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ABSTRACT
Many program analysis techniques used by compilers are
applicable only to programs whose control flow graphs are
reducible. Node-splitting is a technique that can be used to
convert any control flow graph to a reducible one. However,
as has been observed for various node-splitting algorithms,
there can be an exponential blowup in the size of the graph.

We prove that exponential blowup is unavoidable. In par-
ticular, we show that any reducible graph that is equivalent
to the complete graph on n nodes (or to related bounded-
degree control flow graphs) must have at least 2n−1 nodes.
While this result is not a surprise, it may be relevant to
the quest for finding methods of obfuscation for software
protection.

Categories and Subject Descriptors
D.3 [Programming Languages]: Processors

General Terms
Algorithms, Security, Languages, Theory

Keywords
Compilers, computational complexity, programming languages,
safety/security in digital systems

1. INTRODUCTION
Control flow graphs [1] are frequently used in optimizing

compilers as the basis of program analysis and optimiza-
tion. Intuitively, a control flow graph of a program is a
directed graph that represents the program’s potential flow
of control. Reducible flow graphs, defined in Section 2, are
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a subclass of control flow graphs that include all those de-
rived from “structured” programs, i.e., programs generated
using a restricted set of constructs such as if-then-else,
while-do, continue and break. Many static analyses [1,
13] either require the code to have a reducible flow graph, or
may be too costly to analyze when applied to a large, irre-
ducible graph. As noted in [13], reducible flow graphs allow
a “divide-and-conquer” approach (such as interval analysis)
which reduces the complexity of the analysis. Nevertheless,
irreducible flow graphs do arise, often through the use of go
to constructs, and must be handled by optimizing compil-
ers. They also appear in the machine code generated by
some optimizing compilers.

The most commonly used technique1 for handling irre-
ducible flow graphs is node-splitting [1, 13, 2, 9]. This
technique eliminates “unstructured” program constructs by
making duplicate copies of selected nodes in the control flow
graph. Figure 1 gives an example.

As has been observed in the literature that for various
node splitting algorithms, there is an exponential blowup in
the size of the program or flow graph.2 However, there are
different ways to choose which nodes to split, and to choose
an order of splitting these nodes [14, 16]. This leaves open
two questions, which we have been unable to find answered
in the published literature.

• Is it possible that some (perhaps as yet undiscovered)
node splitting algorithm avoids exponential blowup?

• Is it possible that for any flow graph, there is an equiv-
alent, reducible flow graph (even one that might not
be the result of a node splitting algorithm) that avoids
exponential blowup?

This paper answers both questions negatively. Although this
will not come as a surprise to people familiar with the field,
it fills in a gap that has been considered “folklore”. Until
now, there was little concern about the possible blowup,
since it has often been observed that most programs written
by humans are reducible [1]. However, we are motivated to

1Another technique adds extra predicate variables to guard
statements in a loop, e.g. [5, 6, 12, 4]. Although the resulting
program is in some sense the same, it is not “equivalent” in
the technical sense defined later in this paper. Thus, our re-
sults do not apply to such program restructuring techniques.
2See, for example, [1], p. 680 and [15], p. 197.
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b: y = ...

e: if (cond) goto b

goto a
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e: if (cond) then

      y = ...

      x = ...

      y = ...

while (T) {

}

Figure 1: On the left is an “unstructured” program and the corresponding irreducible control flow graph.
The right figure is an equivalent “structured” program and its (reducible) flow graph.

take another look at this question by our interest in software
obfuscation [10, 11].

A software obfuscator is an automatic technique that trans-
forms programs into functionally equivalent variants that are
more difficult to understand or analyze [10, 11]. Obfusca-
tion can be shown to be theoretically “impossible” [7], given
enough computational power and memory. This has not de-
terred attempts to construct obfuscators that have embed-
ded instances of hard problems. For example, [8] shows that
an instance of a PSPACE-hard problem may be embedded in
the control flow of the obfuscated program. As another ex-
ample, [17] introduce additional variable aliases by indirect
addressing, making control flow difficult to determine. This
latter work uses the fact that alias detection is an NP-hard
problem.

We, too, have explored making the control flow of a pro-
gram harder to analyze. A resourceful attacker can be ex-
pected to attempt to automatically decompile the target
code, and to perform other automated analyses. As noted
in [8], such automatic analysis can statically obtain global
information about the structure of the program, enabling re-
verse engineering. Thus, our hope is to defend against this
attack by obfuscating the control flow (or data flow) of the
original program. This can be done by adding extra edges
to make the control flow graph irreducible. This can be ac-
complished by inserting extra conditional branches into the
program. If the conditional branches use values not known
until run time, or perhaps use mathematical identities that
are beyond the scope of an optimizing compiler to verify,
then static analysis would be unable to eliminate them.

While we were able to develop techniques for construct-
ing a complete (irreducible) flow graph from the original
flow graph of a program, thus confounding static analysis,
we were unable to find techniques that couldn’t easily be un-
scrambled by symbolic execution or by analyzing a runtime
trace.

Our main result is that for any code whose flow graph is
equivalent to the complete graph with n nodes, any equiv-
alent reducible flow graph must have at least 2n−1 nodes.
A reducible flow graph of exponential size is unlikely to be
of much use to an attacker. Starting with a program of
modest size, the reducible equivalent may not even fit in a
computer’s memory, and its sheer mass will frustrate any
human’s attempt to “understand” what the code is doing.

2. REDUCIBLE FLOW GRAPHS
The term reducible flow graph,3 originally defined in [3],

means that the graph can be reduced to a single node by
a sequence of applications of the two transformations, T1

and T2, shown in Figure 2. In the context of data flow
analysis, flow graphs are annotated with information on the
nodes (such as “There is an assignment to X and a use of
Y in this block of code.”) Many data flow algorithms work
by manipulating this information appropriately as the graph
is reduced via T1 and T2, producing summary information
about the program (such as “The assignment to X in Block
3 is used in Blocks 4 and 8,” and “The use of Y in block
3 may be uninitialized”.) The details of these algorithms
need not concern us; however, they motivate the following
definitions:

Definition 1. A flow graph is a directed graph with
a distinguished initial node n0, together with a function L
that assigns to each node of the graph a label chosen from
an alphabet U . The labels need not be unique.

Definition 2. A finite string of labels s is said to be pro-
duced by a flow graph G if s = L(n0)L(n1)L(n2) . . . L(nk)
where n0, n1, n2..., nk is a path in G beginning with the ini-
tial node. L(G) denotes the language of G, i.e. the set of
strings produced by G.4

Definition 3. Two flow graphs G1 and G2 are equiva-
lent if L(G1) = L(G2).

For example, the two flow graphs of Figure 1 are equiva-
lent. In general, node splitting techniques transform an arbi-
trary flow graph into an equivalent reducible flow graph. We
note that flow graphs and the set of strings they produce are
very similar to finite automata and regular languages — the
difference is that flow graphs have labeled nodes, whereas
finite automata have labeled edges. In fact, the language of
a flow graph G is regular,5 but flow graphs produce more

3There are several equivalent definitions of reducible flow
graph; see [13, 1, 14].
4We “overload” the symbol L to mean, in different contexts,
the label of a node, the language of a flow graph, or other
ways of associating a set of strings to various objects (such as
leftist trees or annotated flow graphs) that will come later.
5If the label of each node is put on each outgoing edge, the
resulting finite automaton produces L(G).
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Figure 2: Two transformations used to simplify flow graphs. T1 eliminates self-loops. T2 merges a single-
entry node into its parent. If there is an arc from the child back to the parent, it becomes a self-loop. A
graph G is reducible if repeated applications of T1 and T2 reduce G to a single node.

restricted languages — for instance, every string in L(G)
must begin with the label of the initial node.

Before continuing with our study of flow graphs, we intro-
duce leftist trees, which provide another way of producing
a set of strings. We then prove a lower bound on the size
of any leftist tree that produces the set of all strings over a
given alphabet that begin with a given symbol. This result
will allow us to prove a similar result for flow graphs.

3. LEFTIST TREES
A leftist tree T is simply a rooted binary tree (i.e., each

node has either zero or two children), with labels on the
leaves. |T | denotes the number of nodes in T . We let Tl and
Tr denote the left and right subtrees6 of T . Note that Tl and
Tr are either both empty or both non-empty. Define nl(T ),
nr(T ) as follows: if T is a single node, both these denote
that node. Otherwise, they are “first” (leftmost) leaf of Tl

and Tr, respectively. Finally, let sl(T ) and sr(T ) be the
labels of nl(T ) and nr(T ), respectively.

Whenever the tree T is understood from context, we may
drop the “(T )” from our notation. Thus, for instance, Tl, nl,
and sl denote the left subtree of T (or T itself if |T | = 1),
the leftmost leaf of that subtree, and the symbol labeling
that leaf.

We now give a method of associating a set of strings with
a leftist tree. If P = p1p2 . . . pk is a non-empty sequence
of leaves of tree T , then we say P is a leftist leaf sequence
(LLS) of T if for all i < k, there exists a subtree Ti of T such
that pi ∈ Ti and pi+1 is either nl(Ti) or nr(Ti). Intuitively,
starting from pi, you can move up the tree as far as you want,
go down to either child, but then you must keep going left
until you get to the leaf pi+1. As an example, see Figure 3.
Given a LLS P = p1p2 . . . pk of T , we say a string of symbols
s = s1s2 . . . sk is produced by P if for i = 1, . . . , k, si is the
label of pi. Finally, we define the language of T , denoted,
L(T ), to be the set of strings produced by LLS’s in T that
start with nl(T ), the leftmost leaf of T .

The following three observations follow easily from the
definition of leftist leaf sequence.

6By a subtree we mean a node together with all of the nodes
that it is an ancestor of.
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Figure 3: For this tree, the sequence n0n2n2n1n0n1 is
a legal leftist leaf sequence, but n0n3 is not.

Lemma 1. If P is a sequence of leaves of a subtree T ′ of
T , then P is a LLS of T ′ if and only if it is a LLS of T .

Lemma 2. If p1 . . . pj and pj+1 . . . pk are LLS’s of T , and
pj+1 is either nl or nr, then p1 . . . pjpj+1 . . . pk is a LLS of
T .

Lemma 3. If p1 . . . pjpj+1 . . . pk is a LLS of T and pj+1

is in some subtree T ′ that doesn’t include pj, then pj+1 must
be nl(T

′).

We now can prove an alternate characterization of the set
of strings that are produced by a tree T .

Theorem 1. L(T ) can be expressed recursively by L(T ) =
sl(T )+ if |T | = 1 and L(T ) = L(Tl)(L(Tl) ∪ L(Tr))

∗ other-
wise.7

Proof. By induction on |T |.
(Base case) If |T | = 1, i.e., if T is a single node nl, then by

letting Ti = T , we see that any sequence of one or more nl’s
is a LLS starting with nl. Together these LLS’s produce the
language sl(T )+.

(Inductive step) Assume that the theorem holds for Tl

and Tr. Given any s ∈ L(Tl)(L(Tl)∪L(Tr))
∗, we can find a

LLS in Tl or Tr for each of the substrings that are implied
by this formula. By Lemma 1, these LLS’s are also LLS’s

7We use standard notation: if x and y are strings, then xy
is their concatenation; if A and B are sets of strings, then
AB represents the set {xy|x ∈ A, y ∈ B}, A∗ is the set of
strings that are the concatenation of zero or more strings in
A, and A+ = AA∗.



of T . Since each such LLS begins with either nl(Tl) = nl or
nl(Tr) = nr, their concatenation is an LLS by Lemma 2. It
is also clear that this sequence begins with nl. Thus, s is in
L(T ).

Conversely, suppose s ∈ L(T ). Then s is generated by a
LLS P of T that begins with nl. We can decompose P into
subsequences according to when P switches from Tl to Tr

or back again. By Lemma 1, these subsequences are SSL’s
of Tl or Tr. By Lemma 3, each such subsequence begins
with nl or nr. By the inductive hypothesis, they produce
substrings in L(Tl) or L(Tr). Since T begins with nl, the
first substring is in L(Tl). Thus s, which is the concatenation
of the substrings, is in L(Tl)(L(Tl) ∪ L(Tr))

∗.

A simple consequence of Theorem 1 is that for any leftist
tree T , L(T )+ = L(T ).

We need a few more definitions:

Definition 4. We say that “a string t is a suffix of L(T )”
if ∃s ∈ U∗ such that st ∈ L(T ).

Definition 5. Given an alphabet Σ ⊆ U , we say that “T
is Σ-complete” if ∀t ∈ Σ∗, t is a suffix of L(T ).

In our examples, the structure of a leftist tree T will be
presented using parentheses recursively. We write T = s if
T is a single node labeled by s, and T = (TlTr) if |T | > 1.
For example, T = (a(bc)) is a tree whose left subtree is a
and whose right subtree is (bc).

Example 1. Let T = (ab). Then L(T ) = a{a, b}∗, thus T
is Σ-complete for Σ = {a, b}.

Example 2. Let T = (a(bc)). Then L(T ) = a(a∗ ∪
b{b, c}∗)∗. The string ac is not a suffix of L(T ), so T is
not complete for Σ = {a, b, c}. However T is both {a, b}-
complete and {b, c}-complete.

Example 3. T = ((ab)(cb)) is {a, b, c}-complete.

Another example of a Σ-complete tree is shown in Fig-
ure 4.

Lemma 4. A string t is a suffix of L(T ) if and only if t
is produced by a LLS of T (with no constraint on the first
node of the LLS).

The only non-trivial part of the proof is to show that you
can construct a LLS from nl(T ) to the first symbol in the
string. This can be done by using the leftmost leaves of the
trees rooted at the nodes that form a path from the root of
T to the leaf corresponding the first symbol of t.

The next two lemmas provide insight into the structure
of Σ-complete trees.

Lemma 5. Given an alphabet Σ, if T is a Σ-complete tree
of minimal size, then its right subtree Tr is (Σ−sl)-complete.

Proof. By contradiction. Assume Tr is not complete
over the reduced alphabet (Σ − sl). Then there exists a
string u ∈ (Σ − sl)

+ such that u is not a suffix of L(Tr).
Because T is of minimal size, Tl is not Σ-complete, so there
exists a shortest string t in Σ+ that is not a suffix of Tl.
Let j and k be the lengths of t and u. Because T is Σ-
complete, we know that tu is a suffix of L(T ). Denote tu by
the string v = v1v2 . . . vj+k. By Lemma 4, there must be a
LLS p1p2 . . . pjpj+1 . . . pj+k of T that produces v.

We will derive a contradiction by considering where pj ,
the leaf corresponding to the last symbol of t, is. First,
suppose that pj ∈ Tr. For all i > j, vi �= sl, since vi is a
symbol in u and u contains no sl’s. Thus, applying Lemma 3
inductively tells us that for all i > j, pi must be a leaf of Tr.
But this would mean that the LLS pj+1 . . . pj+k produces u.
This contradicts that we chose u to not be a suffix of L(Tr).

On the other hand, suppose that pj ∈ Tl. By construction,
p1 . . . pj is not a LLS of Tl (since t is not a suffix of Tl), so
there must be some nodes of p1 . . . pj−1 in Tr. Choose m
to be the largest integer m < j such that pm ∈ Tr. This
ensures that pm+1pm+2 . . . pj is a LLS of Tl. Furthermore,
since pm ∈ Tr and pm+1 ∈ Tl, we must have vm+1 = sl by
Lemma 3. Now we use the fact that t is a shortest non-suffix
of Tl to conclude that there must be some LLS p′

1p
′
2 . . . p′

m

in Tl that produces t1t2 . . . tm. Now consider the sequence
p′
1 . . . p′

mpm+1 . . . pj . By construction, it is entirely in Tl and
it produces t. It also is a LLS by Lemma 2. Thus, we
conclude that t is produced by a LLS in Tl, which contradicts
the fact that it is not a suffix of Tl.

Lemma 6. Given an alphabet Σ, if T is a Σ-complete tree
of minimal size, then its left subtree Tl is (Σ− sr)-complete.

Proof. The proof is the same as for Lemma 5, with the
roles of Tl and Tr reversed. The abbreviated proof follows.

Suppose there were a string u ∈ (Σ − sr)
+ of length j

that is not a suffix of L(Tl). Tr is not Σ-complete, so there
is a shortest string t ∈ Σ+ that is not a suffix of Tl. Let
p1p2 . . . pjpj+1 . . . pj+k be a LLS of T that produces tu. pj

must be in Tr; otherwise, the remainder of the leaf sequence
would be stuck in Tl and produce u. We find m < j such that
pm+1 . . . pj is a LLS of Tr. The initial substring p1 . . . pm,
being shorter than t, has a LLS in Tr. Extending this LLS
with pm+1 . . . pj gives a LLS in Tr that produces t — a
contradiction.

Lemmas 5 and 6 enable us to prove a lower bound on the
size of Σ-complete trees.

Theorem 2. Let Sn be the minimal number of leaves in
a Σ-complete tree with |Σ| = n. Then Sn ≥ 2n−1.

Proof. By induction on n. The induction basis n = 1 is
established by noting that T = a is the minimal-sized tree to
generate the 1-symbol complete language L(T ) = a+. The
inductive step Sn ≥ 2Sn−1 is established by considering the
subtrees Tl and Tr for a Σ-complete tree T of minimal size
with |Σ| = n. By Lemma 6, the subtree Tl is (ΣT − sr)-
complete, so by the inductive hypothesis it has at least 2n−2

leaves. By Lemma 5, the subtree Tr is (Σ− sl) complete, so
by induction it has at least 2n−2 leaves. This gives us the
desired inequality.

Theorem 3. Sn = 2n−1.

Proof. A recursive construction will match the bound
of Theorem 2. Our basis, for alphabet Σ = {x1}, is the
one-node tree T = x1. We build a tree T with 2n−1 leaves
for alphabet Σ = {x1, x2, ..., xn} from a left subtree of size
Sn−1 with L(Tl) = x1(Σ − xn)∗ and a right subtree also of
size Sn−1 with L(Tr) = xn(Σ − x1)

∗. The resulting lan-
guage L(T ) is, by Theorem 1, L(Tl)(L(Tl)∪ L(Tr))

∗, which
is x1(Σ−xn)∗(x1(Σ−xn)∗∪xn(Σ−x1)

∗)∗ = x1(Σ)∗. Thus,
T is Σ-complete and has 2n−1 leaves.
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Figure 4: This tree is Σ-complete for Σ = {e, a, b, c}, and illustrates a recursive construction for such trees that
have 2n−1 leaves when Σ is an alphabet of size n.

4. EXPONENTIAL BLOWUP
Given a finite alphabet Σ of size n and e ∈ Σ, let KΣ,e be

the flow graph comprising the complete directed graph on
n nodes, where each node is labeled with a distinct element
of Σ and e is the label of the initial node. Let L(KΣ,e) be
the language produced by KΣ,e. It’s not hard to see that
L(KΣ,e) is the regular language eΣ∗, that is, the set of all
strings over Σ that begin with “e”. In this section, we will
prove the main result of this paper:

Theorem 4. If R is a reducible flow graph that is equiv-
alent to KΣ,e (i.e. that is, if L(R) = eΣ∗), then R must
have at least 2n−1 nodes, where n is the cardinality of Σ.

Proof. We first show how to associate a leftist tree T
with any reducible flow graph R. Each leaf of T will corre-
spond to a distinct node of R, and L(T ) will be a superset
of L(R). We do this by annotating each node ni of R with
a leftist tree Tni . As we reduce R using the transformations
T1 and T2, we will build up the trees that annotate the
nodes. By the time R has been reduced to a single node,
its associated tree will be the desired leftist tree. To each
intermediate annotated flow graph there corresponds a lan-
guage in the natural way — it is the set of strings of the
form s1s2...sk, where si ∈ L(Tni) and n1, n2, ... is a path
through the flow graph.

Over the course of the construction, the following invari-
ants will hold:

1. The language associated with the current annotated
flow graph is a superset of L(R).

2. There is a one-to-one correspondence between the nodes
of R and the leaves in a forest formed of all the leftist
trees in the annotations.

The first step of the construction is to annotate each node
ni of R with the leftist tree Tni consisting of a single (leaf)

node labeled by L(ni), the label of ni. It is easy to verify
that properties (1) and (2) hold initially.

Whenever a T1 (self-loop elimination) transformation is
applied to a node ni of an annotated graph, we don’t need
to adjust the annotations. Property (1) will still hold since
the only paths through the original flow graph that are no
longer paths of the transformed one include repetitions of
node ni, but the fact that L(Tn)+ = L(Tn) ensures that
arbitrary repetitions are represented even after eliminating
the self-loop.

A T2 transformation can be applied to nodes n1 and n2

only when the edge (n1, n2) is the only edge into n2. When
a T2 transformation is applied, we fuse the two nodes into a
single node and update its annotation as shown in Figure 5.

In any path through the pre-T2 flow graph, every oc-
currence of n2 must be immediately preceded by an n1.
Thus, for each substring si−1si where si−1 ∈ L(Tn1) and
si ∈ L(Tn2) that contributes to strings in the pre-T2 lan-
guage, that same substring will be included in L(Tn1/n2 in

the post-T2 flow graph. Thus, property (1) holds.8 Property
(2) also remains vaild throughout the construction because
the T1 and T1 transformations do not affect the total num-
ber of leaves in the forest of annotations. For example, in
Figure 6, the annotation forest always has four leaves (e, a, b,
and c).

Once we have reduced R to a single node via T1 and T2,
the annotation of that node is T , the leftist tree we asso-
ciate with R. As noted, L(T ) may contain strings not in
L(R). However, if R is equivalent to KΣ,e, then its lan-
guage already contains all strings starting with e. Thus,
L(T ) = L(R) = eΣ∗. By Theorem 2, T has at least 2n−1

leaves. Since there is a one-to-one correspondence between
the leaves of T and the nodes of R, the proof is completed.

8New strings may be have been added to the language; for
instance, in the example there was no edge from n1 to n4 or
from n2 to n3 before T2 was applied.
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Figure 5: After a T2 transformation, the annotation of the new fused node is a tree that has the old annotations
as its left and right subtrees.

In Figure 6, we show the steps of transforming the exam-
ple graph, resulting in its leftist tree.

Theorem 4 settles the two open questions posed in Section
1 negatively. In the next section, we will extend our results
to show that even flow graphs which have outdegree 2 suffer
from exponential blowup when converted to reducible flow
graphs.

5. LIMITING OUTDEGREE
Suppose ni is a node in a flow graph that has outdegree

k > 1. We can replace ni with a tree of k − 1 nodes, where
each node in the new tree has outdegree exactly 2. We begin
by creating a new tree of k−1 nodes in which the outdegree
of each node is at most 2, and each new node is given the
same label as the original node, L(ni). We direct the edges
of this new tree from its root towards its leaves. Now attach
all of the edges that went into ni to the root of this new
tree, and attach the k outedges that originally came from
ni to nodes in the new tree in a way that makes each node
has outdegree exactly 2. This construction is analogous to
implementing a multi-way “case” statement as a sequence of
binary branches. It doesn’t matter for our purposes whether
the tree is balanced or not.

Given KΣ,e, the complete flow graph on n nodes used
earlier, if we apply this procedure to every node, we will
obtain a flow graph JΣ,e that has n(n − 1) nodes, each of
outdegree 2. We will show that any reducible flow graph
that is equivalent to JΣ,e has at least 2n−1 nodes. Figure 7
shows this construction for Σ = {e, a, b, c}.

The language of JΣ,e is related to Σ∗ in that for each string
s = s1s2 . . . sk ∈ Σ∗, there is a string s′ = sr1

1 sr2
2 . . . skrk ∈

L(JΣ,e). In other words, the symbols of s can be duplicated
a certain number of times9 to produce s′.

We will show that any reducible flow graph that produces

9The number of repetitions depends on the method used for
expanding nodes of KΣ,e into binary trees.

L(JΣ,e) (or a superset thereof) must have at least 2n−1

nodes, where n is the size of Σ. We will do so by prov-
ing results similar to Lemmas 5 and 6 about the structure
of any reducible graph producing such a language. First, we
need some more definitions.

Given two strings u and u′, we say that u is a contraction
of u′ if u is the result of eliminating some adjacent duplicates
in u′. For instance, abbac is a contraction of aaabbacc.
However, abba is not, since a contraction must contain at
least one symbol from each string of duplicates.

Given a leftist tree T over an alphabet Σ, and a set of
strings S ⊆ Σ∗, we say that T covers S if for every s ∈ S,
there exists a suffix s′ of T such that s is a contraction of s′.

Lemma 7. Given an alphabet Σ, if T is a minimum-size
leftist tree that covers Σ∗, then its right subtree Tr covers
(Σ − sl)

∗.

Proof. By contradiction. Assume Tr does not cover (Σ−
sl)

∗. Then there exists a string u ∈ (Σ − sl)
+ such that u

is not a contraction of any suffix u′ of L(Tr). Because T is
of minimal size, Tl does not cover Σ∗. Consequently, there
exists a shortest string t in Σ+ that is not a contraction of
any suffix of Tl. Because T covers Σ∗, we know that tu is
a contraction of some suffix v of L(T ). We can therefore
write v = v1v2 . . . vjvj+1 . . . vj+k, where t is a contraction
of v1v2 . . . vj and u is a contraction of vj+1 . . . vj+k. By
Lemma 4, there must be a LLS p1p2 . . . pjpj+1 . . . pj+k of T
that produces v.

We need to handle a messy detail. It could happen that
for some i, vi = sl and pi+1 = nl.

10 Whenever this hap-
pens, we replace pi by nl. Notice that the modified string
. . . pi−1nlpi+1 . . . is still a LLS, since nl is allowed to follow
any node (and in particular pi−1), and nl to pi+1 is a valid

10This condition means that v has two adjacent occurrences
of the label of T ’s leftmost node, and the LLS that produces
v uses that leftmost node to produce the second occurrence.
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transition since they are the same node. After making as
many such substitutions as possible, we can assume with-
out loss of generality that whenever the sequence p1p2 . . .
moves from Tr to Tl, that is when pi ∈ Tr and pi+1 = nl,
then vi �= sl. We will need this property in a moment.

We can now mimic the proof of Lemma 5 to derive a
contradiction. Consider where pj , a leaf of T corresponding
to the last symbol of t, is in T . First, suppose that pj ∈ Tr.
Note that for all i > j, vi �= sl, since vi is a symbol in u and
u contains no sl’s. Thus, applying Lemma 3 inductively tells
us that for all i > j, pi must be a leaf of Tr. But this would
mean that vj+1 . . . vj+k is a suffix of L(Tr). Summarizing,
we know u is a contraction of the string u′ = vj+1 . . . vj+k,
and that u′ is a suffix of L(Tr). This contradicts how we
chose u.

On the other hand, suppose that pj ∈ Tl. By construction,
p1 . . . pj is not a LLS of Tl (since t is not a contraction of
a suffix of Tl), so there must be some nodes of p1 . . . pj−1

in Tr. Choose m to be the largest integer m < j such that
pm ∈ Tr. This ensures that pm+1pm+2 . . . pj is a LLS of Tl.
Furthermore, since pm ∈ Tr and pm+1 ∈ Tl, we must have
pm+1 = nl by Lemma 3. By the “messy detail” given above,
we can assume that vm �= sl. This ensures that the portion
t′ of t that is a contraction of v1 . . . vm is indeed shorter
than t. Now we use the fact that t is a shortest non-suffix of
Tl to conclude that there must be some LLS p′

1p
′
2 . . . p′

m′ in
Tl that produces a string that covers t′. Now consider the
sequence p′

1 . . . p′
m′pm+1 . . . pj . By construction, it is entirely

in Tl and it covers t. It also is a LLS by Lemma 2 and the
fact that pm+1 = nl. Thus, we conclude that t is covered
by a string produced by Tl, which contradicts how t was
originally chosen. QED

We can also prove this analog of Lemma 6

Lemma 8. Given an alphabet Σ, if T is a minimum-size
leftist tree that covers Σ∗, then its left subtree Tl covers (Σ−
sr)

∗.

Proof. The proof is the same as Lemma 7, with the
roles of Tl and Tr reversed. We note that the corresponding
“messy detail”, where L(ni) = sr and pi+1 = nr is handled
by replacing pi with nr. The resulting leaf sequence is still
an LLS since pr can legally follow any note in T .

We are now ready for our final result.

Theorem 5. If Σ is an alphabet of size n and R is a
reducible flow graph that is equivalent to JΣ,e (or more gen-
erally, if L(R) is a superset of L(JΣ,e)), then R has at least
2n−1 nodes.

Proof. Let T be the leftist tree associated with JΣ,e and
T ′ the tree associated with R, using the construction of The-
orem 4. We know that L(T ′) ⊇ L(R) ⊇ L(JΣ,e). Further,
we know that for every string s ∈ Σ∗, s is a contraction of
a suffix of a string in L(JΣ,e). Thus, T ′ covers Σ∗.

Using an induction proof as in Theorem 2, Lemmas 7 and
8 allow us to conclude that T ′ has at least 2n−1 leaves. Since
R has as many nodes as T ′ has leaves, this completes the
theorem.

6. CONCLUSION
We have formalized and proven a portion of the folklore

of compiler analysis. Some flow graphs, in particular the

ones equivalent to the complete flow graph, have no equiva-
lent reducible flow graph that is not exponential in size. In
particular, our results show that no node splitting technique
can avoid this exponential blowup.

While there has been little concern about such exponen-
tial blowup, since most programs written by programmers
are reducible [1], automatic compiler analyses would find
handling such large programs difficult. Such analyses either
require the code to have a reducible flow graph, or would
be very costly to analyze when applied to an irreducible
graph of very large size. Thus, a line of defense against re-
verse engineering of programs is to distribute code whose
flow graph is irreducible. Such code is unlikely to be eas-
ily automatically analyzable, and thus would be difficult to
reverse engineer.

We have already noted that the technique of adding guard
predicates to obtain a reducible flow graph from an irre-
ducible one is not covered by our results. However, this
technique may also considerably complicate program anal-
ysis. We leave it as an open question as to whether such
analysis can be shown to be provably hard.
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