
The Impact of Qualification on the Application
of Qualitative Spatial and Temporal Reasoning

Calculi

Carl Schultz1 and Robert Amor2 and Hans W. Guesgen3

1 SFB/TR 8 Spatial Cognition, The University of Bremen, Germany
2 The University of Auckland, New Zealand

3 Massey University, New Zealand

Abstract. Ever since Allen introduced his qualitative interval algebra
in 1983, the area of qualitative spatial and temporal reasoning (QSTR)
has been motivated by potential application areas that require human-
oriented, commonsense reasoning. Despite this, it is well recognised in
the community that there are relatively few commercial applications that
heavily employ QSTR calculi. In this paper we directly address this issue
by establishing a theoretical foundation for describing, developing and
analysing QSTR based applications. We present an analysis of QSTR
calculus qualification and investigate the impact that qualification has
on a QSTR application’s reasoning properties such as completeness and
soundness. Our definition of QSTR applications also provides software
developers with a basic template to begin creating their own applications.
Concrete examples of existing QSTR applications are used to demon-
strate and motivate this research.

1 Introduction

Qualitative spatial and temporal reasoning (QSTR) calculi represent and reason
about coarse, intuitive relations between objects. The most prominent QSTR cal-
culus is Allen’s Interval Algebra (IA) [1]; Allen defines thirteen jointly exhaustive,
pairwise disjoint relations that can hold between a pair of temporal intervals:
before, meets, overlaps, starts, during, finishes, after, met by, overlapped by,
started by, contains, finished by, and equals. Allen’s seminal contribution was to
frame the problem of determining a minimally consistent qualitative description
of object relations as a constraint satisfaction problem, and proposed a modified
path-consistency algorithm that performs composition using a reference look-
up table.4 Allen’s approach to qualitative temporal reasoning has motivated
the development of a large number of QSTR calculi [2]. For example, Region
Connection Calculus 8 (RCC8) defines eight topological relations that can hold
between pairs of arbitrary regular regions [3]: disconnected (DC), externally
connected (EC), partially overlaps (PO), tangential proper part (TPP), non-
tangential proper part (NTPP), tangentially contains (TPPi), non-tangentially

4 Composition of two relations R1 and R2 produces the relation R3 such that for all
x, y, z if R1(x, y) and R2(y, z) then R3(x, z).



contains (NTPPi), and equals (EQ). As with IA, a reference table is used to
implement the composition operator.

A qualitative representation of object relations is formulated as a constraint
satisfaction problem in the following way [1]. A constraint network consists of
a finite set of vertices (representing objects in the world) and directed edges
between vertices (representing relations between objects). Each edge is a variable
that contains a set of qualitative relations that can possibly hold between two
objects. A network is non-atomic if at least one edge contains more than one
possible relation, and a network is atomic if all edges contain exactly one relation.
Allen’s algorithm attempts to eliminate relations from each edge which are not
consistent based on the composition of relations [1].

Most QSTR calculi come with (sometimes implicit) domains of interpre-
tation [4], for example, a constraint network using IA relations is interpreted
as a linear ordering W together with a subset U of the intervals (w1, w2),
w1 < w2 on W . The process of mapping a configuration in the domain of
interpretation to a qualitative constraint network is qualification, which we de-
note as the relation map q. A network is consistent if, for each relation R(x, y)
there is some consistent instantiation of all objects in the domain of interpre-
tation that also satisfies R. A network is path-consistent if, for all triples of
variables x, y, z, any consistent instantiation of x, z can be extended to some
consistent instantiation of y. A well recognised concept in QSTR is weak com-
position (or extensionality [5, 6]). It was noticed that Allen’s algorithm applied to
different calculi does not always give path-consistency but algebraic closure, i.e.
∀x, y, z ·R(x, y)∧S(y, z)→ T1(x, z)∨ . . .∨Tn(x, z). In particular, the consequent
is a necessary but not a sufficient condition as required by path-consistency.
Therefore algebraic closure is weaker than path-consistency and some impossi-
ble relations may not be eliminated from the constraint network.

The development of QSTR calculi is very often motivated by potential ap-
plication areas that require more coarse, intuitive reasoning. For example, Egen-
hofer developed qualitative approaches to facilitate querying in GIS [13], and
Wolter et al. developed vessel navigation application using qualitative orienta-
tion [12]. However, it is well recognised in the community that there is an absence
of commerical applications, developed by application domain experts, that heav-
ily employ QSTR calculi [9, 10]. Relatively little research in QSTR has focused
directly on the issues faced by software developers that are interested in apply-
ing QSTR calculi. This paper addresses the needs of application developers by
establishing a formal definition of QSTR applications and analysing the impact
of qualification on the properties of QSTR application reasoning. Section 2 pro-
vides a formal definition of QSTR applications. Section 3 presents an approach
to analysing QSTR calculi with respect to application requirements. Section 4
analyses completeness and soundness of QSTR applications based on the given
definition. Section 5 presents the conclusions of the paper.



2 A General Definition of QSTR Applications

This section presents a general definition of QSTR applications that is simple and
yet sufficient for modelling all existing QSTR applications that the authors are
aware of, regardless of the application domain. The benefits of formally defining
QSTR applications are firstly that the general properties of applications can be
analysed in detail and secondly that it provides software developers with a basic
template to begin creating their own applications. To demonstrate this a number
of examples of existing QSTR applications are given using this formulation.

One approach that has been used to apply QSTR calculi is to treat network
inconsistency as a metaphor for some undesirable condition which is specific to
the application domain. For example, Nokel [11] (page 46, Figure 23) reasons
about three valves attached to a tank where exactly one valve must be open
at any time; an inconsistent network means invalid valve behaviour. There are
three main problems with the metaphor approach. Firstly, by mixing application-
specific criteria with general laws of spatial arrangements the meaning of consis-
tency becomes overloaded and heavily dependent on the application. Secondly
the metaphors can be awkward and difficult to implement without an advanced
understanding of compositional reasoning. Thirdly the metaphor approach is
restricted to constraining triples of binary relations which greatly reduces the
expressiveness of possible QSTR applications.

We will now present our alternative definition of QSTR applications. We
define QSTR applications as having either (a) numerical runtime input which
is qualified, (b) qualitative runtime input, or (c) qualitative rules that deter-
mine how the application should respond to input. Using this basic formulation
we characterise the general runtime behaviour as follows: (1) receive input (2)
(optional) do qualification (3) construct constraint network (4) (optional) do
consistency check (5) execute application rules (6) return output.5 Formally a
QSTR application is a function that maps input symbols to sets of output sym-
bols (i.e. inferred expressions). The input is a set of expressions that represent
premises (or facts) about the world description (or a sequence of n world descrip-
tions); e.g., the input expressions can use numerical relations (e.g. kitchen.x=550
and kitchen.y=100 ) or qualitative relations (e.g. near(kitchen, livingRoom)). The
output is a set of expressions that is some relevant subset of all inferred facts
(as defined by the developer); e.g., output symbol α may correspond to the
expression ∃x ∈ U · bathroom(x) ∧ near(x, kitchen).

Definition 1. Let Ti be a set of expressions in some input language, let O be
a set of output symbols representing logical expressions, and let n be a natural
number. A QSTR application A is a function A(T1, . . . , Tn) ⊆ 2O.

The rules used to infer new facts based on the input premises are first-
order constraints. If a constraint is not satisfied then a new fact is inferred in
order to satisfy the constraint. QSTR calculi typically represent uncertainty by

5 In this paper we focus on purely qualitative applications. Hybrid applications inte-
grate both qualitative and numerical rules.



maintaining disjunctions of relations that can possibly hold between two objects.
Because QSTR applications infer new facts using QSTR calculi relations that
possibly hold, then the application inferences produced must also be interpreted
by the user as possibly holding. This formulation will now be used to define a
number of existing QSTR applications.

SailAway [12] Input is a configuration of vessels consistent with a qualitative
orientation calculus TOPRA. Rules TX are a formalisation of maritime right-of-
way rules that use simple custom qualitative relations such as collisionAtRear
and vessel types such as motorVessel. Output is a (set of) sequences of OPRA
constraint networks that are consistent with TX (i.e. simulates future vessel
states and eliminates states that cause collisions).

GIS QueryBySketch 6 [13] Input is a set of bitmap representations of ob-
jects parsed into vector representations. Qualification creates a constraint net-
work with 9-Intersection relations, custom detailed topological relations, and
cardinal directions (salient numerical information is also maintained). Output
(of the qualitative module) is simply the constraint network with optional re-
laxation information such as neighbouring relations which is used by a query
processor.

Tank-valves [11] Input is a configuration consistent with T IA. Output sym-
bol γ indicates abnormal valve operation. Rules for generating γ are expres-
sions where x,y,z are the intervals when valves are open: (1) overlaps(x, y) ∨
starts(x, y) ∨ during(x, y) ∨ finishes(x, y) (2) before(x, z) ∧ ¬∃y ·meets(y, z).

Lighting Design [14] Input is a set of numerical and qualitative expres-
sions about spatial objects consistent with a qualitative orientation calculus
TBA (block algebra). Rules formalise lighting principles (e.g. brightAmbientIllu-
mination) and higher level principles about subjective impressions (e.g. spacious-
ness). Output is the subset of inferences that specify the subjective impressions
of rooms.

3 Selecting QSTR Calculi

A critical role of the QSTR application developer is deciding which collection
of QSTR calculi, if any, should be used. Important factors include complex-
ity of reasoning and ontological requirements. However, even when a calculus
is ontologically appropriate, the relations may be too coarse on their own to
accurately model a particular application concept. We will now present an anal-
ysis of qualification to greatly assist in both the selection of QSTR calculi and
the development of QSTR application rules. Qualification is critically important
because when rules are defined using particular calculi the application is not
able to distinguish between certain geometric configurations.7 The power of this
analysis is that it integrates major areas of QSTR research [5, 6, 15, 8] to give
the developer direct insights into calculi under different key input conditions.

6 This is a hybrid application; we only emphasise the qualitative components.
7 Qualification depends on the properties of QSTR calculi and is completely indepen-

dent of the QSTR application formulation in the previous section.



Determining whether a given constraint network is consistent is in general an
intractable task [8]. Importantly, not all applications actually need to check the
consistency of the input constraint networks as in many domains the input is
guaranteed to be consistent (e.g. given by CAD tools). We will therefore firstly
consider the case where input constraint networks are known to be consistent
a-priori.

3.1 Qualification When Input is a Consistent Atomic Network

We will firstly consider the case of atomic constraint networks that are known
to be consistent a-priori.8 Given two objects (for binary calculi) the pertinent
information about distinguishing between geometric configurations is given di-
rectly by the qualification operator. For example, in IA before(x,y) is defined as
x+ < y− (where t− and t+ are the start and end points of interval t respec-
tively), and in RCC8 EC(x,y) is defined as x ∩ y 6= ∅ ∧ i(x) ∩ i(y) = ∅ (where
i(r) is the interior of region r). The developer simply needs to review the qual-
ification operator (in practice, a software tool would be used to conduct this
analysis). Determining qualification of three or more objects (for binary rela-
tions) is simply the conjunction of the qualifications of each individual pair of
objects. Thus the set of geometric instances that satisfy q(R1(x1, x2)) is a super-
set of q(R1(x1, x2)∧ ...∧Rn(x2n−1, x2n)). Importantly, if R1(x, y) in isolation is
too coarse then by combining relations from different calculi the developer can
design rules that more closely approximate the necessary distinctions [15].

If the developer knows two geometric configurations that need to be distin-
guished then they can easily determine whether some combination of relations
is adequate.9 A calculus can distinguish two geometric configurations that are
described as a set T c

i of numerical expressions if q(T c
1 ) 6↔ q(T c

2 ). Furthermore,
the precise geometric configurations that are numerically distinct but qualita-
tively indistinguishable from a given geometric configuration T c are given by the
expression ¬q(T c) ∧ q−1(q(T c)) (where q−1 gives the numerical expression that
corresponds to the given qualitative expression, i.e. the inverse of qualification).

For example, a lighting designer wants to specify patches of light on walls
where two spotlights are directed. Their specific criteria are that the entire wall
is covered in light (with some light spillage) while no light patches overlap:
(1) Wall ⊂ L1 ∪ L2 (2) ∅ = i(L1) ∩ i(L2). This is qualified in RCC as: (1)
EC(L1, L2) (2) PO(Wall, L1) (3) PO(Wall, L2). The unwanted geometric con-
figurations are: ¬q(T c) ∧ q−1(q(T c)) = (Wall 6⊂ L1 ∪ L2) ∧ i(Wall) ∩ i(L1) 6=
∅ ∧ i(Wall)∩ i(L2) 6= ∅ ∧ i(L1)∩ i(L2) = ∅. The developer responds by adding a
new relation covered(w) ≡ ∀r ·C(w, r)→ ∃l · light(l)∧C(r, l). However, covered
cannot be calculated because it refers to arbitrary regions r connected to the

8 The consistency check is not performed thus avoiding the difficulties that some QSTR
calculi have in determining the consistency of atomic networks.

9 Qualitative calculi are jointly exhaustive and so every operator used to describe a
geometric configuration corresponds to one, or the disjunction of more than one,
qualitative relation.



wall w that have not been stored in the constraint network. Thus, the developer
includes another custom relation (computed during qualification before the con-
straint network is constructed): covers(w, r) ≡ r =

⋃
{ri|C(w, ri)}. Even though

ontologically RCC is very useful this additional analysis makes it clear that RCC
in isolation is not sufficient and helps to guide the developer in creating custom
relations.

3.2 Qualification When Input is a Consistent Non-Atomic Network

We now consider the case of atomic constraint networks that are known to be
consistent a-priori for which some ambiguous information is added making the
network non-atomic (for example, the world is only partially observable). Due to
weak composition some QSTR calculi cannot always determine when a relation
is impossible to instantiate i.e. the constraint network is consistent but not path-
consistent [6]. Thus the application may erroneously make inferences based on
impossible relations; clearly this is critical information for the developer. The
explicit non-extensional composition triads given by the QSTR community (e.g.
[6]) can provide the developer with meaningful information about the practical
limitations of the calculus and the behaviour of applications built using those
calculi.

We will use the following example to demonstrate that, due to weak com-
position, a calculus cannot always detect impossible relations. An art director
of The Gallery of the Accademia di Belle Arti in Florence wants to temporar-
ily exhibit a notable sculpture. The permanent gallery centrepiece is Michelan-
gelo’s David and the director wants to create a natural flow from David onto
the temporary exhibit to offer a unique, exciting perspective. However, the new
exhibit should not be immediately adjacent in case it distracts from the ini-
tial impact of David. There is some ambiguity in the design as the director
has not yet decided where to place the temporary exhibit. The developer en-
codes the following rules: (1) adjacent(x, y) ≡ EC(x, y) (2) accessible(x, y) ≡
∃w ·walkpath(w)∧EC(w, x)∧EC(w, y) (3) interference(x) ≡ ∃y ·exhibit(y)∧
adjacent(x, y) (4) surrounds(x, y) ≡ EC(x, y) ∧ convexHull(h, x) ∧ PP (y, h)
(PP is proper part). The floor plans are qualified as follows: (1) walkpath(W1)
(2) surrounds(W1, David). The new exhibit will be placed in the same space
as David to get the flow on effect: surrounds(W1, NewExhibit). The ques-
tion is whether this RCC representation is adequate. Notice that in this con-
text surrounds implies that one region fills the hole of another region; this
is a well known case of non-extensional reasoning in RCC. Thus, the appli-
cation alerts the director to the possibility that the subjective impression of
David is interfered with by the new exhibit although this is impossible as David
is surrounded by the walkpath W1. Without having a detailed understanding
of RCC this can be puzzling and frustrating to a user. The problem is that:
EC(David,WP1) ∧ EC(NewExhibit,WP1), so RCC8 erroneously infers that
EC(David,NewExhibit) is possible giving adjacent(David,NewExhibit) and
interference(David). Indeed, any non-extensional triads pose a possible trap
for the user and developer. After reviewing these triads (with the assistance of



QSTR application development tools) the developer can determine that other
relations in addition to RCC8 relations are required to formalise surrounds.

3.3 Qualification When Input is an Inconsistent Network

In this section we analyse the case where the constraint network presented to
the application is inconsistent in a way that is undetectable to the QSTR calcu-
lus. This covers a large number of real world application situations where there
are conflicting sources of information about a world description. For example, a
robot’s sensory inputs may be in conflict, or eye-witness reports of the scene of
a crime may disagree. Determining whether a constraint network is inconsistent
is an intractable task, and thus there is the possibility that the application will
process an inconsistent network without being notified by the QSTR calculi that
the network is indeed inconsistent. It is highly important that the software devel-
oper knows how the application will behave if an inconsistent constraint network
is undetected by the QSTR calculi, particularly for safety-critical applications.

In the previous two sections it was shown that the developer can determine
exactly which world descriptions are indistinguishable, and thus they can predict
the exact erroneous inferences that will be made. However, when networks are
potentially inconsistent developers can no longer predict the exact erroneous
inferences.10

Proposition 2. Any QSTR application inference can be made when a network
is undetectably inconsistent.

Proof. Let N be an inconsistent network that is determined to be consistent by
some calculus Q. Let e be an expression (constraint) that causes application A
to produce output α. Let N ′ be some network that satisfies e and for which
its vertex set is disjoint with the vertex set of N (no objects in common), then
N ′′ = N ′ ∪N is undetectably inconsistent by Q and A will erroneously produce
α. ut

This is a highly relevant property of QSTR calculi and developers need to
know about the types of networks in which reasoning is potentially erroneous.
The developer can then determine whether the risk of faulty reasoning under
those specific circumstances is acceptable or unacceptable.

Firstly we consider atomic networks. For some QSTR calculi (but not all)
algebraic closure is sufficient for determining consistency in atomic networks,
including IA and RCC8. However, Renz and Ligozat [5] have proven that cal-
culi that do not have a property called closure under constraints are not always
capable of detecting an inconsistent atomic network. This is precisely the infor-
mation that a developer needs to determine when an application may potentially
produce incorrect inferences. For example, an art director has over constrained

10 This means that the software developer cannot identify any vulnerable rule. It is
important to stress that this is a property of QSTR calculi and not the application
formulation in this paper.



the qualitative location of a light source that they are trying to place in their
gallery. However, due to the limitations of their particular chosen QSTR calculi
the fact that the atomic network is inconsistent has remained undetected. Based
on the location of the light, a number of faulty inferences are produced including
a design warning that the light source is visible as people enter the room and
thus distracts from the impact of the other exhibits. This causes the director
to needlessly spend considerable effort and time moving the exhibits around the
room to fine-tune the design when in fact the design is physically unrealisable.

Determining whether a non-atomic network is consistent is an NP-hard prob-
lem for all QSTR calculi [8]. However, some of the most prominent advances in
QSTR research have been the identification of maximal tractable subsets of a
given calculus [8, 7]. The non-atomic networks for which an application may
produce erroneous inferences is precisely the intractable subsets of the calculus,
and it is therefore the information about intractable subsets that is critical to a
developer. This concludes the analysis of QSTR calculi qualification and the pos-
sibility of an application producing erroneous inferences due to the qualification
and consistency-checking limitations of QSTR calculi.

4 Properties of QSTR Applications

We will now use the qualification and consistency-checking properties of QSTR
calculi presented in the previous sections to determine application complete-
ness and soundness. A QSTR application is complete if the set of application
inferences is always an improper superset of the set of correct inferences.

Proposition 3. QSTR applications are complete.

Proof. QSTR calculi are sound and therefore no correctly possible relations are
eliminated. Thus, the constraint network contains the set of actual relations.
QSTR applications make inferences based on all constraint network relations.
Thus applications make all inferences that use the set of actual relations. ut

Completeness is a very useful property of QSTR applications. It provides the
user with some certainty in the context of intractable reasoning problems; they
can be guaranteed that any inferences that the application did not make surely
do not hold. A QSTR application is sound if the set of application inferences is
always an improper subset of the set of correct inferences.

Proposition 4. QSTR applications are not sound.

Proof. Follows from the qualification analysis in Section 3. ut

QSTR applications are not sound as a result of the properties of the underly-
ing QSTR calculi. Thus, not all QSTR application inferences necessarily actually
hold.11 We will now show that in fact completeness only holds for inferences that

11 This mirrors the properties of Allen’s algebraic closure reasoning algorithm which is
sound but not complete, thus leaving a set of possible relations which is a superset
of the real set of possible relations.



require the constraint network to be consistent. Some applications may need to
produce particular outputs (i.e. inferences) only when the network is found to
be inconsistent. For example, when a robot detects an inconsistent network then
it knows that something is wrong with its sensors and may need to execute a
calibration routine to try to correct the sensor problem.

Proposition 5. QSTR applications are neither complete nor sound for infer-
ences on inconsistent networks.

Proof. First, non-soundness by example. Let an application produce α if the
network is both inconsistent and satisfies EC(x, y) ∧ EC(y, z) ∧ EC(x, z). Let
N be a non-atomic network that has been correctly identified as inconsistent
by the application, which also contains EC(A,B) and EC(B,C) where region
B completely fills a hole in A. RCC8 composition will erroneously infer that
EC(A,C) is a possible relation (i.e. this is an additional inconsistency that was
not detected by the application) and the application will erroneously produce α.
Second, non-completeness. Let N be an inconsistent non-atomic RCC8 network
such that algebraic closure cannot detect the inconsistency. Then no inferences
that hold in N when N is inconsistent will be produced. ut

Importantly, soundness of QSTR application inferences on an inconsistent
network obeys exactly the same principles as soundness of consistent network
inferences. That is, if a network is found to be inconsistent then we can guar-
antee that the network is actually inconsistent, and thus the cases where the
application inferences will be incorrect are exactly the same cases presented in
Section 3. Completeness of inferences on inconsistent networks depends on the
QSTR calculus correctly detecting when a network is inconsistent as discussed
in Section 3.3.

5 Conclusions

We have presented research that supports the development of applications that
incorporate QSTR calculi. We define QSTR applications as functions that ac-
cept spatial and temporal information, execute domain specific rules, and then
return relevant inferences as the application output. This definition is capable of
expressing all existing QSTR applications that the authors are aware of, and four
examples of existing QSTR applications were given. We analysed qualification by
considering four distinct cases based on whether the constraint network is atomic
or non-atomic, and whether the network is known to be consistent a-priori. This
analysis integrates major areas of research from the QSTR community such as
tractable subsets and weak-composition and identifies how developers can use
this research to assist in selecting appropriate calculi and developing domain
specific rules. The qualification results were then used to determine some basic
properties of QSTR application reasoning. We showed that when QSTR appli-
cations make inferences using consistent networks they are complete but not
sound, and when applications make inferences (intentionally) using inconsistent



networks they are neither complete nor sound. An important area of future re-
search is the human-computer interaction issue of enabling developers to analyse
qualification from application rules in a natural way (e.g. using graphical lan-
guages).

References

1. J. F. Allen, Maintaining knowledge about temporal intervals, Communications of
the ACM, 26, 832–843, (1983).

2. A. G. Cohn and J. Renz, Qualitative spatial reasoning, in Handbook of Knowledge
Representation, eds., Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter,
Elsevier, (2007).

3. D.A. Randell, Z. Cui, and A.G. Cohn, A spatial logic based on regions and con-
nection, in Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pp.
165–176, San Mateo, (1992). Morgan Kaufmann.

4. G. Ligozat, D. Mitra, and J.-F. Condotta, Spatial and temporal reasoning: beyond
allens calculus, AI Communications, 17(4), 223–233, (2004).

5. J. Renz and G. Ligozat, Weak composition for qualitative spatial and temporal
reasoning, in CP, ed., Peter van Beek, volume 3709 of Lecture Notes in Computer
Science, pp. 534–548. Springer, (2005).

6. S. Li and M. Ying, Region connection calculus: Its models and composition table,
Artif. Intell., 145(1-2), 121–146, (2003).

7. J. Renz, Maximal tractable fragments of the region connection calculus: A complete
analysis, in IJCAI, ed., Thomas Dean, pp. 448–455. Morgan Kaufmann, (1999).

8. B. Nebel and H.-J. Burckert, Reasoning about temporal relations: A maximal
tractable subclass of allens interval algebra, J. ACM, 42(1), 4366, (1995).

9. J. O. Wallgrun, L. Frommberger, D. Wolter, F. Dylla, and C. Freksa, Qualitative
Spatial Representation and Reasoning in the SparQ-Toolbox. Spatial Cognition,
4387 LNCS, 39–58, Springer-Verlag Berlin Heidelberg, (2007).

10. T. Hahmann and M. Gruninger, Detecting physical defects: A practical 2d-study
of cracks and holes, in AAAI Spring Symposium on Benchmarking of Qualitative
Spatial and Temporal Reasoning Systems, Palo Alto, Technical Report SS-09-02,
pp. 11–16. AAAI Press, (2009).

11. K. Nokel, Temporally Distributed Symptoms in Technical Diagnosis, volume 517
of Lecture Notes in Computer Science, Springer, 1991.

12. D. Wolter, F. Dylla, S. Wolfl, J. O. Wallgrun, L. Frommberger, B. Nebel, and
C. Freksa, Sailaway: Spatial cognition in sea navigation, in Advances in Artificial
Intelligence, 31st Annual German Conference on AI, vol. 22, no. 1. Kaiserslautern,
Germany: Springer, September 2008, pp. 28–30.

13. M. J. Egenhofer: Query Processing in Spatial-Query-by-Sketch. J. Vis. Lang. Com-
put. 8(4): 403–424 (1997).

14. C. P. L. Schultz, R. Amor, B. Lobb, and H. W. Guesgen, Qualitative design support
for engineering and architecture, Advanced Engineering Informatics, vol. 23, pp. 68–
80, (2009).

15. S. Wolfl and M. Westphal, On combinations of binary qualitative constraint calculi,
in 21st International Joint Conference on Artificial Intelligence, C. Boutilier, Ed.,
Pasadena, California, USA, July, pp. 967–973 (2009).

This article was processed using the LATEX macro package with LLNCS style


