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Abstract 

Graffiti is a computer program that checks for relationships among certain graph invariants. 
It uses a database of graphs and has generated well over 700 conjectures. Having obtained 
a readily available computer tape of all the nonisomorphic graphs with 10 or fewer vertices, we 
have tested approximately 200 of the Graffiti conjectures and have found counterexamples for 
over 40 of them. For each conjecture that failed we display a counterexample. We also provide 
results that came from analyzing those conjectures which had a small number of counter- 
examples. Finally, we prove some results about four of the conjectures. 

1. Introduction 

One of the diffculties of obtaining a new result in graph theory has been finding the 
statement of the result. The situation may soon change as computers are now capable 
of generating interesting mathematical conjectures. 

A conjecture generating program, called Graffiti, was developed by Siemion 
Fajtlowicz in 1986 (see "Written on the Wall" [5]). It uses a database of graphs and 
heuristically checks for relationships among certain graph invariants. The main task 
of the program is to decide which of these relationships should be accepted as 
conjectures. Out of all the conjectures generated by Graffiti, more than 700 of them 
have been included in [5], and many of these have created considerable mathematical 
interest I-6-9, 11]. 

Having obtained a readily available computer tape of all the nonisomorphic graphs 
with 10 or fewer vertices (see [3]), we have tested approximately 200 of the Graffiti 
conjectures and have found counterexamples for over 40 of them. For  each of the 
failed conjectures we present a counterexample, the values of the invariants, and the 
number of counterexamples. The curious reader should consult the discussion in 
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the latest version of "Written on the Wall" for conjectures that have passed our 
brute-force test and still remain open. 

We begin in the next section by focusing on those conjectures with less than 10 
counterexamples. In certain groups of these counterexamples a pattern is apparent. 
Consequently, in Section 3 we construct an infinite class of counterexamples for four 
of the conjectures: 107, 293, 551, and 581. In Section 4 we give one counterexample for 
each of the remaining failed conjectures. Next in Section 5, we provide various results 
about four of Graffiti's conjectures. 

For the reader's convenience, regarding some of the Graffiti's nonstandard graph 
theory terms, we provide an extensive glossary near the end of this paper. 

2. Conjectures with less than 10 counterexamples 

Those conjectures in which only a small number of counterexamples were found 
have been emphasized since it is natural to question if they are true for all but a finite 
number of graphs. There were a total of 18 conjectures for which we found less than 10 
counterexamples within the over 12 million nonisomorphic graphs with 10 or fewer 
vertices. (The cutoff of 10 counterexamples was chosen quite arbitrarily.) 

Eleven of Graffiti's conjectures failed for only one graph. Surprisingly, six of these 
eleven conjectures failed for the same graph: K2, the complete graph on two vertices. 
By serendipity of Graffiti's database not included K2, our partial verification gives 
strong evidence that those conjectures that failed only for K2 can be made true by 
simply adding the condition 'of order at least Y. 

Another popular counterexample was P6, the path on six vertices. It appeared as 
a counterexample to four conjectures with less than 10 counterexamples, which 
include two conjectures in which it was the only counterexample found. 

We first list the six conjectures that failed only for K2, the two conjectures that failed 
only for P6, the other three conjectures for which we found only one counterexample, 
and then each of the remaining conjectures with fewer than 10 counter examples. 

To help the reader verify the counterexamples, Table 1 contains the value of the 
terms associated with the first counterexample given for each of the conjectures in this 
section. For example, a reference to Conjecture 107 of Section 2.4 and to Table 1 
reveals that the first graph listed as a counterexample has mode of distance matrix of 
3, radius of 2, and is even regular 1 of degree 5. 

2.1. Conjectures with K2 as the only counterexample f o u n d  

Conjecture 179. The inverse transmission of gravity matrix ~< the average transmis- 
sion of gravity matrix (connected graphs). 

1 The definition of the term even regular maybe misleading -- see glossary. 
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Table 1 
The value of the terms (invariants) associated with the first counterexample given for each of the conjectures 
with less than 10 counterexamples 

Conjecture Number of 1st term 2nd term 3rd term 4th term 

counterexamples 

107 3 3 2 5 
165 6 3 6 2.0667 

166 3 5.2915 5 
179 1 2 1 
293 8 1.1691 8 7 zc 
306 1 4.0405 4 9 10 
353 1 3.0202 3 8 8 
551 5 6 5.9286 
581 6 I0 4 5 
596 1 3 2 
606 1 1 1 0 
610 I 2 1.4142 
612 1 1.4142 2 1 
613 1 1.4142 1 
615 1 2 1 1.4142 
665 3 2.0667 2 18 18 
670 1 3 2 18 18 
725 1 6 2 0.6180 4 

Conjecture 606. Size/independence 4 the secnd largest eigenvalue of Laplacian 
(connected triangle-free graphs). 

Conjecture 610. The maximum eigenvalue of Laplacian ~< the length of dual-degree 
sequence (connected triangle-free graphs). 

Conjecture 612. The length of 1-residue vector ~< order - independence. 

Conjecture 613. The length of 1-residue vector ~< harmonic. 

Conjecture 615. Order/average distance ~< length of degree sequence (connected 
triangle-free graphs). 

2.2. Conjectures with P6 as the only counterexample found 

Conjecture 596. The radius ~< the maximal frequency of mid-degree sequence (tri- 
angle-free graphs). 

Conjecture 670. The radius 4 the frequency of the mode of mid-degree sequence 
(graphs with sum of odd vector 4 sum of even vector). 
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Fig. 1. Conjectures 306, 353 and 725. 

X X 
Fig. 2. Conjecture 107. 

2.3. Other conjectures where only one counterexample was found (see Fig. 1) 

Conjecture 306. The inverse of dual-degree sequence ~< the number of nonpositive 
eigenvalues (graphs with distance rank < rank). 

Conjecture 353. The harmonic ~< rank (heliotropic plants). 

Conjecture 725. The number of nonnegative eigenvalues - largest eigenvalue + 
smallest nonnegative eigenvalue ~< independence. 

2.4. Other conjectures with less than 10 counterexamples 

Conjecture 107. The mode of distance matrix ~< radius (even regular graphs); see 
Fig. 2. 

Conjecture 165. The mode of the eigenvalues of Laplacian ~< size/average distance; 

see Fig. 3. 

Conjecture 166. The square root of size ~< the number of nonpositive eigenvalues of 
distance matrix; see Fig. 4. 2 

2 The plus symbol denotes the join of two graphs, where the join of graphs G and H is formed by adding an 
edge between each vertex of G and each vertex of H. 
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Fig. 3. Conjecture 165. 
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Fig. 4. Conjecture 166. 

Conjecture 293. The minimum 
independence (graphs with girth 

Fig. 5. Conjecture 293. 

of the derivative of positive eigenvalues ~< size/ 
>i 5; see discussion in Section 3.2); see Fig. 5. 

Conjecture 551. The maximum of mid-degree sequence ~< the mean of dual-degree 
sequence; see Fig. 6. 

Conjecture 581. The order - the frequency of the mode of mid-degree sequence ~< 
independence (trees); see Fig. 7. 
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Fig. 6. Conjecture 551. 

Fig. 7. Conjecture 581. 

y A 
Fig. 8. Conjecture 665. 

Conjecture 665. The average distance ~< the frequency of the mode of mid-degree 
sequence (graphs with sum of even vector ~< sum of odd vector); see Fig. 8. 

3. Constructing infinite classes of counterexamples 

As noted above, those conjectures in which only a small number of counter- 
examples were found have been emphasized since it is natural to question if they are 
true for all but a finite number of graphs. Surprisingly, isolating those particular 
conjectures and examining their associated counterexamples revealed patterns 
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(in most cases) that allowed us to conclude just the opposite: that an infinite class of 
counterexamples exist. In this section we demonstrate the process by generalizing four 

of the conjectures taken from Section 2.4. 

3.1. Conjecture 107 

Conjecture 107. Mode of distance ,%< radius (even regular graphs). 

Motivated by the first given counterexample to this conjecture in Section 2.4, we 

now show that the graph G R in Fig. 9 is a counterexample for each even positive 

integer R. 

Lemma.  The graph GR is even regular for each even positive integer R. 

Proof. Locally on the labeled path R, R -  1 . . . . .  l, a, b each vertex begins R/2 + 1 

even-length subpaths. Furthermore, there are 3- R/2 even-length minimal paths from 

each labeled vertex to the set of nonlabeled vertices. Therefore these graphs are even 

regular by symmetry. [] 

Lemma.  The graph GR has R + 1 as the mode of its distance matrix for each even 
positive integer R. 

Proof. The frequency of R + l, denoted by freq(R + 1), in the distance matrix is 

4 + 4(3(R - 1) + 4) = 12R + 8 where there are four paths from vertex b, 3(R - 1) 
paths from vertices l, 2 . . . . .  R - 1, and four more paths from vertex R. 

The frequency ofk  > R + 1 is 2(24)(R - (k - (R + 1))) = 24R - 12k + 12 where we 
counted the paths between two of the four long branches. One now sees that 

24R - 12k + 12 < 24R - 12(R + 1) + 12 = 12R <freq(R + 1) for all k > R + 1. 

I 

Fig. 9. The graph GR. 
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The frequency of 2 ~< k ~< R is 4(2(R + 2 - k)) + 2(2*)(k - 1) = 8R + 4k + 4 where 
the first term represents the paths local to the labeled vertices and the second term 
counts paths through vertex a to a nonlabeled vertex. We also have 8R + 4k + 4 < 
8 R + 4 R + 4 = 1 2 R + 4 < f r e q ( R + l )  foral l2~<k~<R. 

The case for k = 1 is trivial (4R + 1 <freq(R + 1)). Hence R + 1 is the mode of the 
distance matrix for the graph GR. [] 

Combining the previous two lemmas with the fact that the graph GR has radius 
R completes the proof of the claim that GR is a counterexample to Conjecture 107 for 
each even positive integer R. 

3.2. Conjecture 293 

The separator is defined to be the difference between the largest and the second 
largest eigenvalue of the adjacency matrix. The derivative of the positive eigenvalues is 
defined to be a vector whose ith component is P'(0 = p(i + 1) - p(/), where p is the 
vector of positive eigenvalues sorted in increasing order. 

The next conjecture led to the discovery of a class of graphs in which the minimum 
derivative of the positive eigenvalues equals the separator and can be made arbitrarily 
large while keeping the ratio of size to independence bounded by a constant. 

Our initial counterexamples for the next conjecture follow Bondy and Murty [1], 
who consider the girth of acyclic graphs infinite. Graffiti, on the other hand, considers 
the girth of acyclic graphs undefined and hence excludes trees from consideration. At 
the end of this section, we point out how most graphs with cycles can be extended to 
counterexamples which Graffiti does accept. 

Conjecture 293. The minimum of the derivative of the positive eigenvalues ~< 
size/independence (graphs with girth ~> 5). 

Motivated by the first two trees given in Section 2.4 as counterexamples to this 
conjecture, we now show that the tree in Fig. 10 is a counterexample for each integer 
n>~10. 

Proof. Label the vertices so that the first n - 2 of them is a maximal (in fact, the 
maximum) independent set, the motivation being that the adjacency matrix A will be 
almost triangular. 

After a few row operations, A -  21 can be triangulated and the determinant 
obtained by simply taking the product of the diagonal elements. The characteristic 
equation is then given by 

(_~).-2 I ~ ]  [24 + (1 -- n)'~2 + (2n -- 
~-(5 _-- -~T ) 7 ) ] = 0 ,  or 

2n-4124 + (1 -- n)2 z + (2n -- 7)] = O. 
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n-2 

n-1 

n-3 

n 

1 2 3 n-4 

Fig. 10. 

Noting that the fourth-degree term is quadratic in 2 2, we find that 2 = 0 is a root of 
multiplicity n - 4 and that the other four roots are the roots of 

(n - 1) + x/n 2 - 10n + 29 
22 

2 

The only two positive eigenvalues are 

21=~ (n-1)+x/n2-10n+292 and 2 2 = x / ( n - 1 ) - x / ~ 2 - 1 0 n ' 2 9  

Thus the minimum derivative of the positive eigenvalues is the separator, the differ- 
ence between the two largest eigenvalues. 

Since 

2 1 > x / ( n - 1 ) + x / ~ - 5 ) 2 = : - 6 2 _  = x / n -  3 and 

2 

21 - 22 > x / ~ -  3 - ~ x ~  - 1  

Thus the minimum derivative of the positive eigenvalue can be made arbitrarily large. 
The claim that this can be done while keeping the ratio of size to independence 

bounded by a constant is now elementary since the graphs in question are trees with 
independence = n - 2. So size/independence = (n - 1)/(n - 2) = 1 + 1/(n - 2) <~ 9 
for n >/10. After substituting n = 10 in the lower bound given for the separator, we see 
that for all n >110 the minimum derivative of the positive eigenvalues = 

21 - 22 > f 3 - x / ( x / ~ -  1)/2 > ] >1 size/independence. [] 
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Adding isolated vertices to a graph only increases the number of zero eigenvalues: 
i.e. the derivative of the positive eigenvalues remains unchanged. Since the size of 
a graph is defined to be the number of edges of the graph, it too remains unchanged 
when isolated vertices are added. It follows that any graph of girth /> 5 with at least 
two positive eigenvalues (so that the derivative of the positive eigenvalues is well- 
defined) and with no two positive eigenvalues the same (so that the minimum of the 
derivative is nonzero, and hence positive since the eigenvalues are sorted in increasing 
order) can be extended to be a counterexample of Conjecture 293 by adding isolated 
vertices. For example a 5-cycle can be extended to be a counterexample by adding 12 
isolated vertices. 

3.3. Conjecture 551 

C o n j e c t u r e  551. The maximum of the mid-degree sequence ~< the mean of the dual- 
degree sequence. 

Referring to the first three counterexamples given for this conjecture in Section 2.4, 
a pattern is evident. Generalizing these graphs, we now show that the graph G, in 
Fig. 11 is a counterexample for each integer n >_- 8: 

P r o o f .  Note that the vertices of G, have been labeled so that its degree sequence 
. - - 2  

{ n -  1 , n -  1, 2, . . . ,2 } is in decreasing order as is required when computing the 
mid-degree sequence. After two steps the derived sequence has all components equal 
0, and hence the depth equals 2. It follows that the mid-degree sequence is given by 

. - 2  

{n - 2, l . . . . .  1 } and that the maximum of the mid-degree sequence is n - 2. 
Since the dual-degree sequence is the vector whose ith component is the mean of the 

degrees of the neighbors of vertex i, the mean of the dual-degree sequence of G, is 
given by 

2 1 2 ( n -  2) + ( n -  1) ] + (n 2)(n 1) 
n - -  1 - - n 3 - 4 n  2 + l l n  - 12 

, o r  
n n ( n -  1) 

So the maximum of the mid-degree sequence is greater than the mean of dual-degree 
sequence when 

n - 2 >  
n 3 -- 4n 2 + l ln  -- 12 

n(n- 1) ' 

or when n 2 -  9n + 1 2 >  0. Therefore, G, is a counterexample for each integer 
n > ~ 8 .  [ ]  
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1 2 k 

Fig. 11. The graph G.. Fig. 12. The graph TE. 
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3.4. Conjecture 581 

Conjecture 581. The order - frequency of mode of mid-degree sequence ~< indepen- 
dence (trees). 

While there are only six trees with 10 or fewer vertices that fail this conjecture, an 
infinite class of counterexamples can be constructed as shown in Fig. 12, provided 
that k is an even positive integer for the tree Tk. 

Proof. Note that the order of Tk is n = 2" k + 2. These trees have independence equal 
to k + 1 since the k + 1 vertices of degree one form an independent set and are 
each incident to an edge of a perfect matching. The sorted degree sequence 

k k + l  

{k + 1,2, . . . ,2 ,  1 . . . . .  l} of Tk has depth k + 1 and yields { l . . . . .  1 ,0 , . . . ,0}  as the 
mid-degree sequence. (By definition the mid-degree sequence is found after I-depth/2-] 
derived operations.) The frequency of the mode of the mid-degree sequence is k. Hence 
(2. k + 2) - k ~ k + 1 for the tree Tk when k is an even positive integer. [] 

4. Conjectures with 10 or more counterexamples 

We now list those conjectures for which we found a relatively large number of 
counterexamples during our exhaustive search of the over 12 million nonisomorphic 
graphs with 10 or fewer vertices. Although in each instance we display only one 
counterexample (displayed in Fig. 13), Table 2 contains the total number of counter- 
examples found as well as the value of the terms for the displayed graphs. Recall that 
the terms are defined in the glossary. 

Conjecture 187. The mode of eigenvalues of Laplacian ~< n - independence (graphs 
with sum of odd vector ~< sum of even vector). 
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Conjecture 187 

Conjecture 342 

Conjecture 365 

Conjecture 566 

Y 
Conjecture 691 

Conjecture 189 Conjecture 305 

Conjecture 401 

Conjecture 570 

Cxmjeetu~ 711 

Conjectures 722 and 727 

Conjecture 344 

Conjectures 580, 591 and 666 

Conjecture 715 

Conjecture 723 

Conjecture 307 

Conjecture 357 

Conjecture 564 

I I 
Conjecture 672 

¢, 
Conjecture 719 

v v 

Conjectures 726 and 728 

Fig. 13. Sample counterexamples for conjectures with 10 or more counterexamples. 

Conjecture 189. The mode of the eigenvalues of Laplacian ~< the number of nonposi- 
tire eigenvalues (graphs with sum of odd vector ~< sum of even vector). 

Conjecture 305. The inverse of dual-degree sequence ~< the number of nonnegative 
eigenvalues (graphs with distance rank < rank). 
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Table 2 
The value of the terms associated with the counterexample (of Fig. 13) given for each of the conjectures with 
10 or more counterexamples 

Conjecture Number of 1st term 2rid term 3rd term 4th term 5thterm 
counterexamples a 

187 3154 4 7 4 24 25 
189 5116 4 3 16 20 
305 16 3.0738 3 6 8 
307 13 1.5333 10 6.6323 9 10 
342 268 9 8 3 3 
344 469 8.4772 8 3 3 
357 135 31 10 14 5 5 
365 l0 l0 0.1875 44 6 6 
401 1081 8.2448 8.0741 2 
409 3860 5 4 4 4 
564 415 5 4 
566 20 2.7913 2.5 
570 12 6 4 1 
580 18 6 2 
591 17 2.3333 2 
666 345 2.3333 2 18 18 
672 206802 6 2 2 18 18 
691 63 2.0667 2 18 18 
711 2794 6 5 
715 37 2.1889 2.1667 
719 2098 2 1.7143 0 
722 97291 9 -6.1160 2 
723 15 7 3.9881 3 
726 1718371 3 0.6667 2 
727 47661 3 0.1160 2 
728 58259 3 0.5 2 

"Due to numerical roundoff, the individual counts may be slightly off. However, all counterexamples 
displayed in Fig. 13 have been verified by hand. 

Conjecture 307. The average distance ~< order/largest eigenvalue (graphs with dis- 
tance rank < rank). 

Conjecture 342. The maximum degree ~< the rank of distance matrix (plants). 

Conjecture 344. The maximum eigenvalue ~< the number of the negative eigenvalues 
of distance matrix (plants). 

Conjecture 357. The size - the order ~ the number of nonedges (geotropic plants). 

Conjecture 365. Size/separator ~< sum of odd vector (geotropic plants). 

Conjecture 401. The minimum derivative of the positive eigenvalues ~< mean of 
gravity matrix (graphs with independence ~< 2). 
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Conjecture 409. The scope of degree sequence ~< maximum of even vector (graphs 
with the number of negative eigenvalues ~< number of positive eigenvalues). 

Conjecture 564. The frequency of the mode of the eigenvalues of Laplacian ~< the 
frequency of the mode of degree sequence (connected graphs). 

Conjecture 566. The second largest eigenvalue ~< the mean of even vector (connected 
graphs). 

Conjecture 570. The number of positive eigenvalues - the number of negative eigen- 
values ~< the minimum of even vector (connected graphs). 

Conjecture 580. (Order - 1)/2 ~< the frequency of the mode of 1-residue vector (trees). 

Conjecture 591. The average distance ~< the frequency of the maximum of 1-residue 
vector (trees). 

Conjecture 666. The average distance ~< the frequency of the maximum of 1-residue 
vector (graphs with sum of even vector ~< sum of odd vector). 

Conjecture 672. Order/independence ~< the frequency of the mode of even vector 
(graphs with sum of odd vector ~< sum of even vector). 

Conjecture 691. The average distance ~< the mode of even vector (graphs with sum of 
odd vector < sum of even vector). 

Conjecture 711. The range of deficiency vector ~< the range of eigenvalues. 

Conjecture 715. The scope of nonpositive eigenvalues ~< the mean of degrees greater 
than or equal to the average degree. 

Conjecture 719. The mean of dual-degree sequence - mean degree sequence ~< scope 
of dual-degree sequence. 

Conjecture 722. The number of nonpositive eigenvalues + the sum of the reciprocal 
of negative eigenvalues ~< independence. 

Conjecture 723. The number of nonpositive eigenvalues - the sum of the temper- 
ature vector ~< independence. 

Conjecture 726. The number ofnonnegative eigenvalues - the mean ofnonnegative 
eigenvalues ~< independence. 
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Conjecture 727. The number of nonnegative eigenvalues - the sum of the reciprocal 
of positive eigenvalues ~< independence. 

Conjecture 728. The number of nonnegative eigenvalues + the sum of the reciprocal 
of negative eigenvalues ~< independence. 

5. Theorems 

This section contains some results about four of Graffiti's conjectures, namely 
Conjectures 128, 158, 539, and 717. 

5.1. Conjecture 128 

Conjecture 128. The second smallest eigenvalue of Laplacian ~< n/average distance. 

For  a graph of order n let 0 ~< 22 ~< ..- ~< 2. be the eigenvalues of the Laplacian and 
let avoo denote the average distance. 

Lemma. I f  ½2,1n(2n - 2) ~< n - 2 2 and 2 2 ¢ 2 n then 2 2 ~ n/avgo. 

Proof. By the main result in [4], the diameter D of any graph satisfies the following: 

D~< 
cosh- a (n - 1) 

+ 1 .  

From this bound and the identity cosh-X(x) = ln(x + x /x  2 - 1), x >f 1, we have 

D ~< ln(n - 1 + x/(n - 1) 2 - 1) ln(2n - 2) 
+1~< + 1 .  

- -22/2 .  + ] - - -22 /2 . /  - 1 In 1 - 2 1 1 2 . ]  

Using the Taylor's series expansion In((1 + x)/(1 - x)) --- 2(x + x3/3 + x5/5 + ...), we 
find that 

l n ( 2 n -  2) 1 l n ( 2 n -  2) 
+ 1 .  

Hence if ½ 2. ln(2n - 2) ~< n - 22, then D ~< (n - , ~ . 2 ) / 2 2  + 1 ~-- n/22. Finally, after 
rearranging terms, 22 ~< n/D <~ n/avow [] 

Theorem. For a fixed maximum deoree, there exist at most a finite number of counter- 
examples to Conjecture 128. 
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Proof. Assume we have a connected counterexample of order n, minimum degree 6, 
and maximum degree A. 

If 22 = 2~ then the graph must be a complete graph K~ (exercise for reader). We 
know from [10] that 22 ~< (n/(n - 1))6, which means for 6 = n - 1, 22 = n ~ n /area .  

So Conjecture 128 holds when 22 = 2~. 
If 22 # 2~ then using the restriction n - 2~ < n - 22 < ½2~ ln(2n - 2) from the 

above lemma, along with fact that 2, ~< 2/I (see [10]), the following holds: 

n 
n ~< ½2,ln(2n - 2) + 2~ ~</1(ln(2n - 2) + 2), or ~</1. 

ln(2n - 2) + 2 

Thus n is bounded when/1 is fixed, and it follows that there can be at most a finite 
number of counterexamples within the graphs with maximum degree/1. [] 

Remark. Again using the fact that 22 ~< (n/(n - 1))6 while comparing Conjectures 62 
and 128, 

n n 
av#o <~ --~ and avao <~ -~2' 

we see that Conjecture 62 implies Conjecture 128 for all irregular graphs. 

5.2. Conjectures 158 and  539 

We give characterizations for when equalities hold for two of the conjectures 
proved by Fajtlowicz. 

Conjecture 158. For each graph G the minimum degree ~< n - independence. 

It is straightforward to prove the inequality. In general, equality holds if and only if 
the complement of G has a component consisting of a clique and all other components 
(if any) have maximum degree less than or equal to that of the degree of the clique. 
This claim is easily seen from the following elementary proof of the inequality of 
Conjecture 158. 

Proof. For any graph H, clique ~< maximum degree + 1. Hence n - maximum degree 
of H - 1 ~< n - clique of H. But this says that the minimum degree of H complement 

n - independence of H complement. Finally take G to be H complement. [] 

Now consider the following conjecture. 

Conjecture 539. For every graph G the minimum degree ~< size/independence. 

Let 6 denote the minimum degree. For this conjecture, equality holds if and only if 
G has a maximal independent set that is regular of degree 6 and that edge covers G. 
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Proof. Say independence equals k, and I = {vl, v2 . . . . .  Vk} is a maximal independent 
set. Then since none of the v:s are adjacent to each other and since the degree of 
each v~ is at least 6, the number of edges of G >~ k'6. That is, minimum de- 
gree = 6 <~ IE(G)I/k = size/independence. Clearly equality holds if and only if the 
edges incident to the v:s are the only edges of G and each v~ has degree 6. [] 

Two of our observations regarding Conjecture 539 are listed below. The simple 
proofs may be found in our technical report [2]. 

Observation 1. If a graph has minimum degree = size/independence, then it is bipartite. 

Observation 2. A regular graph has minimum degree = size/independence if and only 
in independence = n/2. 

5.3. Conjecture 717 

We believe that we were the first (see [5]) to prove the following conjecture. 
A similar proof was published by Favaron et al. [9]. The proof depends upon the fact 
that x + 1/x >/2 for any positive x. 

Conjecture 717. The mean degree ~< mean of the dual-degree sequence. 

Proof. For a vertex u let N(u) denote the set of vertices adjacent to u. Then the mean 
dual-degree sequence is given by 
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Dedication 

This paper is dedicated to the memory of Tony Brewster who died suddenly on 
8 September 1993. His death was a great tragedy and we will all miss his energy, 
dedication and love for mathematics. 

Glossary 

Adjacency matrix. The usual n x n matrix for a graph of order n where the i, j th entry 
is 1 if the graph contains the edge (i,j) and is 0 otherwise. 

Average of a matrix. The average of the entries above the diagonal. 

Average of a vector. The average of the components. 

Deficiency vector. The vector whose ith component is the number of nonedges in the 

graph induced by the neighbors of vertex i. 

Degree sequence. The vector whose ith component is the degree of vertex i. 

Depth. The number of derived operations required on the degree sequence to obtain 
a vector of zeros. 

Derivative of a vector V. The vector V' obtained from Vby first sorting it in increasing 
order and then setting V'(i) = V(i + I) - V(i). 

Derived operation. The following operation on a vector sorted in decreasing order: if 
p is the largest component then delete this first component and subtract 1 from the 
p following components. 

Distance matrix. The usual distance matrix whose i, jth component is the number of 
edges in the shortest path from vertex i to vertex j. 

Dual-degree sequence. The vector whose ith component is the mean of the degrees of 
the neighbors of vertex i. 

Eigenvalue(s). Unless otherwise specified, the eigenvalue(s) of the adjacency matrix of 
the graph. 

Even vector. The vector whose ith component is the number of vertices an even 
distance (including zero) from vertex i. 
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Even regular. A graph in which each component of the even vector is the same. 

Girth. The length of the smallest cycle of a graph; in the case of no cycles the girth is 

considered infinite. 

Gravity matrix. The matrix (indexed by vertices of the graph) whose u, vth entry 
is 0 if u = v  or if there is no path joining u to v; otherwise it is 
(1/(n - 1))(deg(u)" deg(v))/d(u, v), where deg(v) denotes the degree of v and d(u, v)is the 

distance from u to v. 

Geotropic plant. A graph in which independence equals the number of nonpositive 
eigenvalues. 

Harmonic. The sum of the weights over all the edges, where the weight of an edge 
incident with vertices of degree p and degree q is taken to be 2/(p + q). 

Heliotropic plant. A graph in which independence equals the number of nonnegative 
eigenvalues. 

Independence. The size of the largest independent set, where an independent set is 
a set of vertices with no edges between any two vertices in the set. 

Inverse (of a vector). The sum of the reciprocals of the nonzero components. 

Laplacian. The matrix (indexed by the vertices of the graph) having the degree of 
vertex v on the corresponding entry of the diagonal, a negative one if the correspond- 
ing vertices are adjacent and a zero otherwise. 

Length (of a vector). The square root of the sum of the squares of the components. 

Mean of a vector. See average of a vector. 

Mean of a matrix. See average of a matrix. 

Mid-degree sequence. The vector obtained from the degree sequence by repeating the 
derived operation depth/2 (rounded up) manY times. 

Mode (of a vector). The component which occurs most often; in case of ties, take the 
smallest component. 

n. See order. 

Nonedge. A two-element independent set. 
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Odd vector. The vector whose ith component is the number of vertices an odd 
distance from vertex i. 

Order. The number of vertices of a graph. 

Plant. A graph in which independence equals the minimum of the number of non- 
negative and the number of nonpositive eigenvalues. 

Radius. The minimum eccentricity of the vertices, where the eccentricity e(v) of vertex 
v in a connected graph G is max d(u, v) for all u in G. As usual d(u, v) is the distance 
from vertex u to vertex v. 

Range (of a vector). The number of distinct components. 

Rank. Unless otherwise specified, the rank of the adjacency matrix. 

Regular. A graph in which each vertex has the same degree. 

1-residue vector. The vector obtained by repeating the derived operation until all 
components are less than or equal to 1. 

Scope (of a vector). The difference between the largest and the smallest components. 

Separator. The difference between the largest and the second largest eigenvalue of the 
adjacency matrix. 

Size. The number of edges of a graph. 

Sum of a matrix. The sum of the entries above the diagonal. 

Sum of a vector. The sum of the components. 

Temperature vector. The vector whose ith component is d/(n - d), where d is the 
degree of vertex i and n is the number of vertices of the graph. 

Transmission (ofa matrix M). The vector whose components are the sums of the rows 
of M. 
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