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ABSTRACT
Virtual Environments are becoming increasingly popular outside
the area of entertainment and are now used for a diverse range of
applications such as education, training, simulation, urban design,
architecture and archaeology. One of the main challenges of us-
ing virtual environments is the high cost of creating content. While
there is a large variety of modelling tools available, they all require
training, usually have a steep learning curve, and even simple struc-
tures can take hours or days to model depending on the required
level of detail and the user’s experience. In order to make virtual
environments more accessible to a wider group of users the content
creation step needs to be simplified.

In this paper we present a framework for effectively and effi-
ciently creating virtual environments by integrating different me-
dia such as high resolution images and QuickTime VR movies into
game engines. Terrains and simple 3D content are modelled us-
ing sketch and paint-like interfaces. The QuickTime VR movies
are “fused” into the game engine environment providing a context-
and-focus view of different aspects of the scene.

We demonstrate the usefulness of our approach by creating an
archaeological virtual environment. The representation is much
easier to create than a detailed fully 3D environment. However, it
provides multiple advantages over traditional media for study and
exploration, e.g., collaboration, overview and detail views, and im-
proved perception of spatial and temporal relationships which is
essential for understanding the usage of an archaeological site.

Preliminary user studies indicate that the tool considerable facil-
itates the creation of virtual environments. Compared to traditional
3D worlds our environments are simpler, but due to the integration
of existing multimedia content they provide a similar amount of
information for exploring and understanding the simulated scene.
The QuickTime VR integration is virtually seamless and together
with the context provided by the 3D environment allows similar
types of navigation as for environments modelled entirely in 3D.
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1. INTRODUCTION
Virtual environments (VE) were initially motivated by military

applications with flight simulators being one of the most complex
applications. Since then the use of virtual environments has grown
exponentially and they have become an essential part in the en-
tertainment domain (e.g., computer games). Over the past decade
usage has expanded into virtually every application field includ-
ing education and training, e-commerce, engineering, scientific and
biomedical visualisation, social networking, urban design and land-
scape planning, visual impact studies, architecture and archaeol-
ogy [7, 8, 13, 16, 1, 22]. The dramatic improvement in graphics
hardware has made it possible to use virtual environments on con-
sumer level PCs. However, the creation of virtual environments is
still time consuming and usually performed by computer experts
and/or graphic artists.

A large variety of tools exist to support programmers and artists.
For general applications that includes modelling and animation soft-
ware such Maya, 3D Max or Blender. New game worlds can be
constructed using level editors and scripting support for modifying
and extending existing games. These tools are also suitable for non-
game applications, such as creating virtual medical training simu-
lations. However, content creation is time consuming and involves
a steep learning curve [24]. For several application domains special
tools have been developed to simplify content creation, e.g., for ur-
ban design procedural modelling has been used successfully [37].
Content creation for virtual worlds is now a big business with 3D
models and virtual characters available for purchase on the Inter-
net and in virtual environments such online games and “Second
Life” [22].

An important concept for simplifying content creation is Selec-
tive Fidelity: only components essential for the use and understand-
ing of the virtual environment must be recreated in high fidelity
whereas other components can be approximated or eliminated en-
tirely. Selective fidelity has been shown to dramatically reduce



costs while maintaining a simulator’s effectiveness [16]. Similarly
the amount of interactivity and narration can be adjusted accord-
ing to the application. However, in order to maintain immersion
and functionality of a virtual environment it is important to pro-
vide context and to enable the user to navigate reasonably freely
within the environment. Anders presents VEs as a space for per-
ception and cognition which spans physical presence, perceivable
representation and cognitive presence [2].

In many applications the usage of the virtual environment in-
volves mostly exploration and navigation tasks and limited interac-
tion with 3D models. Typical examples are archaeology, visual im-
pact studies, urban design and architecture. In such cases simplified
non-physical representations of objects are possible. Furthermore
for many of these applications there exist already a large amount
of content in the form of two-dimensional media such as images,
videos, GIS data and concept drawings. However, a simple collec-
tion of linked images and movies is not suitable for creating virtual
environments because it limits navigation and perception as dis-
cussed in the above paragraphs. Usability can be increased by “fus-
ing” images together as demonstrated in the Photosynth project [32,
33, 26]. The resulting representation allows navigation through the
simulated world and provides context in the form of surrounding
images, but does not create the feeling of being in a 3D environ-
ment and provides no opportunities for users to collaborate.

While multimedia content is information rich, it does not have
3D properties and is non-trivial to create in cases where no phys-
ical representation exists (e.g., a building which was destroyed or
is yet to be build). In such cases an input tool is necessary for
rapid prototyping of 3D structures. Sketch-based modelling has
been shown to be a suitable interface because the underlying pen-
and-paper metaphor is intuitive and effective.

In this paper we present a framework for effectively and effi-
ciently creating virtual environments by integrating different media
such as high resolution images and QuickTime VR movies into a
game engine. The QuickTime VR movies are directly fused into
the game engine environment providing a context-and-focus view
of different aspects of a site. 3D content is created using various
paint and sketch-like interfaces. The tool is suitable for applica-
tions simulating real sites where a large collection of media exists
already or can be easily created by the user.

Section 2 discusses technology choices. Section 3 presents the
design of our virtual environment rendering framework. Section 4
discusses how 3D content can be created using sketch-based in-
terfaces and section 5 provides implementation details. Section 6
demonstrates the use of our framework for the design of an archae-
ological virtual environment and section 7 summarises our results.
We conclude the paper with section 8 and provide suggestions for
future research.

2. TECHNOLOGY SELECTION
The goal of our research is to provide a tool for efficiently cre-

ating and exploring complex virtual environments. We analysed a
wide variety of 3D visualisation technologies [18] and found that
game engines fulfilled our requirements best since they are cheap,
are optimised for consumer level hardware, are frequently updated
to use the latest graphics technologies, provide intuitive interaction
tools, and have a large user base resulting in well tested and sta-
ble code. We eventually settled on Esperient Creator [11], as it is
highly flexible, has excellent tools, strong plug-in support, multi-
player support (for collaborative visualizations), has a free viewer,
is targeted at the development of non-game virtual environments
such as those we wish to support, and it is used in related projects
by our collaborators and us.

Most game engines, including Esperient Creator, support the in-
tegration of images and videos into virtual environments via static
or animated billboards and textures. However, images and videos
do not provide contextual information and are hence of limited use
for exploring and understanding a virtual environment. In order
to create a three-dimensional view of complex objects and scenes
without requiring modelling them we decided to integrate Quick-
Time VR movies.

QuickTime VR panoramas can be easily created from traditional
camera images using image stitching, or by using specialised pano-
ramic cameras. A wide variety of authoring tools are available
whose usage does not require any special expertise in modelling
or photography [5].

3. DESIGN

3.1 Virtual Environment Rendering
Framework

The virtual environment rendering framework combines an Es-
perient scene and a C++ plug-in, which allows the use of the Quick-
Time VR API and external scene definition files (figure 1). The data
model for the virtual environment is kept within the plug-in includ-
ing some data representing the program state. This makes the plug-
in code less engine-specific and permits the choice of more efficient
algorithms for manipulating data. It also makes it much simpler for
external systems, such as databases, to manipulate or access the
scene data, and to support remote data sources. Finally, having
program state data available within the plug-in itself makes deter-
mination of this state for the purposes of program control much
simpler and more efficient. The state of the Esperient scene itself
must “shadow” our own data representation so that the renderings
are consistent with the virtual environment view within our frame-
work.

The virtual environment scene file for the rendering framework
contains material such as terrain and buildings, templates for panora-
mas, user interface elements, and various animations (which are
generally activated from the C++ plug-in). Certain objects, such as
panorama templates, link to external scene files within our frame-
work and are run from there. Interactions within the virtual envi-
ronment must be consistent throughout the framework as explained
in subsection 5.1.

The C++ plug-in has been structured into a model layer and an
integration layer. The model layer contains the data forming the ab-
stract representation and state of the virtual environment (see sub-
section 3.2). It handles the loading of the site from XML files, and
the majority of the interaction with the QuickTime API. The model
layer contains no code specific to Esperient Creator; it is intended
to be agnostic of the game engine. This improves portability as
the model layer can be used as-is with any engine, and maintained
separately.

The integration layer handles the interaction between the model
layer and Esperient Creator and improves portability to other game
engines. This requires it to serve a role in both directions. Firstly,
when the model layer changes, it must translate those changes into
the Esperient scene. Secondly, when an event occurs within the
Esperient engine that may change the state of the abstract virtual
environment, the integration layer must process the event and notify
the model layer of the change. An example is given in figure 2. Any
engine-dependent aspects of a feature of the virtual environment
system are defined in the integration layer, e.g., procedures used to
add objects to a scene, or to determine the position and orientation
of the user’s viewpoint within the scene.



Figure 1: The structure of the virtual environment system. The
only new software required is our C++ plug-in integrating the
different components.

3.2 Virtual Environment Data Model
In order to enable dynamic scene generation, efficient data ac-

cess and manipulation, and interaction with other systems or APIs
we developed a custom data model. The data is imported from an
XML scene descriptor file which can be modified to reflect differ-
ent types of virtual environments. Our prototype has been devel-
oped for visualizing archaeological environments and contains de-
scriptors for terrains, large scale wall structures, buildings, seas and
rivers, panoramas, game objects and era objects (representing time
frames over for the existence of other objects). Scene components
can be created by importing existing models or creating new mod-
els such as terrains and city walls using efficient and easy-to-use
sketch and paint-like interfaces. Details are given in [18].

3.3 QuickTime VR Integration
In order to make QuickTime VR movies a natural part of a vir-

tual environment the following requirements must be fulfilled: the
implementation must make use of the resolution and detail present
in the original media; it has to allow immersive navigation between
panoramas using a first-person view; both panoramas and object
movies ought to be simple to find and use; and the behaviour of
panoramas should mirror the behaviour of the virtual environment
as a whole as closely as possible.

We conceived of three possible solutions. The first is simply to
launch a separate QuickTime player to handle the display of the
panoramas or object movies. This method, while simple and easy
to implement, addresses some of the requirements quite poorly. For
instance, it cannot be considered particularly seamless if the user
must manually close QuickTime and switch back to the virtual en-
vironment after viewing media. Furthermore, if the user starts a
panorama, turns the view by 180 degrees, and then returns to the
virtual environment, the user will be looking in a completely dif-
ferent direction. This can cause disorientation and impedes the in-
tention of the system to provide the user with a context when trav-
elling between successive panoramas on the site as it introduces a
disconnection between the view in the panoramas and the view in
the virtual environment.

The second solution is to extract the image data from the Quick-
Time VR panoramas for use within the Esperient Creator engine.

Figure 2: A sequence diagram illustrating how the model layer
is updated to reflect events within the Esperient Creator scene.
When an event occurs within the Esperient engine, e.g., viewing
an object represented by a QuickTime Object movie, then the
integration layer must determine what kind of event took place
and how it will affect the model layer. In this case an object
view is started, so the integration layer informs the model layer
of this event. The model layer proceeds to initialise state data
for the object view and passes control back to the integration
layer, which makes the appropriate changes to the Esperient
scene.

Panoramas within QuickTime VR are in fact implemented by map-
ping images onto the inside of primitive 3D objects; one image onto
a cylinder for a single-row (horizontal rotation only) panorama, or
six images onto a cube for a cubic (horizontal and vertical rotation)
panorama [3]. It is possible to extract this data and reproduce the
process using the game engine’s rendering component. However,
the solution is unnatural since it requires artificial scene compo-
nents which are invisible to other users.

We hence decided to display a built-in QuickTime VR “window”
within the virtual environment itself. Although this requires com-
plicated interactions between the Esperient and QuickTime APIs,
it allows both the seamless integration with the virtual environment
and the use of in-built QuickTime features. Like the second solu-
tion, it mimics the behaviour of the virtual environment as a whole,
ensures effective navigation and context between panoramas, and

Figure 3: The panorama marker object (left) and the Quick-
Time VR panorama screen (right).



displays QuickTime media in full detail. However, unlike the sec-
ond solution it also retains the capacity to make use of new features
in future versions of QuickTime.

Several design choices were considered for activating Quick-
Time VR panoramas while in the virtual environment. An au-
tomatic activation is possible, but would be distracting when ex-
ploring the scene. We decided to use a tripod-mounted camera as
a marker to indicate the presence of a panorama (figure 3, left).
When the user clicks this object, a window displaying the panorama
is shown (figure 3, right). Clicking and dragging on the screen
will rotate the panorama similarly to the interaction with a stand-
alone QuickTime player. Closing the window will return the user
to the virtual environment retaining the view orientation from the
panorama view.

Several other features were added to improve the system. The
QuickTime VR panorama does not fill the entire screen and the vir-
tual environment is shown in the region surrounding the panorama
window providing a visual context. The idea was motivated by the
“focus + context” technique in Information Visualization which has
been shown to significantly improve perception and understanding
of visualized data [10]. To ensure the two views match in origin
and direction, the view direction within the virtual environment
is aligned with the view direction in the panorama. Additionally,
when the user first clicks on the camera object in the virtual en-
vironment, the viewpoint is gradually changed toward the camera
perspective of the QuickTime VR movie before the panorama view
is displayed. This prevents “jumps”, which are visually disturbing
and reduce comprehension of the surrounding environment [31].

4. SKETCH TOOLS FOR 3D CONTENT CRE-
ATION

The previous chapter described the integration of multi-media
content into the virtual environment. The resulting content is in-
formation rich but has no inherent 3D properties and can only be
obtained if an actual physical model is present. In order to enrich
the virtual environment we have devised a number of sketch-based
modelling algorithms. Consistency with the previously described
design approach is achieved by requiring that the algorithms are in-
tuitive, do not require artistic or 3D modelling skills, and that they
enable rapid prototyping (less than 1 minute for an object). The
following subsections describe current prototypes.

4.1 Terrain Modelling
Terrain modelling is achieved by enabling the user to draw a set

of contour lines. Contour gradients are indicated by arrows. As
long as all contour lines are covered by at least one arrow the rela-
tive heights of regions between the contour lines can be determined
and used to label the contour lines using a partial order [23]. The la-
belled contour lines are then converted into a 3D terrain [38]. Since
no absolute height values are given we currently use a fixed scale
factor in order to achieve a visually pleasing ratio between terrain
height and size. An example is shown in figure 4. The current im-
plementation does not yet check terrain gradients for consistency
and is best suited for modelling the overall layout of a terrain. We
are currently experimenting with adding terrain details automati-
cally by using a multi-fractal model or by sketching terrain cross-
sections [12].

4.2 Modelling of Vegetation
An important component of natural environments is vegetation.

We have devised a simple method for modelling trees and bushes
based on work by Wither et al. [36]. In contrast to the original

Figure 4: Sketch-based terrain modelling: The user sketches
contour lines and arrows indicating the terrain gradient direc-
tion (top-left). The contour lines are sampled and triangulated.
Relative height information is derived from the terrain gradi-
ents (top-right). A digital elevation map (DEM) is created by
interpolating for each sample point the vertex heights of the tri-
angle covering it (bottom-left). The resulting DEM can be ren-
dered with any game engine or directly with OpenGL (bottom-
right).

Figure 5: Sketch-based tree modelling: The user draws the tree
skeleton (stem and main branches) and the silhouette of the
leaf region (left). The algorithm automatically creates smaller
branches to fill the silhouette region and adds leaves to them
(right).

paper in our case the modelling process needs to be completed in
seconds rather than minutes. Furthermore a rough model is suf-
ficient as long as it is correctly perceived as tree, bush etc. We
achieve this goal by letting the user draw a tree skeleton using a
few strokes and the silhouette of the tree. The skeleton is then ex-
panded to a 3D object with a branch distribution such that its 2D
projection resembles the sketched skeleton. Smaller branches for
filling the silhouette region are created automatically by mirroring



the sketched branch structure. Finally leaves are distributed ran-
domly along those branches. An example is shown in figure 5.

Currently the leaf shape and colour are fixed as indicated in fig-
ure 5. We previously implemented techniques for modelling leaves
with just a few sketches [25], but in this application this would
result in sketch input on two very different scales. Furthermore,
designing leaves for different tree shapes would require colour or
texture selection. Since in our application speed and intuitiveness
is more important than realism we decided to use default values for
leaf shape and colour. A possible improvement would be to cre-
ate a data based with different tree and bush shapes and to decide
the leaf shape, distribution and colour automatically by finding the
closest matching shape.

4.3 Creatures and “Blobby Objects”
Most creatures have a rounded shape with limbs which are roughly

rotation symmetric. Such objects can be modelled by drawing their
contour, defining a skeleton, sampling the contour and rotating the
sample points around the skeleton. The most famous example of
this class of algorithms is Igarishi et al.’s “Teddy” application [15].
Various modifications have been suggested, e.g., for smoothing the
resulting 3D surface [14], smoothing the underlying skeleton [21],
or for modifying the shape by sketching contours of local features
[41].

We have implemented a simplified version of the “Teddy” algo-
rithm which automatically computes movable joints such that body
parts can be animated [39]. Examples are shown in figure 6. We
are now working on evolutionary algorithms for automatically ani-
mating such modelled creatures and objects.

Figure 6: Examples of triangulated sketches (left) and the re-
sulting 3D models with automatically determined joints (right):
(a) doll, (b) hand, (c) lobster, (d) snail, (e) egg/stone, (f) sea star
(star fish), (g) robot, (h) crocodile, (i) dragonfly, (j) desk lamp,
(k) deer. Each image shows the sketched contour and result-
ing skeleton (left), and the Gouraud shaded 3D model (right).
The joints separating movable components are indicated by
thick blue dotted lines. The root of the hierarchical skeleton
for skeletal animation is indicated by a red dot.

4.4 Buildings and Man-made Objects
Many computer designed items are characterized by a blocky

shape, flat or arced surfaces, sharp or evenly rounded edges and cor-
ners, many parallel and orthogonal edges and faces, and symmetri-
cal features. These features can be captured using silhouettes which
can then be interpreted using application specific constraints, e.g.,
surfaces of CAD objects frequently form 90 degree angles. Ex-
amples include “SKETCH” [40], where complex objects are con-
structed using a combination of sketched 3D primitives. A sub-
sequent system, “3D Sketch”, creates an edge graph from a user

sketch and matches it with existing topologies. After identifying
planar faces and determining a view point the edge graph can be
projected into a 3D model [28]. Recently active contour models
were proposed to allow both curve creation and modification from
totally arbitrary view points [17]. The depth coordinates are com-
puted by minimizing the spatial deviation from the original target
curve. Impressive models of buildings have been obtained with the
“Sketching reality” application [9].

While the review above shows that sketched-based tools do exist
for modelling buildings and CAD objects, we would like a simpler
and more intuitive interface which allows creation of rough models
in less then 30 seconds. At this point of time we are still evaluating
options and haven’t found a satisfactory solution.

5. IMPLEMENTATION
QuickTime VR support has been integrated into the system us-

ing the QuickTime SDK published by Apple Inc. [4]. The Quick-
Time VR panorama is drawn to the screen during the SceneLoop
callback. The integration layer forwards this event to the QTVR
Controller class, which sends new pan and tilt values to the Quick-
Time movie controller, and requests that the QuickTime VR movie
be redrawn. The integration layer is then supplied with the mem-
ory address of the panorama output buffer in the form of a Win-
dows bitmap handle. The bitmap data is retrieved from this handle
and copied into an Esperient texture buffer. This copying process
was used because it was not possible to allow QuickTime to ren-
der directly into an Esperient texture buffer. QuickTime supports
creating “GWorlds” by wrapping them around existing Windows
device-independent bitmaps, but there is no practical method to
create these from preexisting memory segments. Furthermore, if
QuickTime were permitted to write directly to the texture buffer
it may be more difficult to guarantee it would not render at inap-
propriate times (because Esperient Creator is multi-threaded, it is
recommended to lock the texture buffer before writing data to it so
other threads are prevented from using it). The QuickTime buffer
is copied to the texture buffer of the panorama window in the Espe-
rient scene by directly copying raw bitmap data from the memory
space of one buffer to the other. This method only works correctly
when both the source and destination bitmaps have the same for-
mat. The Esperient Creator API fortunately provides functions to
obtain the image format of a texture; this information is then sup-
plied to QuickTime as parameters for creating the GWorld object,
which ensures the buffer formats match. The process is illustrated
in figure 7.

5.1 Updating View Direction in Panoramas
One of the most important aspects for QuickTime VR integration

is that view direction changes within the movie and virtual environ-
ment have to correspond. The values are usually set automatically
by QuickTime when the user clicks and drags on the panorama im-
age. In our case this is not possible because of the rendering method
explained in the previous subsection.

Instead, we are using the Esperient engine to determine the view
direction. Because Esperient already supports rotating the view by
clicking and dragging, we have been able to accomplish this simply
by switching to an alternate viewpoint control system based on the
“Shooter” mode, but with movement disabled (allowing viewpoint
rotation only). The view direction is then passed to the QuickTime
movie controller. The Esperient engine stores this information in
a view matrix; this must first be converted into the pan and tilt
angles that QuickTime uses. This process, which occurs during the
SceneLoop callback, is as follows:



Figure 7: The QuickTime VR rendering process used by the
virtual environment rendering framework. 1-2: The integra-
tion layer sends a request to display a panorama; an off-screen
buffer is chosen to be used. 3-5: The QuickTime controller ini-
tialises and starts the movie using the QuickTime API. 6-8: The
integration layer requests and is given the buffer QuickTime is
using for rendering. 9-10: The integration layer requests the
texture buffer of the target rendering object from the Esperi-
ent engine. 11-12: The integration layer copies the contents
of the QuickTime rendering buffer into the Esperient texture
buffer.

1. The view matrix (used to transform the scene to create a
unique view) is retrieved from the Esperient engine.

2. The rotation aspects of the view matrix are isolated (transla-
tion and scaling information are removed).

3. The inverse of the matrix is calculated, yielding the rotation
of the view (rather than the scene).

4. The rotation matrix is converted into a quaternion describ-
ing a direction and orientation. Quaternions are numerically
more stable when accumulating multiple rotations.

5. The quaternion is converted into yaw (pan), pitch (tilt) and
roll values. The roll value is discarded (it is constant in the
“Shooter” navigation mode); the other two values are passed
to QuickTime after shifting the tilt angle by π/2 radians.

6. CASE STUDY - DEVELOPMENT OF AN
ARCHAEOLOGICAL VIRTUAL
ENVIRONMENT

We used the above presented technologies to create a 3D virtual
environment of an archaeological site. Archaeological virtual en-
vironments have been used since the early 90s and can be divided
into two classes: research aids and historical reconstructions.

Interactive three-dimensional visualisations aid research by al-
lowing an accurate 3D representation of the location where arte-
facts were found. Examples include ARCHAVE [35], which allows
the analysis of stratigraphy and the finds within an archaeological
site, and GeoSCAPE [20], which facilitates the recording of the
position of the features of an archaeological site including artefacts
and structures, and their visualisation.

Virtual environments depicting historical reconstructions have
often been aimed toward the general public, but can also be used
by archaeologists, e.g., to formulate and evaluate hypotheses about
how a site was used. They also allow a broader variety of ways
to present information more richly than earlier technologies: any

number of viewpoints is possible in a virtual environment, features
of the site such as buildings and artefacts may be “hyperlinked” to
relevant information such as bibliographic resources, and querying
can be used to locate and concentrate on important details [30, 6].
One of the strongest advantages of these kinds of virtual environ-
ments is their usefulness for the rapid dissemination of research via
the Internet and the possibility to collaborate inside the VE [6, 29].
“Virtual museums” or tours aimed at the general public are also
becoming more common and are steadily increasing in complexity
and animation capabilities [1, 19].

Archaeological sites can contain tens of thousands of objects dis-
tributed over a large site. In many cases media, such as images, of
these artefacts exist already. 3D reconstruction, however, is time
consuming, expensive and requires special equipment.

We created a virtual environment of a central portion of the an-
cient city of Selinus, a Greek colony in Sicily, as a case study. The
University of Auckland’s School of Architecture and Planning, in
conjunction with its counterpart in the Università degli Studi di
Palermo (University of Palermo), runs a joint program every few
years in which students from Auckland and Palermo visit archaeo-
logical sites including Selinus, and work together on architectural
projects [27].

Figure 8: Left: Terrain created by sketching contours and fill-
ing regions to create a height map. Right: City walls modelled
by drawing them using a paint-like interface.

We developed sketch and paint interfaces to create coarse vir-
tual representation of the terrain and basic structures such as rivers,
seas, and city walls (see figure 8). Rough representations of build-
ings were created using traditional modelling tools such as “Blender”,
but we are working on replacing them with sketch interfaces. The
tools above create a very rough representation which provides a
suitable context for exploring a site. In order to correctly perceive
and analyse structures and artefacts a high resolution representation
is necessary. We achieve this by using existing images and Quick-
Time VR movies and insert them into the appropriate locations of
the virtual environment using a drag-and-drop tool. An example of
a QuickTime VR movie is given in figure 3 (right) and a detail view
of a structure is presented in figure 9.

7. RESULTS
Integrating QuickTime VR movies into virtual environments pro-

vides rich content with suitable context. Identifying the precise
camera position for a QuickTime VR view is difficult without addi-
tional data such as its GPS position. However, even without seam-
less integration the media blend well and allow a focus-and-context
style exploration of the domain. The game environment provides
an overall context for QuickTime VR movies and enables users to
get an overview of the entire scene and the QuickTime VR movie’s



Figure 9: A detail view of a structure/artefact.

camera position within it. Vice versa the QuickTime VR movie is
content rich and provides a more realistic representation than the
modelled environment and hence provides a better context for un-
derstanding the terrain, e.g., how the architecture blends into the
natural environment.

Integration of QuickTime VR movies into a game engine is chal-
lenging since interactions with both media must be synchronised.
We hence used only the Esperient Creator API, i.e., not the core
engine components. The resulting framework is quite flexible and
can be ported to other game engines.

Integration of images and videos into virtual environments via
billboards and textures has always been an integral tool for content
creation and is supported by most game engines. By developing
suitable interfaces these images can be made an integral part of
the scene. In an archaeological context images are well suited to
provide detail information about artefacts.

We performed a basic usability study [18] and found that navi-
gation is easy, although the existing Selinus virtual environment is
relatively simple. More challenging scenarios are required to test
how well the system performs in complex environments. Interac-
tion with QuickTime VR panoramas works well. They are easy to
see and activate, and view rotation is synchronised accurately. Ro-
tating the view with the mouse results in sluggish handling, which
needs to be improved. Interaction with artefacts is relatively easy,
but they can be difficult to see at a great distance due to their size.
The inclusion of a top-down map should alleviate this problem.

Rough 3D content can be created using sketch and paint-like
modelling tools. We have presented techniques for creating ter-
rains, vegetation and simple creatures and rounded objects. In all
cases the objects can be created in less than a minute and often
just a few seconds are necessary (e.g., simple trees and creatures).
The resulting models are suitable for prototyping and for providing
context to the 3D environment. Direct animation of the sketched
creatures has been shown to be unintuitive [39], and we are hence
working on automatic algorithms where the user only has to indi-
cate the general behaviour using sketch input, e.g., a character’s
motion path [34]. In order to create a crowd of people or a forest

of trees in less than a minute we are currently developing tools to
replicate models over a sketched region. The user has to draw one
example model and sketch a point distribution and the algorithm
will automatically fill the entire region with copies of the model
according to the sketched distribution.

8. CONCLUSION AND FUTURE WORK
Virtual environments can be created efficiently by designing a

rough 3D model using sketch and paint-like interfaces, and inte-
grating images and QuickTime VR movies to provide detail views
of relevant information. The QuickTime VR movies are “fused”
into the game engine environment providing a context-and-focus
view of different aspects of a site. The framework is most suitable
for creating virtual representations of a real site which are used for
exploration and where limited interaction with scene objects is re-
quired. Examples are urban design, architecture, archaeology and
prototyping.

The development of a unified interface for the sketch and mul-
timedia input is challenging. In our archaeological example ap-
plication we used two specialised paint-like interfaces for creating
the terrain and city walls. In order to employ the tool for arbi-
trary applications we need a unified interface which allows us to
define different semantics for stroke input depending on the con-
text, stroke position, and user selections. For example, a long curvy
sketch could be a road, river, tree stem, or snake depending on the
context (previously and subsequently drawn sketches, relative size,
position and orientation). We are currently developing a prototype
using a paper metaphor where one piece of paper shows the overall
terrain and objects are indicated by symbols or drawn directly at
the desired position. If a symbol indicates multimedia content then
the user selects the corresponding file and associated information.
For sketch content a new piece of paper is “opened” and the sketch
input is interpreted according to the type of object indicated by the
symbol (terrain, vegetation, character, building).

We are currently developing more advanced sketch tools for 3D
content creation. Our goal is it to create a rough 3D environment
with terrain, buildings, roads, rivers, lakes and vegetation in a cou-
ple of minutes. In addition to QuickTimeVR movies we are inves-
tigating the use of photo clusters as done in the “Photosynth” tech-
nology to incorporate realistic content [26]. We would also like to
achieve an “incremental design” where the user can replace a sim-
plified representation (sketched object, photo) with a more realistic
representation (high-detail 3D model) if desired. This would be es-
pecially useful for rapid prototyping, e.g., for game development or
movie production.
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