
Computer Science 773

Robotics and Real-time Control

RATE-MONOTONIC ANALYSIS

In designing the computer systems for real-time control, scheduling is an exceedingly
important task. Typically, the controller runs several (perhaps very many) processes,
most of which must be executed within more or less precisely defined time limits, with
the definition the more precise for harder real-time operations.

Scheduling itself is not a new problem, and operating systems have been scheduling
processes for many years with varying degrees of sophistication. The most impressive
scheduling performance was achieved with rather old-fashioned batch processing
systems, where very high processing efficiencies were attained. When the systems were
developed, high efficiency was very important because processing hardware was very
expensive. The batch systems work because they require a lot of information about the
processes before accepting them : an estimate of the processor time required, whether or
not other devices will be used, and how much, and so on. Given this sort of information,
it is possible to choose a set of processes to run together which will make better use of the
available facilities than any of the processes individually. Without the information, as with
more recent systems in which timesharing or other unpredictable processing modes are
common, far lower levels of efficiency are achieved, but that doesn't matter a lot because
processors are now comparatively very cheap.

With real-time systems, the requirement for careful scheduling returns, but the
reason is no longer the expense of the processor; instead, it is the real-time constraints on
the process, which must be satisfied if the process is to be controlled successfully. The
methods used in operating systems are not in themselves sufficient to do the job;
operating systems are intended to get work done as quickly as possible, but not to meet
deadlines. The constraints they satisfy are to do with preserving the order of operations,
but not with explicit timing.

One solution is to provide a processor for each process. Even with cheap processor,
this can turn out to be uncomfortably expensive for a large system, and the additional
communications facilities needed can be a nuisance, increasing bulk, weight, timing
delays, and cost. Additional hardware and software is required, with consequent
increases in the probability of failure, and for tightly linked processes (such as
descendants from the same root process) the separation might well be more difficult to
implement than processor sharing. All in all, while it is not uncommon to use several
processors, going to extremes seems to be unproductive in various ways, and the
problem of scheduling several processes within a processor remains.

As with the operating systems, the solution lies in getting information about the
processes; and, as the constraints are much more severe than those on operating systems,
one might reasonably expect that more detailed information would be required. One
would not be disappointed. Several possible approaches to real-time scheduling have been
explored from time to time, but the winner so far appears to be rate-monotonic
scheduling. This method was formulated in the early 1990s, and combines a well defined
analysis procedure with a (limited, but not very limited) guarantee of performance.

CLASSIFYING THE TASKS.

The first job is to identify the tasks (processes) which are to be performed, and to
gather information on their requirements.

773 Rate-monotonic analysis : page 2.

Three types of task are defined, a task's classification depending on its timing
requirements. All are typical of realistic processing requirements of real-time systems.
The task types, in order of decreasingly disciplined behaviour, are :

• Periodic tasks, which must be scheduled at regular intervals, and for which
precise estimates of computational requirements can be given. These tasks are
commonly concerned with sampling data and performing computations on the
sampled data.

• Sporadic tasks, which occur at irregular intervals, but are bounded in size so
have hard deadlines. They can be guaranteed to occur not more frequently than
some fixed limit. These tasks are typically responses to external events such as
interrupts. As a specific interrupt is normally tied to some specific external event
(once every rotation of a wheel, for example), the physical properties of the plant
impose limits on the maximum frequency.

• Aperiodic tasks, also irregular, with no constraints on the time between
successive task initiations, but still bounded in time. Timing is determined by
probabilities rather than mechanical constraints, and a finite average rate of arrival is
required. Examples are processes which deal with interrupts from independent
distant sources which are not correlated with the local machinery. These are the
most awkward tasks which can be handled by the method.

By restricting the method to this entirely reasonable set of task types, the really disruptive
events – many tasks arriving almost simultaneously with very large processing
requirements – are eliminated.

SCHEDULING.

Most information is required about the periodic tasks, because these form the background
against which tasks of the other types must be scheduled. Four quantities must be defined
for task number i :

Ci Computation time The processing time required at
each invocation.

Ti Period The time between successive
invocations.

Di Deadline The time within the period by
which the task must be
complete.

Ii Phase The time within the period before
which the task must not be
started.

These values must conform to a number of obvious constraints, which can be checked.
The approach taken is then to draw up a schedule for the periodic tasks, within which
there is enough slack time in the right places to ensure that the sporadic tasks can be
scheduled, and that there is a good chance (which can be made as good as you like) that
the aperiodic tasks can also be scheduled.

Alan Creak,
March, 1997.

