
encoded in C. We're not trying to do anything dramatically new in principle – just to
clarify, systematise, and automate the traditional process.

773 PDL : page 2.

By the same token, we don't expect (or need) to do the whole automation job in
one go; we're quite happy to leave a large proportion of the system implemented on
people rather than computers. "All" we require then is some formalisation of existing
things, probably amounting to writing down facts and procedures in simple forms – there
are no revolutions in prospect. Yet.

That sounds a bit familiar. The information ALSO contributes to the diagnostic part
of the system, where it's essential raw material for the attempts to interpret unexpected
phenomena. In that context, we talk about knowledge-based systems, where the special
feature is the separation of the knowledge base from the processing ("expert system
shell").

So perhaps we can use all the good arguments for expert systems (should there be
any) in favour of our approach ?

DEVELOPMENT.

We'd design a "source language" for the control programme, which – for the time
being – would be written by an engineer, but could in principle be produced by an
automatic implementation of the earlier parts of the overall design process.

We'd write a processor for the language which could take into account the various
sorts of information we've discussed, assumed to be recorded in databases, and drive the
system.

Notice that it has to produce code for a distributed computing system. The
programme will describe the manufacturing process for one product, but that will be
implemented by a wide variety of computers scattered around the plant. The "one
product"-ness is important in several ways :

• In the manufacturing, it's important because it describes the complete process, and
it's the entity we'd want to use for programme proofs, or other validation tests. In
older systems, no such statement of the process exists; engineers know what has to
happen, but by the time it got to the computers it is fragmented into bits for each
separate computer.

• It can be of assistance as a knowledge base for fault diagnosis. If there's a fault in
the product, then a view of the complete process is required to formulate hypotheses
on where the fault could have originated; again, a set of separate programmes isn't
very helpful.

• It emphasises that there's one more job to be done : coordinating the products
which are moving along the production line at the same time. This emphasises the
fact that a manufacturing system does at least two jobs – as well as making the
product, it controls the behaviour of the plant, the movement of parts through it, and
so on.

773 PDL : page 3.

CONSEQUENCES FOR THE LANGUAGE.

What are the constraints on the language ?

• Comfortable for
engineers

- so that they can write it or
check it.

(Realistic, not
patronising !)

• Machine-writable - so that it can plausibly be
composed by (non-
existent) "higher level"
software.

Should be low level;
"Assembly"
(literally !)
language.

• Machine-
comprehensible

- so that it can be used as a
database describing the
manufacturing process.

Should include a
description of what
machines do, and
how they do it.

- and general, and portable, and sufficiently expressive, and

The first question is therefore "how do engineers like to write their programmes ?".
Why not ask the engineers ? One example looked more or less like this :

Machine : Detector.
Stimulus : A bottle arrives.
Action : Send "Found a bottle" to the Controller.

Machine : Robot.
Stimulus : Receive "Move bottle from Detector to Filler"

from the Controller.
Action : Move the bottle to the Filler,

Send "Operation complete" to the Controller.

Machine : Filler.
Stimulus : Receive "Fill the bottle" from the Controller.
Action : Fill the bottle,

Send "Finished" to the Controller.

Machine : Robot.
Stimulus : Receive "Move bottle from Filler to Packer"

from the Controller.
Action : Move the bottle to the Packer,

Send "Operation complete" to the Controller.

Machine : Packer.
Stimulus : Receive coordinates from the Controller.
Action : Receive "Pack" from the Controller,

Pack the bottle at the coordinates.

(That's a free interpretation of the style applied to a fictitious machine called a Gherkin
Packer, but it preserves the main features.)

773 PDL : page 4.

REFINEMENT.

There's more to it than that, but the rest can be done in a fairly automatic way. The first
step, which follows from the control structure of the plant, is to insert the controller
activities :

Machine : Detector.
Stimulus : A bottle arrives.
Action : Send "Found a bottle" to the Controller.

Machine : Controller.
Stimulus : Receive "Found a bottle" from the detector.
Action : Send "Move bottle from Detector to Filler" to

Robot.

Machine : Robot.
Stimulus : Receive "Move bottle from Detector to Filler"

from the Controller.
Action : Move the bottle to the Filler,

Send "Operation complete" to the Controller.

Machine : Controller.
Stimulus : Receive "Operation complete" from the Robot.
Action : Send "Fill the bottle" to the Filler.

Machine : Filler.
Stimulus : Receive "Fill the bottle" from the Controller.
Action : Fill the bottle,

Send "Finished" to the Controller.

Machine : Controller.
Stimulus : Receive "Finished" from the Filler.
Action : Send "Move bottle from Filler to Packer" to

Robot.

Machine : Robot.
Stimulus : Receive "Move bottle from Filler to Packer"

from the Controller.
Action : Move the bottle to the Packer,

Send "Operation complete" to the Controller.

Machine : Controller.
Stimulus : Receive "Operation complete" from the Robot.
Action : Send coordinates to the Packer

Send "Pack" to the Packer,
Calculate next coordinates,
Restart.

Machine : Packer.
Stimulus : Receive coordinates from the Controller.
Action : Receive "Pack" from the Controller,

Pack the bottle at the coordinates.

What more do we need ? Not an exhaustive list, but it'll do :

773 PDL : page 5.

The programming language – what it needs for its machine :

• Standard vocabulary. "English", associated with the machine.

• Means of associating
actions with the
vocabulary.

The machine database.

• How to make a machine do
things.

"Machine language", and how to get it there.

Programme structure – what it needs for the process :

• Programme structure –
conditions, loops.

- but keep the basic simplicity.

• Manage faults. - particularly external faults.

So a machine database must include :

• What the machine can do, as English descriptions. (Not essential at this level, but
documentation.)

• The corresponding instruction which must be got to the machine, described in
"English".

• The corresponding instruction which must be got to the machine, described in
networkese.

(The last two define the programming language to be used when programming for the
machine, and the translation to be used by the parser which handles it. THESE CAN'T
BE PREDEFINED – so the language can't have a defined vocabulary. Better called a
framework ?)

- and a network database must include :

• How the components are connected together.

- and the controller's database must include :

• How to send a message into the network.

The overall programme must be split into separate programmes for the individual
machines of the manufacturing system. The programme for the controller (which is the
machine of greatest interest from the computing side) is something like this :

773 PDL : page 6.

Trigger

-- Await a signal from the detector;
Receive "Found a bottle"

: from Detector.

Procedure

-- Tell the robot to move the bottle to the filler's
workbench;

Send move instruction
: to Robot;
: carry bottle;
: from detector station;
: to workbench.

-- Await the "finished" signal from the robot;
Receive "operation complete"

: from Robot.

-- Tell the filler to fill the bottle.
Send fill instruction

: to Filler.

-- Await the "finished" signal from the filler;
Receive finished

: from Filler.

-- Tell the robot to move the bottle to the packer;
Send move instruction

: to Robot;
: carry bottle;
: from workbench.
: to packer station.

-- Await the "finished" signal from the robot;
Receive "operation complete"

: from Robot.

-- Send the coordinates to the packer;
Send message

: to packer
: contents box coordinates.

-- Tell the packer to pack the bottle into the box;
Send pack instruction

: to Packer

-- Calculate the coordinates for the next bottle.
Calculate next

: box coordinates.

That describes the controller's actions for the manufacture of a single product. Other
programmes can be derived for the other machines involved, but if they're simple
machines the programmes simply describe their behaviour, and are not executed by any
sort of computing machinery. For more elaborate machines (robots, NC tools) the
machine programmes must be conveyed to the machines after transformation into the
machines' own languages.

773 PDL : page 7.

PROCESSING.

These programmes can then be compiled or interpreted or otherwise executed to control
the machinery of the manufacturing system. Here I use "processed" to mean any of these,
because essentially the same operations must be performed in all cases.

The fundamental problem is to convert one of those instructions into a sequence of
actions which has the desired effect. In the case of a controller, this is usually to receive or
send some message, but the same principles apply anywhere. Consider the instruction :

Send move instruction
: to Robot;
: carry bottle;
: from detector station;
: to workbench.

Practically all the vocabulary in that instruction is peculiar to some machine in the system.
We can't just build it into a language processor, as with a conventional programming
language, because we might well want to use the processor with machines which haven't
yet been invented. That gets us back to the database idea; all the vocabulary known by a
machine must be in its database, so that it's clearly documented, and easy to change if
necessary.

The result is a processor which works something like this. It knows (please
forgive anthropomorphism – we all know that I don't really mean it) that it's working
on a controller programme, so it looks for thing in the controller database. It first finds
Send, which it finds in the controller's database identified as an instruction, with some
indication of the expected syntax. Using this syntax, it identifies the sort of instruction it
has to send (move), which might define some variant of the syntax. It also finds the
destination of the instruction (Robot), and now it must inspect the robot's database to
find what sort of instruction it can give, and the corresponding syntax, and how to encode
the instruction in a message which the robot can understand. In working on this part of
the message, it might have to refer to the databases for the detector station and workbench
to find their coordinates, and to that of the bottle to find out how to pick it up.

All this sounds rather complicated, and in some ways it is, but in fact it doesn't
involve anything new. All these data – geographic, encoding, etc. – must be used by
human programmers constructing the same code, but they are usually not easily
identifiable in the code production sequence. The most novel idea in PDL is to write
everything down more or less formally in accessible form, and to use an automatic
method to draw it together. The hope is that with this system it will be possible to change
the plant by making changes to an easily recognisable set of databases, whereafter the
automatic system will produce the appropriately modified code.

DOES IT WORK ?

Yes. Well, so far it does. We're working on it.

Alan Creak,
April, 1997.

