
Usage Patterns of the Java Standard API

Homan Ma†, Robert Amor‡, Ewan Tempero‡
Department of Computer Science

University of Auckland
Auckland, New Zealand

†hma007@ec.auckland.ac.nz
‡{trebor,ewan}@cs.auckland.ac.nz

Abstract

The Java Standard API has grown enormously since Java’s be-
ginnings, now consisting of over 3,000 classes and 20,000 meth-
ods. The intent of this API is to provide high quality components
that can be easily reused and so increase the Java developer’s pro-
ductivity — but does it? In this paper, we present a study that be-
gins to answer this question. Specifically we take a corpus-based
approach to help determine the “typical” usage of the Standard
API. We find that, in an extensive corpus of open-source software,
only about 50% of the classes in the Standard API are used at all,
and around 21% of the methods are used. We discuss the implica-
tions this has for future development of both the API itself, and for
tools to support the API.

Keywords: Java Standard API, Software Repositories,
Reuse

1. Introduction

Repositories of reusable software components have been
proposed and built for several decades now, although their
success has been limited. Reasons given for the lack of suc-
cess include the components are not of sufficient quality,
and lack of appropriate tool support [7, 8, 20]. The Java
Standard API [17] is interesting in that it is quite large, but
has almost no tool support beyond a browser for its hierar-
chical structure. Attempts to provide a better search facility
have not had convincing success (e.g., [19, 10, 13]). A rea-
sonable question to consider is, does the Java Standard API
need any tool support? Perhaps it is successful enough that
devoting resources to such endeavours is unnecessary. In
this paper, we attempt to answer this question, and present
the first study into the usage patterns of the Java Standard
API.

The basis of our study is a corpus of open-source Java
software we have been collecting at the University of Auck-

land. The original intent of this corpus was to provide ma-
terial for research into design quality. However, we have
quickly found many other uses for it, including the study
presented in this paper. The corpus provides a view of
what might be considered “typical” Java development, and
so give us insight as to typical usage patterns of the Java
Standard API.

The paper is organised as follows. In the next section, we
discuss relevant background material and related work. In
section 3, we discuss how we carried out our study, giving
details of our corpus and the tools we developed. Section 4
presents the results we have obtained, and we discuss these
results in section 5. Finally, we present our conclusions.

2. Related Work

There has been considerable research into software reuse
in general (e.g., [12, 16, 4]), and the development of soft-
ware repositories in particular [7, 8, 20]. As far as we are
aware, there have been no other studies examining how the
Java Standard API is used, or indeed any code library or
reuse repository.

There is, however, a growing trend of using corpora of
software for various studies. Knuth was one of the first to
carry out empirical studies using a corpus [11]. He pre-
sented static analysis of over 400 FORTRAN programs and
dynamic analysis of about 25 programs. His main motiva-
tion was compiler design, with the concern that compilers
may not be optimised for the typical case as no-one knew
what the typical case was. His analysis was at the statement
level, counting such things as the number of occurrences
of an IF statement, or the number of executions of a given
statement.

More recently, Collberg et al. have carried out a study of
1132 Java programs [2]. These were gathered by searching
for jar files with Google and removing any that were in-
valid. Their main goal was the development of tools for the



protection of software from piracy, tampering, and reverse
engineering. Like Knuth, they argued that their tools could
benefit by knowing the typical and extreme values of var-
ious aspects of software. Consequently, their interest is in
the low-level details of the code with a view toward future
tool support or language design.

Gil and Maman analysed a corpus of 14 Java applications
for the presence of micro patterns, patterns at the code level
that represent low-level design choices [5]. They found that
3 out of 4 classes matched one of the 27 micro patterns in
their catalogue, and just over half of the classes are cata-
logued by just 5 patterns.

Do et al. describe the Software-artifact Infrastructure
Repository (SIR), an infrastructure developed to support
controlled experimentation with software testing and re-
gression testing techniques [3]. This includes a corpus con-
sisting of multiple versions of several C and Java applica-
tions, together with test suites and fault data. SIR is closest
in nature to our corpus as it is being developed to support a
range of studies, rather than gathered together for a specific
study.

Our own corpus has seen use in other studies. Some have
involved investigating the presence of dependency cycles,
the original motivation for developing our corpus [15, 14].
Others have involved investigating the use of “dependency
injection” [18] and for a study into the existence of power-
law distributions of relationships [1].

The study presented here has more in common with
corpora-based applied linguistics, where corpora of (for ex-
ample) documents (both written and spoken) in a given lan-
guage are used to investigate how that language is used. Our
corpus is what Hunston describes as a reference corpus [9].

3. Methodology

The main question to consider for this study is what ex-
actly we should measure. A program consists of many en-
tities. A Java entity can be a package, class type (normal or
enum), interface type (normal or annotation type), member
(class, interface, field, or method) of a reference type, type
parameter (of a class, interface, method or constructor), pa-
rameter (to a method, constructor, or exception handler), or
local variable. We classify the entities from the Java API
being used within a Java source code file as types, classes,
methods or packages, as described below and illustrated in
Figure 1. API types consist of:

• Imported types. The type Random is imported from
the type java.util.Random of the package java.util.

• Fields, class variables and instance variables of
classes, and constants of interfaces. The type int is
the type declared by the identifier divisor.

import java.util.Random;

class MiscMath {
int divisor;
MiscMath(int divisor) {
this.divisor = divisor;

}
float ratio(long l) {
try {
l /= divisor;

} catch (Exception e) {
if (e instanceof ArithmeticException)
l = Long.MAX_VALUE;

else
l = 0;

}
return (float)l;

}

double gausser() {
Random r = new Random();
double[] val = new double[2];
val[0] = r.nextGaussian();
val[1] = r.nextGaussian();
return (val[0] + val[1]) / 2;

}
}

Figure 1. Sample Code (From Java Language
Specification, First Edition)

• Method parameters. The method parameter of the
method ratio is declared to be of the type long.

• Method results. The return type of the method ratio
is of the type long and the return type of the method
gausser is of the type double.

• Constructor parameters. The parameter of the con-
structor for MiscMath is declared to be of the type int.

• Local variables. The local variables within the method
gausser are declared of the types Random and dou-
ble[].

• Exception handler parameters. The exception handler
parameter of the catch clause is declared to be of the
type Exception.

API classes consist of:

• Class instance creations. A class instance creation ex-
pression that uses the type Random is used within the
gausser method.

• Superclasses. The optional extends clause within
the following class declaration ModifiedLinkedList
extends LinkedList indicates that the API class



java.util.LinkedList is the superclass of the class Mod-
ifiedLinkedList being declared.

• Superinterfaces. The optional implements clause
within the following class declaration NewAction im-
plements AccessibleAction indicates that the API in-
terface javax.accessibility.AccessibleAction is a direct
superinterface of the class NewAction being declared.

• Static classes. These are classes that contain static
fields and/or methods. Such as the java.lang.Math
class.

API methods consist of:

• Instance methods. They require an instance of a
class to be declared before they can be invoked.
The code in Figure 1 demonstrates the method
nextGaussian() of the class java.util.Random is
invoked only after an instance of the Random class is
instantiated.

• Class methods. Also referred to as static methods. e.g.
Math.random()

Each time an API class or API method is identified
within the source code, the corresponding API package that
the class or method exists in can be regarded as being used.

3.1. Jepends Tool

The Jepends tools was original developed to analyse the
source code of a system in order to identify classes that are
possible refactoring candidates [15]. This tool has been
modified to record the possible API uses (identified and
listed above) found within the source code. Jepends takes
the source code of an application and outputs three text files:

• Superclasses and Superinterfaces used.
• Class and Type instances.
• Instance and Class method invocations.

Further analysis is done on this raw data to produce the re-
sults shown in the next section.

3.2. Software Corpus

As mentioned earlier, our study uses a corpus of Java
software we have been developing. At the beginning of
the study, we used 39 open source Java applications that
were in the corpus. These are listed as Set 1 in the
Appendix. These applications were selected from a num-
ber of sources, corpora used in other published papers
(e.g., [6, 5]), and popular (widely down-loaded) and ac-
tively developed open-source Java applications from var-
ious websites including developerWorks1, SourceForge2,

1http://www-128.ibm.com/developerworks/
views/java/downloads.jsp

2http://sourceforge.net/

Table 1. API usage
Package Class Method

Set 1 87 88.8% 1396 51.2% 4114 20.8%
Set 2 75 76.5% 984 36.1% 2473 12.5%
All 88 89.8% 1436 52.7% 4150 21.0%

Freshmeat3, Java.net4, Java-Source.net5 and The Apache
Software Foundation6.

Set 1 was gathered with no regard to likely usage of
the Java API. After obtaining the results for Set 1, we de-
cided to extend the corpus in a deliberate attempt to improve
the coverage of the Java API. The applications were chosen
from Java-Source.net. The basis for choosing a reliable ap-
plication from each software category was to get a broader
spectrum of functionality. Care was taken to make sure that
the latest stable release of each application was used. The
reason behind this is that the latest stable release would con-
tain the most functionality and so the most API usage. The
37 new applications are listed as Set 2 in the Appendix.

3.3. Java API Reference

The Java 1.4.2 API was used as a reference. Java 1.4.2
was used rather than Java 5.0 as most of the open source
applications used were originally compiled with Java 1.4.2
and therefore would not contain new Java 5.0 functionality.
The API package and class list were taking directly from
the Java 2 Platform, Standard Edition, v 1.4.2 API Specifi-
cation documentation and the API method list was created
by using Java reflection together with the API class list col-
lected (making sure that the compiler was set at 1.4.2). This
gave us all of the packages, classes, and methods described
in the public documentation for a Java developer, and so we
felt best represents the “size” of the Java Standard API. The
results are:

API Packages 98
API Classes 2,723
API Methods 19,785

4. Results

In this section, we summarise our results, with discus-
sion left until section 5.

Table 1 shows the API usage divided up into the API
package, API class and API method use for each of Set
1 and Set 2 individually, and then the combined corpus.
Set 2 applications usage is slightly less than that of Set

3http://freshmeat.net/
4http://community.java.net/projects/
5http://java-source.net/
6http://apache.org/



Top 20 Packages Top 20 Classes Top 20 Methods
Name Frequency Name Frequency Class Method Frequency
java.lang 682742 String 225817 String equals 72754
java.util 96132 Object 49709 StringBuffer append 62074
java.io 72660 Exception 18427 String length 39693
java.awt 66772 List 12261 Iterator next 36516
java.sql 42100 Iterator 10224 Iterator hasNext 31656
javax.swing 26330 File 8970 StringBuffer toString 30034
java.beans 16170 Class 8029 String substring 25129
javax.swing.text 14718 StringBuffer 7982 List size 18119
java.net 13840 Map 7228 String indexOf 17447
javax.swing.text 13348 Throwable 6068 List get 16952
java.awt.event 12290 Vector 5558 PrintWriter println 15016
java.lang.reflect 10624 IOException 5507 Hashtable put 13344
javax.naming 8414 Integer 5388 List add 12541
java.util.logging 7846 SQLException 5086 String charAt 11715
java.awt.geom 6082 Connection 4626 Map get 11351
javax.naming.directory 5144 Element 4470 String startsWith 11268
java.security 4422 ArrayList 4339 Vector size 11046
java.math 4106 Properties 4083 ArrayList size 10902
java.text 3968 Collection 3825 HashMap put 10387
javax.swing.event 3022 URL 3513 Integer intValue 9993

Table 2. Top 20 packages, classes, and methods used

1. The combined usage shows only a slight increase over
Set 1.

4.1. Entity Frequency

As expected, java.lang is the top package used as
it provides the fundamentals of the Java programming lan-
guage. Figure 2 shows the frequency of package usage or-
dered along the x-axis according to decreasing frequency.
Each point (x, y) represents the number of classes (y) that
use exactly x packages. The second graph is the log-log
version of the first graph. We provide log-log graphs as
we are also interested as to whether these distributions obey
a power-law, which would be indicated by a straight line on
the log-log graph.

The top 20 classes used also has no surprises for the most
frequently used class (String). It is worth noting that if types
were considered, then the second most frequently used type
would be int (214025) and the third would be boolean
(53387). Figure 3 shows the frequency of class usage or-
dered along the x-axis according to decreasing frequency
and the log-log version.

Figure 4 shows the frequency of method usage and the
log-log version.

Figure 2. Frequency of package use



Figure 3. Frequency of class use

4.2. Cumulative API Usage versus Applica-
tion size

Figure 5 shows the cumulative API usage as new appli-
cations are added in increasing order of size. The y value of
a point is calculated by taking the total number of API uses
of the applications before, and then adding to that number
the number of new API uses that the new application in-
troduces. Unlike the earlier graphs, API usage is not the
frequency of use, it is whether or not a particular API pack-
age, API class or API method is used at all. The intent of
these graphs is to get a sense as to how representative our
corpus is with respect to API usage.

4.3. Unused API Entities

The above results present what of the API is used in the
corpus, but perhaps of more interest is what is not used.

The packages from which no classes are used in the
full corpus are: java/awt/dnd/peer java/awt/im
java/awt/im/spi java/nio/charset/spi
java/rmi/activation javax/imageio/
plugins/jpeg javax/sound/midi/spi
javax/sound/sampled/spi javax/swing/
colorchooser javax/swing/plaf/multi. A
number of these packages related to the Service Provider

Figure 4. Frequency of method use

Interface introduced in Java 1.3.
Table 3 attempts to provide a compact representation of

the unused classes per package. In the last entry, the pack-
ages listed before the number in parentheses have that num-
ber of unused classes. We have given the number of classes
unused, rather than a percentage of the package, as we feel
this gives a better sense of how much code that is in the API
has not been used.

Table 4 shows classes ranked by how many of their meth-
ods were unused in the corpus. A number of the classes
involved are from the various user-interface related pack-

Figure 5. Cumulative usage



1 java/awt/print, java/lang/reflect, java/nio/charset, java/nio/charset/spi, java/rmi/registry, java/util,
java/util/jar, javax/security/auth/x500, javax/swing/filechooser, javax/swing/table, javax/swing/text/rtf,
javax/xml/transform/dom, org/omg/CORBA/ORBPackage, org/omg/PortableServer/CurrentPackage,
org/omg/PortableServer/POAManagerPackage, org/omg/stub/java/rmi

2 java/rmi/dgc, java/security/acl, javax/crypto/interfaces, javax/crypto/spec, javax/security/auth, javax/sql,
javax/swing/border, javax/swing/event, org/ietf/jgss, org/omg/DynamicAny/DynAnyFactoryPackage,
org/omg/IOP/CodecFactoryPackage, org/omg/Messaging, org/omg/SendingContext, org/xml/sax/helpers

3 java/awt/datatransfer, java/awt/im/spi, java/awt/image/renderable, java/sql, java/util/logging, java/util/zip,
javax/imageio, javax/imageio/event, javax/naming/event, org/omg/CORBA/DynAnyPackage,
org/omg/DynamicAny/DynAnyPackage, org/omg/IOP/CodecPackage

4 java/awt/im, java/nio/channels/spi, java/security/interfaces, javax/imageio/metadata,
javax/imageio/plugins/jpeg, javax/security/auth/callback, javax/security/auth/kerberos, javax/security/cert,
javax/sound/midi/spi, javax/sound/sampled/spi, javax/swing/colorchooser, javax/swing/text/html/parser,
org/omg/PortableInterceptor/ORBInitInfoPackage

5 java/awt/color, java/nio, java/text, javax/imageio/spi, javax/naming/spi, javax/print/event, javax/rmi/CORBA,
javax/swing/tree, javax/swing/undo

6 java/awt/dnd, java/security/spec, java/util/prefs, org/omg/CORBA/portable,
org/omg/CosNaming/NamingContextExtPackage

7 java/awt/geom, java/lang, java/rmi, javax/naming/directory
8 java/beans, java/io, javax/imageio/stream
10 java/awt/font, javax/naming/ldap
>10 java/awt/event, java/net, javax/crypto, javax/net/ssl (11); java/rmi/server (12); java/awt/image, java/security,

javax/accessibility, javax/naming (13); org/omg/CosNaming/NamingContextPackage (14); java/rmi/activation,
javax/print, org/omg/PortableServer/POAPackage (16); java/beans/beancontext, javax/swing/text/html
(19); javax/sound/sampled (20); javax/print/attribute, org/omg/PortableInterceptor (21); java/nio/channels,
javax/sound/midi, org/omg/CosNaming, org/omg/IOP (24); java/security/cert (28); javax/swing/plaf/multi (31);
javax/swing (32); java/awt (34); javax/swing/plaf/metal (36); javax/swing/plaf (38); org/omg/PortableServer (43);
org/omg/DynamicAny (48); javax/swing/plaf/basic (53); javax/swing/text (58); javax/print/attribute/standard (66);
org/omg/CORBA (127);

Table 3. Number of unused classes per package

ages. We speculate that the unused methods in these classes
are in fact used by frameworks (SQL, Swing, CORBA),
and so are not expected to be directly invoked by developer
code. Notable exceptions are java.util.Arrays and
java.lang.Character. Below the top 20, framework
related classes still feature heavily.

5. Discussion

From the usage results gathered from our corpus of open-
source software, in total only about 52% of the classes
found within the Java 1.4.2 API are used, and around 21%
of the methods are used. This is lower than one might ex-
pect. This raises questions about the representativeness of
our corpus. It was these low results that led us to expand our
corpus, the addition of new applications (Set 2) distinct
from the initial corpus (Set 1). To prove the representa-
tiveness of Set 1, the new applications added were cho-
sen from a broad range of functionality domains. Yet, there
are no obvious differences between the results for Set 1
and Set 2. In particular the combined results only slightly

increase the usage. If the original corpus was not represen-
tative, we would expect to see marked differences once the
applications of Set 2 were considered. The cumulative
graph in Figure 5 is consistent with this. The addition of
the two largest applications changes the usage only a small
amount. While this is not conclusive, it is very suggestive
that our corpus is quite representative of the typical usage
of the Java Standard API.

By and large, the most frequently used entities in the
API are largely as one might expect. One surprise is
how high Exception appears on the list of frequently
used classes. We speculate this is due to a number of
try blocks catching the most general exception rather
than something more specific. StringBuffer’s posi-
tion also seems somewhat surprising, until one realises that
the “String” concatenation operator “+” is in fact trans-
lated by the compiler to a StringBuffer operation (and
hence the position of append in the method list top 20).
PrintWriter.println is in fact most likely a conse-
quence of calls to System.out.println.

It is difficult to characterise the unused parts of the API.



java.sql.DatabaseMetaData 164
java.sql.ResultSet 139
java.awt.Component 133
java.sql.CallableStatement 79
java.util.Arrays 76
java.lang.Character 75
java.awt.AWTEventMulticaster 73
javax.swing.JComponent 72
javax.swing.JTree 65
javax.swing.JTable 61
org.omg.DynamicAny. DynUnionStub 60
org.omg.DynamicAny. DynValueStub 60
javax.imageio.metadata.IIOMetadataNode 59
javax.sql.RowSet 58
org.omg.DynamicAny. DynSequenceStub 57
org.omg.DynamicAny. DynStructStub 57
javax.swing.AbstractButton 55
org.omg.DynamicAny. DynArrayStub 55
org.omg.DynamicAny. DynEnumStub 55
javax.swing.DebugGraphics 54

Table 4. Top 20 classes ordered by number of
unused public methods

Generally there is a sense that a large amount of code in
the API is not providing benefit to Java developers. The
results for the API itself might explain why some of the
code was written in the first place, however we suspect
that the growth of the API is also an issue. The very first
Java API, released in 1996 had approximately 200 reusable
Java classes grouped into 8 software packages. With the
latest release of Java 5.0, this number has reached approx-
imately 3000 grouped into 166 packages, with about 250
new classes compared to the Java 1.4.2 release. New library
extensions in Java 5.0 included extensions of the lang, util
packages, networking features, support for more security
standards (SASL, OCSP, TSP), internationalisation and the
list continues. Following this trend, the next version Java
6.0 (mustang) will introduce even more functionality.

It is possible that many of the classes with low usage are
due to their relatively recent introduction, meaning they are
not that well know. The java.nio and java.*.spi
packages are perhaps good examples of this. It would be
interesting to study whether developers’ uses of the API are
lagging behind the Java API releases, that is that use of new
features only appears after further API releases occur.

5.1. API Usage by API

The corpus we studied contains applications from a num-
ber of domains. One “application” we initially did not con-
sider was the API itself. Examination of this turns out to be

very interesting. The usage is as follows:
Package 97 95.6%
Classes 1980 72.7%
Methods 14468 73.1%

This is a significant difference to the results for our corpus,
and suggests that a significant role of the API is in fact to
support the API itself, rather than to provide components
for use outside of the API. This is consistent with our ob-
servations that many of the classes with large numbers of
unused methods are part of various frameworks.

Figures 2 3 and 4 do not appear to show power-law distri-
butions. As how many packages, classes, or methods used
in a class is likely to be roughly related to the size of the
class, this is consistent with other studies that indicate that
size-related frequency distributions tend not to be power-
laws [1].

5.2. Threats to Validity

There are some limitations to our study that may impact
our conclusions. We have presented our results in terms of
Java 1.4.2, although we are aware that some more recent re-
leases may in fact contain some Java 5.0 constructs. Manual
investigation suggests this is minimal.

We claim our corpus is fairly representative, but we have
only considered open source applications. Commercially-
developed applications may exhibit different characteris-
tics.

We do not count the use of fields from API classes. A
common usage of this type is when the fields represent con-
stants.

6. Conclusions

We have carried out a study into how the Java Standard
API is typically used in a corpus of 76 open source Java ap-
plications. About 50% of the Java classes and about 80%
of the Java methods are not used at all. Some of this may
be explained by the use of frameworks. It appears that a
significant part of the published API appears not relevant to
most developers. This raises questions as to whether some
part of the API could be separated as “infrastructure”, lead-
ing to a smaller and simpler view of the API used by a Java
developer. We intend to further explore the usage patterns
of the Java API. This includes increasing the corpus and ex-
amining further the use of infrastructure classes. We think
it will also be illustrative to study how quickly additions to
the API start being used. Ultimately we hope to be able to
characterise the effectiveness of the API.



References

[1] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Understanding the
shape of Java software. In W. Cook, editor, ACM SIG-
PLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Portland,
OR, U.S.A, Oct. 2006. 26/157.

[2] C. Collberg, G. Myles, and M. Stepp. An empirical study
of Java bytecode programs. Technical Report TR04-11, De-
partment of Computer Science, Univeristy of Arizona, 2004.

[3] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering,
10(4):405–435, 2005.

[4] W. B. Frakes and C. J. Fox. Sixteen questions about software
reuse. Communications of the ACM, 38(6):75–ff., 1995.

[5] J. Y. Gil and I. Maman. Micro patterns in java code. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object Oriented Programming Systems
Languages and Applications, pages 97–116, New York, NY,
USA, 2005. ACM Press.

[6] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating ob-
jects with confined types. In OOPSLA ’01: Proceedings
of the 16th ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, pages
241–255, New York, NY, USA, 2001. ACM Press.

[7] S. Henninger. Using iterative refinement to find reusable
software. IEEE Software, 11(5):48–59, 1994.

[8] S. Henninger. An evolutionary approach to constructing ef-
fective software reuse repo sitories. ACM Transactions on
Software Engineering Methodology, 6(2):111–140, 1997.

[9] S. Hunston. Corpora in Applied Linguistics. Cambridge
University Press, 2002.

[10] L. R. Jensen. A reuse repository with automated synonym
support and cluster generation. Master’s thesis, Department
of Computer Science at the Faculty of Science, Univ ersity
of Aarhus, Denmark, 2004.

[11] D. E. Knuth. An empirical study of FORTRAN programs.
Software–Practice and Experience, 1(2):105–133, 1971.

[12] C. W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, 1992.

[13] M.-Y. Lin, R. Amor, and E. Tempero. A Java reuse reposi-
tory for Eclipse using LSI. In The Australian Software En-
gineering Conference, Apr. 2006.

[14] H. Melton and E. Tempero. An empirical study of cycles
among classes in Java. Technical Report UoA-SE-2006-1,
Department of Computer Science, University of Auckland,
2006.

[15] H. Melton and E. Tempero. Identifying refactoring oppor-
tunities by identifying dependency cycles. In V. Estivill-
Castro and G. Dobbie, editors, Twenty-Ninth Australasian
Computer Science Conference, Hobart, Tasmania, Australia,
Jan. 2006. Proceedings published as “Conferences in Re-
search and Practice in Information Technology, Vol. 48”.

[16] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and
research directions. IEEE Transactions on Software Engi-
neering, 21(6):528–561, June 1995.

[17] Sun Microsystems. Java se api documentation. http:
//java.sun.com/reference/api/index.html,
2006.

[18] H. Y. Yang, H. Melton, and E. Tempero. An empirical study
into use of dependency injection in Java. Technical Report
UoA-SE-2006-3, Department of Computer Science, Univer-
sity of Auckland, 2006.

[19] Y. Ye. Supporting component-based software development
with active component repository systems. PhD thesis, Uni-
versity of Colorado, 2001.

[20] Y. Ye and G. Fischer. Promoting reuse with active reuse
repository systems. In 6th International Conerence on Soft-
ware Reuse, pages 302–317, London, UK, 2000. Springer-
Verlag.

Appendix

This is the contents of the corpus used in this study.

Set 1 aglets-2.0.2, ant-1.6.5, aoi-2.2, azureus-2.3.0.4,
colt-1.2.0, columba-1.0, derby-10.1.1.0, drawn-vC,
drawswf-1.2.9, fitjava-1.1, fitlibraryforfitnesse-
20050923, galleon-1.8.0, ganttproject-1.11.1,
geronimo-1.0-M5, gt2-2.2-rc3, hibernate-3.1-rc2,
hsqldb-1.8.0.2, ireport-0.5.2, jag-5.0.1, jaga-1.0.b,
javacc-3.2, jboss-4.0.3-SP1, jchempaint-2.0.12,
jedit-4.2, jeppers-20050607, jext-5.0, jfreechart-
1.0.0-rc1, jgraph-5.7.4.3, jhotdraw-6.0.1, jparse-0.96,
jtopen-4.9, junit-3.8.1, lucene-1.4.3, megamek-
2005.10.11, openoffice-2.0.0, pmd-3.3, rssowl-1.2,
springframework-1.2.7, tomcat-5.0.28

Set 2 antlr-2.7.6, argouml-0.20, aspectj-1.0.6, c jdbc-2.0.2,
compiere-250d, displaytag-1.1, exoportal-v1.0.2,
findbugs-1.0.0-rc1, freecs-1.2.20060130, heritrix-
1.8.0, hsqldb-1.8.0.4, htmlunit-1.8, infoglue-2.3Final,
informa-0.6.5, itext-1.4, ivatagroupware-0.11.3,
j ftp-1.48, jfreechart-1.0.1, jrat-0.6, jspwiki-2.2.33,
log4j-1.2.13, mvnforum-1.0-ga, nekohtml-0.9.5,
openjms-0.7.7-alpha-3, oscache-2.3-full, proguard-
3.6, quartz-1.5.2, quickserver-1.4.7, quilt-0.6-a-5,
roller-2.1.1-incubating, scarab-1.0-b20, servicemix-
3.0-SNAPSHOT, squirrel-sql-2.2final, struts-1.2.9,
trove-1.1b5, webmail-0.7.10, xmojo-5.0.0


