
Methodologies for Qualitative Spatial
and Temporal Reasoning Application
Design

Carl Schultz
Department of Computer Science, The University of Auckland
Private Bag 92019, Auckland, New Zealand

Robert Amor
Department of Computer Science, The University of Auckland
Private Bag 92019, Auckland, New Zealand

Hans W. Guesgen
School of Engineering and Advanced Technology, Massey University
Private Bag 11222, Palmerston North, New Zealand

ABSTRACT
Although a wide range of sophisticated qualitative spatial and temporal reasoning (QSTR)
formalisms have now been developed, there are relatively few applications that apply these
commonsense methods. To address this problem we are developing methodologies that support
QSTR application design. We establish a theoretical foundation for QSTR applications that
includes the roles of application designers and users. We adapt formal software requirements that
allow a designer to specify the customer’s operational requirements and the functional
requirements of a QSTR application. We present design patterns for organising the components
of QSTR applications, and a methodology for defining high level neighbourhoods that are derived
from the system structure. Finally, we develop a methodology for QSTR application validation
by defining a complexity metric called H-complexity that is used in test coverage analysis for
assessing the quality of unit and integration test sets.

1.0 INTRODUCTION
Over the last two and a half decades researchers have made significant progress in the theoretical
foundations and analysis of qualitative spatial and temporal reasoning (QSTR) calculi, and a
range of commonsense formalisms have now been developed for representing and reasoning
about different aspects of space and time (Cohn & Renz, 2008). Moreover, while many QSTR
formalisms have been shown to be NP hard, maximal tractable subsets of well known calculi
have been identified (Nebel & Bürckert, 1995; Renz, 1999) and automatic methods for finding
tractable subsets have been developed (Renz, 2007), thus informing a user about the classes of

problems that are practical to solve. Techniques have also been developed that greatly improve
reasoning performance (Westphal & Wölfl, 2009; Li et al., 2009).

Despite this theoretically advanced state of the field, there is a distinct absence of applications
that make significant use of QSTR formalisms. There are five critical barriers to QSTR
application design that have not yet been addressed.

1. QSTR researchers have not clearly identified the characteristics of the problems that can
be uniquely addressed by QSTR applications.

2. In many cases, no pre-existing QSTR formalism will perfectly and completely satisfy the
requirements of an application. In most cases the designer will need to formalise domain
knowledge, and design complex, heterogeneous models that build on top of a mix of
different existing QSTR formalisms.

3. There is no methodology for developing QSTR applications, and even researchers in the
field currently develop QSTR applications in a very ad hoc manner.

4. There are no methodologies for analysing QSTR applications, and therefore no way to
make informed design decisions. This contributes to the problem of ad hoc QSTR
application development.

5. Making QSTR accessible means having designers from outside the field applying QSTR,
that is, the designers will not be experts in QSTR. Design methodologies derived from
concepts in software engineering are required to bridge the gap between expert QSTR
logicians and application designers from other disciplines.

We address these issues in this chapter with specialised methodologies for QSTR application
design, motivated by research in software engineering, knowledge representation, artificial
intelligence, and finite model theory. Section 2 reviews unifying frameworks and development
tools in related areas and establishes a theoretical foundation for QSTR applications. Section 3
identifies the salient characteristics of QSTR applications that are the focus of our design
methodologies. Section 4 characterises the problems that QSTR applications address and
enumerates the tasks that they can perform, by adapting formal software requirements from
software engineering. Section 5 presents design patterns for organising the components of
QSTR applications, and Section 6 presents a methodology for defining high level neighbourhoods
that are derived from the system structure. Section 7 presents a methodology that supports
designers in QSTR application validation by identifying important classes for unit testing and
integration testing based on a novel measure of complexity. Sections 8 and 9 present the future
work and conclusions of this chapter.

2.0 BACKGROUND
A number of unifying QSTR frameworks are now being developed in order to make the field
more cohesive and accessible. Three prominent projects are SparQ (Dylla, 2006), GQR
(Gantner, 2008), and an investigation into formal algebraic properties (Ligozat, 2004). Although
developing a library of efficient and robust implementations of QSTR calculi is a necessary step
in making these formalisms more accessible, this does not directly address the five key problems
given in the introduction.

Researchers in the related field of qualitative reasoning (QR) have developed a workbench
software application called Garp3 (Bredeweg, 2007) to support the process of designing and
reasoning with qualitative models. Note that QR is distinct from QSTR as it is primarily
concerned with treating scalar quantities in a qualitative discrete way, rather than directly

modelling commonsense spatial and temporal relationships. Garp3 is an integrated development
environment for designing and reasoning about qualitative models of physical systems. The
motivation for Garp3 is identical to the problems that the QSTR field currently encounters,
namely that wider audiences can be reluctant to employ the advanced methods for modelling
qualitative physics that have been developed (although this problem does not appear to be as
significant as with QSTR, for example (Iwasaki, 1997)). The central aim of Garp3 is to
overcome this inertia by supporting modellers in specifying and reasoning about qualitative
models in a graphically based, user-friendly, homogeneous workbench. A QSTR equivalent to
Garp3 would be highly desirable.

In the field of software engineering the well known Unified Modelling Language (UML) is
used to specify and visualise object oriented software systems (Pooley, 2004). UML is
particularly relevant because it is well known within the software engineering community, and
thus by adapting UML concepts (such as use cases and object classes) we can help to bridge the
gap between software engineers and QSTR logicians.

According to standard software engineering practices, formal software requirements are
necessary for software development and validation (Burnstein, 2003). Defining equivalent
formal requirements for QSTR applications may also be necessary for the development of
powerful QSTR based applications. Five standard requirements categories are operational
requirements, functional requirements, performance requirements, design requirements, and
allocated requirements (SETC, 1984). In Section 4 we adapt two of these requirements, namely
customer’s operational requirements and functional requirements, to the QSTR application
domain. We also provide methodologies adapted from UML to support the designer in
specifying QSTR application requirements.

2.1 Definition of QSTR Applications
Informally, QSTR applications model, infer, and check the consistency of object relations in a
scenario. We will define QSTR applications in terms of model theory (Marker, 2002;
Hodges, 1997) and then define the roles of QSTR application designers and users.

We use the notation ↑ to represent the exponent operator, x↑y=xy. In model theoretic terms, a
language L (or vocabulary, or signature) is a finite set of relation symbols R and arities aR for
each R∈R. A model M of language L (or L-structure, or interpretation) consists of a universe U
(or domain, or underlying set) and for each relation symbol R∈R there is a set RM ⊆ U ↑aR. That
is, M provides a concrete interpretation of the symbols in L based on the underlying set U.
Finally, a scenario (or configuration, or substructure) is a model V that can be embedded into M,
that is, an injective homomorphism f:V→U exists such that, for each R∈R with arity a,

∀ v1,…,va∈Va ⋅ (v1,…,va)∈RV ↔ (f(v1),…,f(va))∈RM.

A QSTR application has a language L that specifies the set of relation symbols that the

designer has deemed relevant to the task at hand. The model M of a QSTR application is the
interpretation of the relations, implemented using first order constraints between the relations
(what objects must, or must not, exist in different combinations of relations). For each relation
type R∈R with arity aR, and for each tuple of arity aR, the relation either holds, does not hold, or
is not applicable for that tuple. Thus, for each relation symbol R∈R in the language, a QSTR

application model M requires three sets, RM
+ (holds), RM

− (does not hold) and RM
~ (not

applicable), with the axiom

Axiom 1. ∀ R∈R ⋅ U ↑aR = RM

+ Δ RM
− Δ RM

~,

where Δ is symmetric difference (the set theoretic equivalent of mutual exclusion). For brevity
we will omit the M and simply write R+.

A QSTR application designer is responsible for determining the application language and
model, given formal software requirements. This involves selecting an appropriate set of relation
symbols and encoding an appropriate set of constraints. Appropriateness means satisfying
specific test criteria and conditions on metrics that imply that the software requirements have
been met. A QSTR application user constructs scenarios in a QSTR application by specifying a
model V and employing reasoning to accomplish tasks such as determining scenario consistency
with respect to the model M, envisioning potential future scenarios, and so on (a complete set of
basic QSTR application task types with respect to this model of QSTR applications is presented
in Section 4). Table 1 summarises the relationship between model theory, QSTR applications,
and actor roles.

Model
Theory

QSTR Application
Domain Actor

language L specification of useful
qualitative relations

QSTR
application designer model M

based on L
constraints that determine
the interaction between the
relations

model V
based on L
embedded in M

Using a QSTR application to
represent and reason about
objects.

QSTR
application user

Table 1. Comparing the domains of model theory, QSTR applications, and the roles of QSTR
application designers and users.

Often parts of the user’s scenario are indefinite or unknown, and reasoning with the

application constraints is used to help resolve this ambiguity. For each relation R∈R, the user
can place tuples (of objects from V) with arity aR in a fourth indefinite set, RM

? that is mutually
exclusive with the three corresponding definite sets. This partial scenario is a shorthand for
specifying a set of models V1,…, Vn each representing a possible scenario.

An example of a scenario is

V={kitchen, lounge, study},
adjacent+ ={(lounge, study), (lounge, kitchen)},
adjacent? ={(lounge, lounge), (study, lounge), …},
adjacent− ={},
adjacent~ ={}.

The adjacent relation can be defined as symmetric using the constraint {(x,y) | (y,x) ∈

adjacent+} ⊂ adjacent+. The LHS of the constraint as evaluated in the scenario is {(study,lounge),

(kitchen,lounge)}. The RHS as evaluated in the scenario does not contain these tuples as required
by the proper subset relation, and so reasoning moves the offending tuples out of adjacent? and
into adjacent+ thus satisfying symmetry.

2.2 Fundamental Operations on QSTR Scenarios
In this section we use our model theoretic definitions to derive the complete set of fundamental
operations that can be performed on a QSTR application model. In Section 4 we combine these
operations to enumerate a set of basic purely qualitative tasks, and show how the application
designer can use this information to determine their software requirements, and to develop their
QSTR application.

Given a partial scenario, what operations can be performed on the model theoretic structure?
The features involved are language symbols, constraints, the scenario universe, and the collection
of sets that interpret the relation symbols. The relation symbols and constraints are determined at
QSTR application design time and so are fixed when reasoning about scenarios. Once a partial
scenario has been specified, either the user has declared all the relevant objects, and thus the set is
also fixed, or objects may appear and disappear from the set (e.g. in dynamic scenarios). Thus,
the only component that is variable in all scenarios is the set of interpreting models, that is, which
models are included and which models are excluded from the partial scenario (although the
models themselves are immutable). Furthermore, in some applications the set of objects may also
be variable. This leaves only three fundamental operations that can be performed on a qualitative
(partial) scenario:

• selecting subsets of tuples in the partial scenario,
• refining the partial scenario by eliminating particular complete scenarios, and
• editing the set of objects in the scenario.

Therefore, all QSTR application tasks can be defined as a series of tuple selections, partial
scenario refinements and scenario universe edits. Table 2 illustrates a comparison between actor
roles, variable components, and permitted operations on QSTR scenarios.

L
M V’ permitted operations

 M RM V Rα
V R?

V select
tuples

refine
scenario

edit
objects

application
design v v v n/a n/a n/a n/a

scenario
design c c c v v v n/a

scenario
reasoning

c c c c c v
c c c v c v

Table 2. Defines permitted fundamental operations on QSTR scenarios based on the combination
of components that are variable. The left hand column assigns actor roles to variables available.
Variables are represented by v, constants by c, non-applicable components by n/a, available
operations by , and unavailable operations by . Partial scenario models distinguish between
definite relations where α={+,−,~}, and indefinite relations.

3.0 CHARACTERISTICS OF QSTR APPLICATIONS

This section presents four central properties of QSTR applications. We argue that methodologies
for the development of QSTR applications must focus on supporting the designer in these four
areas.

3.1 Reasoning Across a Broad Range of Abstraction Levels
QSTR applications often employ a broad range of abstraction levels in the same model. For
example, a QSTR application can model very abstract high-level emotional responses and very
low-level concrete spatial configurations of light fixtures, compared to a numerical GIS database
that simply stores numerical descriptions of features (points and lines describing a polygon for a
region). QSTR application designers require special techniques for rapidly designing and
validating models that have a very layered and hierarchical structure. Section 5 presents the
concept of fragments and two design patterns for organising QSTR application relations.

3.2 Continuity Assumption And Neighbourhoods For Changing Scenarios
QSTR relies heavily on the concept of continuity, stating that temporal and spatial objects cannot
morph and translate discontinuously, but must change in a continuous fashion. A fundamental
relationship exists between continuity and compositional reasoning (the prominent reasoning
mechanism for standard QSTR calculi), and is used directly in critical QSTR tasks such as
envisioning. Continuity is formally defined using conceptual neighbours and neighbourhood
graphs (Freksa, 1992).
 The standard definition of conceptual neighbours is (Cohn, 2008), R1 and R2 are conceptual
neighbours if it is possible for R1 to hold over a tuple of objects at one point in time, and for R2 to
hold over the tuple at a later time, with no other mutually exclusive relation holding over the tuple
in between. A neighbourhood graph has one node for each relation R∈R and an edge between
two nodes if the corresponding relations are neighbours. Section 6 generalises the definition of
conceptual neighbours to apply to QSTR applications, and presents a methodology for designers
to customise their conceptual neighbour definitions.

3.3 Modelling Infinite Domains
QSTR application models typically have infinite domains, in contrast to, for example, relational
database models and constraint satisfaction programming (CSP) models which typically have
finite domains (Cohn & Renz, 2008). This significantly complicates the process of validating a
specific QSTR calculi's reasoning mechanism so that even expert logicians find this to be a non-
trivial task (Wölfl et al., 2007).

When considering the perspective of QSTR applications, two further problems are that QSTR
applications are significantly more complicated than a given calculi, and the application designers
are not necessarily expert logicians. Thus, more practical software engineering based approaches
to validating constraints over infinite domains are required for QSTR applications. Section 7
presents novel test coverage metrics for QSTR application validation by adapting complexity
measures and techniques from finite model theory.

3.4 Reasoning About Objects in Multi-Dimensional Models
QSTR applications very often model multi-dimensional structures. Prominent tasks that use
qualitative reasoning, particularly composition, apply transitivity to determine whether a scenario
is consistent, and thus rely on relations having an ordering. In QR relations map to scalar one
dimensional quantities, and thus have an obvious total order. On the other hand, spatial scenarios

often apply at least two dimensions, thus admitting only partial orderings. Temporal scenarios can
also apply multiple dimensions in the form of branching and parallel time streams, resulting in a
partial ordering of events.

Multi-dimensional models significantly complicate the design of qualitative reasoning
methods, as the designer needs to determine the structure of the partial ordering to employ
transitivity. This issue is the focus of future research.

4.0 FORMAL SOFTWARE REQUIREMENTS FOR QSTR APPLICATIONS
In this section we adapt two standard formal requirements from software engineering, namely
customer’s operational requirements and functional requirements, to the QSTR application
domain.

4.1 Customer’s Operational Requirements
Customer’s operational requirements define the essential needs of the customer (SETC, 1984). In
particular, operational requirements specify

• the context of deployment,
• the typical environment in which the application must function correctly,
• how the application will address the current problem (mission profile),
• the critical aspects of the application,
• how the application will be used,
• the application’s minimum allowable efficiency required to solve the problem, and
• the operational life cycle.

 We now define critical characteristics of QSTR problems, and show how these characteristics
determine the customer’s operational profile. By considering how each of these characteristics
relate to the problem at hand, the designer can formalise the requirements of the application.
Figure 1 illustrates an appropriate sequence for considering some of the application
characteristics based on their dependencies. The collection of characteristics presented below has
been developed from an analysis of the formal definitions of QSTR applications, for example to
determine what aspects of a model can vary between applications, such as initial or ongoing
dependency, and a review of QSTR literature, for example to determine the different
environments for which researchers have developed calculi.

Figure 1. QSTR problem characteristics, ordered according to the dependencies between
characteristics.

initial

ongoing

develop

query

both

change

static

monotonic

non-monotonic

stable

volatile

Model
dependency

Task
categories

Model
lifetime

Model
stability

Model
change

 Model dependency: the duration of dependency on the working model during the problem
solving process. A problem may only have initial dependency, where all the information required
for processing is initially available, for example, checking the qualitative consistency of an
existing spatial database. Alternatively other problems require information that is not initially
available and thus the dependency on the working model is ongoing, for example, checking the
consistency of a spatial database whenever modifications are made.
 Task categories: QSTR tasks fall into two basic categories, either querying the model or
developing the model. Further task details are specified in the functional requirements.
 Model lifetime: the state of the application’s working model over its lifetime. Once initialised
the working model may never change, for example, bootstrapping a robot with a qualitative
description of an environment on which the robot runs qualitative queries for accomplishing
navigation tasks. Alternatively, the working model may change, for example, if a robot performs
simultaneous qualitative location and mapping.
 Model change: models either change monotonically or non-monotonically.
 Model stability: the frequency of changes that occur to a model. Models are either stable and
changes occur rarely, or volatile and changes occur frequently.
 Element relationships: elements in a model can have simple relationships, with only
superficial or limited interaction, for example, a GIS application that describes the qualitative
spatial relationships between arbitrary features in terms of orientation and proximity.
Alternatively, model elements can have complex relationships, with a lot of significant interaction
and strong dependencies, for example, a town planning GIS application that incorporates a high
degree of semantic content about the types of buildings being modelled, and constraints between
buildings such as ensuring all residences are suitably accessible from some fire station.
 Spatial Granularity: the spatial context of the application model primarily defined by the
scale. Basic categories of environments for which existing QSTR calculi have been designed to
reason about, ranging from smallest to largest, are: hand (e.g. inside a pencil case), desktop,
indoor, outdoor (e.g. a sports field), neighbourhood, geographical, and astronomical.
 Spatial Dimensionality: the number of dimensions used to model spatial relationships,
typically a combination of one, two, or three dimensions, and may also model arbitrary
dimensions.
 Spatial and Temporal Entities: the context of the application model in terms the entities being
modelled. This includes time points, time intervals, spatial points, spatial intervals (directed or
undirected), and spatial regions.

While this set of characteristics is likely to be incomplete, it establishes a methodology for
specifying the customer requirements of a QSTR application. Future research will focus on
expanding the list of characteristics, and determining which characteristics are the most
significant.

4.2 Functional Requirements
Functional requirements define what tasks the system needs to be capable of performing, and how
the system will behave during execution (SETC, 1984). These requirements are specified as the
inputs, behaviours, and outputs of system components. In this section we enumerate the basic set
of purely qualitative tasks that includes tasks commonly found in the QSTR literature. The set of
basic QSTR tasks are derived by considering all possible sequences of operations that can be

performed on the application parameters, namely the set of relations, constraints, and the
universe. Therefore, this derivation defines the exact extent to which QSTR can be applied, and
thus provides a standard with which a software developer can determine, firstly, whether or not
QSTR is applicable to their problem, and secondly, what specific qualitative tasks may be
suitable for their problem.

4.2.1 Deriving Standard QSTR Tasks Using Fundamental
Operations
We define a task as a sequence of operations on a mathematical structure. The set of basic QSTR
tasks is established by considering sequences of operations that can be performed on the
parameters of a scenario in a QSTR application.
 As presented in Section 2.1, an application has a set of relations R and constraints C. A
scenario consists of a universe V and a set of relation state sets R. As presented in Section 2.2, the
fundamental operations that can be applied to scenarios are selection, refinement and editing the
scenario universe (adding or removing objects). The select operator can only be performed on
application parameters, i.e. R, C, and V. During application runtime the only variables are V and
the relation state sets. This limits the number of task categories that can be performed, which will
now be enumerated. Table 3 presents a summary of the basic tasks and their associated model
parameters.
 The most basic task is to simply execute a selection operation. Querying is used to isolate
relevant subsets of a model. For example, in (Qayyum & Cohn 2007) the authors use a qualitative
description of images (adapted from Allen’s interval calculus) to provide a method for searching
through an image database based on semantic content. TreeSap (Schultz, et al. 2007) is a
geographic information system that accepts qualitative queries such as “find all bus stops near
Downtown” and displays objects that meet the given criteria.
 In many cases, a QSTR application user may not have complete information about the criteria
of the query that they want to execute, for example, a robot reasoning with noisy sensor readings
(Dylla & Wallgrün, 2007). It may be the case that certain conditions are more flexible than
others, and moreover, if a user executes a query that returns no results, then it would be highly
desirable for the user to be able to relax the conditions of their query in an intuitive way, e.g.
(Schultz et al., 2006; Guesgen, 2002). Query relaxation accepts relations that are within a
threshold neighbourhood distance of the given target relation through graph G. Because selection
is a fundamental operation, all QSTR tasks can be relaxed using this approach, such as relaxed
consistency checking and relaxed inference. Conceptual neighbourhoods provide an ideal
mechanism for query relaxation because they encode the structure of relations based on
continuous change. Thus, relations that are physically similar will have a smaller distance through
the neighbourhood graph.
 The next basic task is applying refinement and universe edits. Modify changes a partial
scenario by either eliminating possible scenarios (refinement) or by adding or removing objects
from the universe (universe edit).

 The next task builds on the previous querying task by testing conditions on the returned
subsets, for example to check the consistency of a scenario with respect to the application
constraints. Consistency checking ensures that the model does not break any application
constraints. The model is contradictory if an inconsistent subset (with respect to some application
constraint) contains definite tuples, or if an indefinite subset still violates the constraint regardless
of how the indefiniteness is resolved.

 The next basic task is to execute a check consistency task and then refine the model based on
the condition results. Inference accepts a partial qualitative description of a model as premise
information and infers as much about the indefinite components of the model as possible
(typically by composing relations to approximate path-consistency), i.e. deductive closure.
Inference typically applies the check consistency and modify tasks to identify and eliminate
inconsistent possible scenarios from a partial scenario description, that is, moving tuples out of
indefinite relations R? and into definite relations.

These basic tasks are very general and can be employed in any QSTR application. The
following sections build on these basic tasks by formally characterising more specialised QSTR
tasks for models that contain two or more scenarios. In these cases reasoning is applied to the
relationship between partial scenarios in a group, and the type of ordering between scenarios is
critical for determining the tasks that can be performed.

Task Parameters

involved
Formal description State diagram

Query. Isolates relevant
subsets of a model.

Select:
R, C, V

Select from R, C, V such that
conditions are satisfied (specified
using R, C, V).

Query relaxation.
Accept relations that are
within a threshold
neighbourhood distance
of the given target
relation.

Select:
R, C, G, V

Select from R, C, V such that
conditions are satisfied (specified
using R, C, V), and relations are
within threshold distance through
specified graph in G.

Modify. Changes a
partial scenario.

Modify:
V

Refine R by eliminating possible
scenarios or edit the universe U by
adding or removing objects.

Check consistency.
Ensures that the model
does not break any
application constraints.

Query:
R, C, V

Execute a query (using R, C, V) and
then test conditions on the result
(specified using R, C, V).

Infer. Manipulates the
model based on premise
information.

Check:
R, C, V

Execute a consistency check.
Terminate if check passes, or fails
and cannot be corrected. Otherwise,
modify the model to correct the fail
and repeat from start.

Table 3. Tasks that can be performed on a scenario with respect to the underlying parameters. In
the state diagram, states are black circles, tasks (composed of states) are ovals with a task label,
terminating states are double-lined circles, arrows are state transitions annotated with QSTR
operations, and the arrow with no source state is the task entry point.

select

chk cons.

modify
pass

fail
uncorrectable

query

pass

fail

edit U

refine

4.2.2 Deriving QSTR Tasks For Multiple Scenarios
Given two or more scenarios we can formally characterise a number of QSTR tasks. Sequences of
scenarios representing change can refer to a change in space (e.g. zooming into a map and
increasing the resolution) or a change in time (e.g. modelling a car travelling down a road). Tasks
that specifically apply to sequences of scenarios are envisioning, diagnosis, and checking
consistency. Two general multi-scenario tasks are merging scenarios and splitting scenarios.

Checking the consistency of a sequence of scenarios is determining whether the sequence is
valid with respect to neighbourhood graphs. That is, for each tuple that has a relation state
change in R1 from does not hold to holds, there is a relation R2 that holds in the previous scenario
state, and an edge from R2 to R1 in a neighbourhood graph.

Envisioning is the generation of potential successor scenarios based on the conceptual
neighbourhood graph. Envisioning is with respect to either (a) time, by forecasting into the future,
or (b) space, by increasing the resolution of the model. Given a scenario, envisioning to depth n
is the set of consistent sequences of length n.

Refined envisioning selects a subset of the set of consistent sequences. For example,
contextual information can be used to determine the most likely sequence of scenarios. Refined
envisioning makes it possible to generate scenarios that are a greater number of steps away from
the initial scenario. Contextual information includes conditional probabilities with respect to the
current scenario state (e.g. a cup is very likely to fall if it is not on top of some other object like a
table), conditional probabilities with respect to previous scenario states (e.g. trajectories), and
domain knowledge about the movement patterns and behaviour of specific objects (e.g. in a
predator-prey scenario it is more likely that a predator will follow prey, rather than simply follow
a trajectory (Van de Weghe, 2006)).

Diagnosis is the inverse of envisioning by generating potential predecessor scenarios based on
the conceptual neighbourhood graph. Similarly, refined diagnosis is the inverse of refined
envisioning. Also, see (Bhatt, 2007).

Completing sequences accepts an incomplete sequence of scenarios (i.e. a sequence that has
gaps where some scenarios are missing) and applies a combination of envisioning and diagnosis
to determine potential scenarios that can complete the sequence consistently.

Merging is the union of two scenarios and is applied when the mapping of objects between
two scenarios is not known. The key challenge is to identify and pair off objects that appear in
both scenarios by applying matching criteria with respect to qualitative relation states and the
relative perspectives of the agents involved. This task can be useful for combining multiple
perspectives of the same scenario, for example, from a number of different autonomous agents.
Changing space and time can also be parameters as follows:

1. Merging snapshots of a dynamic scene. For example, a robot attempting to label dynamic
objects across a sequence of sensor readings by referring to conceptual neighbourhoods
to decide what sequence of qualitative relations is more likely to belong to a single
object, such as correctly labeling which object is the 'coffee cup' and which object is the
'spoon' in each scenario snapshot.

2. Merging snapshots of a scene taken at different granularities. For example, combining
satellite images taken at different heights, such as correctly labelling which object is the
'mountain' and which object is the 'house' in each scenario snapshot.

Splitting is the inverse of merging, where a scenario is divided into two possibly overlapping
scenarios. Splitting can be used, for example, where agents do not need to maintain global
information about a scenario and instead can efficiently specialise in certain parts of a scenario.

4.2.3 Characterising QSTR Application Execution Behaviour
In this section we establish a template for the behaviour of QSTR applications based on the
purely qualitative tasks from Section 4.2.1. Software developers can use this to characterise their
application by explicitly incorporating task requirements into its behaviour.
 Figure 2 (left) illustrates the statechart diagram describing the generic behaviour of QSTR
applications during execution, derived from the tasks in Table 3. States represent how the
application is manipulating the model. During the model development state, inference tasks refine
the model and edit scenario universes. During the model querying state, querying and check
consistency tasks isolate and compare relevant parts of the model. Model changed occurs when
an agent external to the reasoning process modifies the model, such as a user updating
geographical data, or a sensor delivering new information. Figure 2 (right) shows the underlying
low level model operations that are performed in each state.

Figure 2. QSTR application behaviour during the execution of a software application. (left)
Statechart diagram of an executing QSTR application where circles represent states, arrows
represent possible state transitions, and the arrow annotations describe the effect of the
transition on the QSTR system. (right) Substitution of low level state diagrams from Table 3
specifying fundamental model operations (arrows without annotation indicate that a sub-task has
been completed).

This template represents all possible QSTR application behaviour patterns, and all possible

QSTR tasks are definable as a sequence of fundamental operations. The significance is that, if the

select

model
development

model
querying

execute reasoning,
send result to user

update
model

go
online

execute reasoning,
refine model with result

startup

shutdown

initialise
model

terminate

terminate

select

(contradiction)

(consistent)

(model
declared)

edit V

refine

(model
changed)

designer requires a task that is not a sequence of the fundamental QSTR operations then no QSTR
application will be able to satisfy the designer's software requirements.

5.0 STRUCTURING QSTR APPLICATIONS
Certain relations in QSTR application models can often be grouped together, because they refer
to a similar aspect of a domain at the same abstraction level. Moreover, relations within a group
often share a constraint such as mutual exclusivity, symmetry, having inverse pairs, and so on.
To help manage the various abstraction levels being modelled and to speed up the design process,
the application designer requires a methodology, analogous to design patterns, for grouping and
organising the relations and expressing constraints over these groups.

In the area of qualitative reasoning (QR) about physical systems the term model fragment
refers to modular, partial models composed of different components, and can be reused and
extended in other models (Iwasaki, 1997). The concept of a qualitative reasoning fragment is
very appropriate for representing groups of QSTR relations, and will now be adapted to QSTR
applications.

In QSTR applications, a fragment is simply a group of relations and their constraints. For
example, Allen's (1983) thirteen interval relations and their constraints (mutual exclusivity and
the operators for inversion and composition) form a fragment that can be reused in QSTR
applications. Relations within fragments often share properties. The designer can specify
constraints so that they apply to all relations in a fragment, rather than explicitly enumerating the
constraints for each combination of relations. The following sections present two design patterns
for structuring fragments, fragment definitions and fragment specialisations. Note that we follow
the Portland Form design pattern format (Cunningham, 1995): <problem description
(paragraph text)> Therefore: <solution description (paragraph text)> <solution examples>.

5.1 Design Pattern: Fragment Definitions
Relations in one fragment can be tightly associated to relations in a collection of other fragments
because they refer to the same concept in the domain, but at different levels of abstraction. The
designer might notice that each higher level concept is composed of collections of lower level
concepts. That is, the lower level relations represent properties or attributes, and specific
combinations of these properties realise some particular higher level concepts.

Therefore:
Designate the higher level fragment as the abstraction domain, and the lower level fragment as
the reference domain. For each abstraction domain relation, select a subset of reference domain
relations that together describe or define the higher level relation; this subset is a definition of the
higher level relation.

Firstly, note that there can be more than one definition for each higher level concept.
Secondly, each subset should be a minimal subset, that is, if any of the lower level relations are
removed from the definition then the subset no longer accurately describes the higher level
concept. This encourages the designer to create multiple precise definitions that can overlap,
rather than a smaller number of fuzzy definitions.

For each definition, specify a constraint of the form:
<conjunction of reference domain relations in the definition>
is an improper subset of
<the higher level relation>.

For example, a mountain image is an image with more mountains than sky, and more sky than
grass. To express this, the designer can define two fragments, one for qualitative image
categories, including the relation mountain, and another for qualitative differences in features of
an image, including “mountain > sky” and “sky > grass”. The conjunction between fragments is
then implemented with the constraint

{x|x∈”mountain>sky”+ ∧ x∈”sky>grass”+}⊆{y|y∈mountain+}.

5.2 Design Pattern: Fragment Specialisation
Relations in one fragment can be tightly associated to relations in exactly one other fragment
because, again, they refer to the same aspect of the domain, but at different levels of abstraction.
The designer may notice that the difference between two fragments is an issue of granularity, so
that relations in one fragment are a coarse, incomplete, ambiguous, or generalised representation
of relations in another, more fine grained fragment

Therefore:
Designate the higher level fragment as the abstraction domain, and the lower level fragment as
the reference domain. For each abstraction domain relation, select a subset of reference domain
relations that individually represent the same concept as the abstraction domain relation, but to a
more precise degree; this subset is a specialisation.

Firstly, there is always exactly one specialisation subset for each higher level relation.
Secondly, two specialisations for two different high level relations can overlap. Thirdly, each
subset should be a maximal subset, that is, if any lower level relations are not included in the
subset then in no way do they refine the higher level relation. This ensures that a specialisation
represents all possible refinements of a high level concept, and tends to prevent the designer
ruling out potential, albeit improbable, refinements, which would compromise reasoning
soundness. Following this strategy, a designer can clearly identify when a high level relation is
too coarse or general (i.e. the specialisation subset is too large), and may decide to either partition
the overly general relation into different relations within the abstraction domain, or introduce an
entirely new intermediate abstraction layer fragment.

For each specialisation, specify a constraint of the form:
<disjunction of reference domain relations in the specialisation>
is an improper subset of
<the higher level relation>.
For example, consider the incomplete temporal information that “Mozart is older than

Beethoven”. In Freka's semi-interval calculus (Freksa, 1992), a time interval t1 is older than time
interval t2 if t1 started before t2. This semi-interval knowledge says nothing about the relationship
between the endings of the two time intervals. Thus the high level semi-interval relation older
than can potentially be refined to one of the following interval relations: before, meets, overlaps,
finished by, or contains. The disjunction of relations is implemented with the constraint

{(t1,t2)|(t1,t2)∈before+∨…∨(t1,t2)∈contains+}⊆{(u1,u2)|(u1,u2)∈older than+}.

6.0 DESIGNING NEIGHBOURHOODS OVER FRAGMENTS
In Section 3 we discussed how continuity about spatial and temporal change is a standard
assumption in QSTR, leading to conceptual neighbours. Cohn's definition of conceptual
neighbours is that “...[a] pair of relations R1 and R2 are conceptual neighbors if it is possible for

R1 to hold at a certain time, and R2 to hold later, with no third relation holding in between”
(Cohn, 2008).

Ideally the designer would want their expected neighbourhood for relations in a higher-level
abstraction domain fragment to be consistent with the neighbourhood of relations in the
associated reference domain fragment. Alternatively, the designer should be able to derive
neighbourhoods for a group of relations if no other neighbour information is available. However,
a number of issues arise when considering neighbourhoods that are derived from the relationship
between fragments. For example, in many cases standard neighbour definitions permit all high
level concepts to be neighbours, producing an ineffective neighbourhood graph.

This section presents a methodology for defining high level neighbourhoods that are
consistent with the structure of fragments in a QSTR application. We define conceptual
neighbours in terms of fragment constraints, and focus neighbour tests by applying two novel
aspects of conceptual neighbours: path restrictions and equivalence classes. Once the designer has
decided on an appropriate definition of a neighbour, then a neighbourhood graph can be
generated.

6.1 An Illustrative Running Example
The following running example will be used to explain the problems with the standard
neighbourhood definition when applied to fragments, and the novel neighbourhood definitions
that overcome these limitations. Figure 3 illustrates a reference domain fragment f2 that includes
eight mutually exclusive relations R1,…R8 and six mutually exclusive relations R’1,…,R’6 each
having a simple totally ordered conceptual neighbourhood. Each vertex in the grid illustrated in
Figure 3 (right) represents a valid conjunction of relations in f2, called the fragment definition
space. An abstraction domain fragment f1 includes three relations Rx, Ry, Rz (black, striped, grey
respectively in Figure 3), and each of these relations has a set of fragment definitions in f2, shown
by the filled vertices in the grid.

Figure 3. Reference domain fragment f2 containing relations R1,…,R8 and R’1,…,R’6 with simple
ordered neighbourhoods (left). The fragment definition space (right) consists of fragment
definitions that specify one relation from R1,…,R8 and one relation from R’1,…,R’6. The
abstraction domain fragment f1 contains three relations Rx (black), Ry (striped), Rz (grey), that
have fragment definitions in f2 illustrated in the fragment definition space (right).

R1

R8

:

R’1

R’6

:

R1 R8 …
R’1

R’6

:

6.2 Defining Conceptual Neighbours as Transitions Between Low Level
Relations
Conceptual neighbours are derived from fragment definitions by defining transitions. First,
transition via the neighbourhood graph is defined. Given two relations Ri, Rj from a fragment, a
transition via the neighbourhood graph g, written Δg(Ri, Rj), is a sequence of relations that is a
path in g, from Ri to Rj. Note that there may be more than one path, and that paths can contain
cycles.

Next, transitions via fragment definitions is defined. Let a fragment definition of relation R,
written σc(R) where c is the constraint that implements the definition as described in Section 5.1,
be a subset of relations from the reference domain that appear in the constraint. Transitioning
between two high level relations (from the abstraction domain fragment) is a sequence of
fragment definitions, where adjacent fragment definitions differ by an incremental change, i.e.
they differ by exactly one pair of adjacent lower level relations according to the low level
neighbourhood graph g.

For example, consider the fragment definitions space in Figure 3. One transition from the
fragment definition {R2,R’1} to {R5,R’3} is
({R2,R’1},{R3,R’1},{R4,R’1},{R5,R’1},{R5,R’2},{R5,R’3}), and another transition is
({R2,R’1},{R2,R’2},{R3,R’2},{R4,R’2},{R5,R’2},{R5,R’3}).

Next, transition classes via fragment definitions is defined. Consider the set of all possible
transitions via fragment definitions between two high level relations. The ordering of some
particular low level changes is essential. In particular, transitions can not violate the continuity
assumption by skipping relations in the low level neighbourhood graph g, for example, a
transition (…,{R2,R’1},{R4,R’1}…) is invalid. Other changes can occur in any order, for example,
the transition from R3 to R4 is completely independent of the transition from R’1 to R’2 and these
transitions can occur in any order.

Thus, a class of transitions can be succinctly expressed by representing a high level transition
as a partial ordering of low level transitions. A transition class via fragment definitions between
two high level relations, written Δc,c’(R,R’) is a set of transitions from Δg(R,R’) such that

• for each relation Ri in σc(R) there is a transition Δg(Ri,Rj) that starts from Ri and ends at
some relation Rj in σc’(R’), and

• (vice versa) for each relation Rj in σc’(R’) there is a transition Δg(Ri,Rj) that starts from
some relation Ri in σc(R) and ends Rj.

For example, one class of transitions from {R2,R’1} to {R5,R’3} is {(R2,R3,R4,R5), (R’1,R’2,R’3)}.
Another class is {(R2,R1,R2,R3,R4,R5), (R’1,R’2,R’3)}.

Therefore, a transition class Δc,c’(R,R’) specifies a partial ordering of incremental changes at
the lower fragment definition level (i.e. from Δg) required to move from the fragment definition
of R to the fragment definition of R’. Note that if there are multiple paths between two low level
relations in the low level neighbourhood graph g, as shown in the example (i.e. different options
for Δg) then there are multiple transition classes and Δc,c’(R,R’) returns one class out of a set of
possible classes.
 Finally, conceptual neighbours is defined. R and R’ are neighbours in the standard sense,
written N(R,R’), if it is possible to start from a low level fragment definition of R, make
incremental changes, and eventually transition into R’ without passing through another relation's
fragment definition. That is, N(R,R’) is true if and only if there is some sequence of fragment

definitions that is in some class Δc,c’(R,R’) such that none of the fragment definitions in the
sequence correspond to some other high level relation.

For example, the relations Rx and Ry are conceptual neighbours according to this definition
because there exists a transition class Δc,c’(R,R’)= {(R2,R3,R4,R5,R6), (R’4,R’3,R’2,R’1,R’2)} that
contains a fragment definition sequence ({R2,R’4},…,{R2,R’1},…,{R6,R’1},{R6,R’2}) that does not
include any of Rz’s fragment definitions.

A later subsection highlights the problems with this conceptual neighbour definition, and the
remained of the section presents a methodology that allows the designer to appropriately refine
the neighbour test. The next section summarises the steps that a designer must go through in order
to derive a high level neighbourhood graph.

6.3 Deriving a High Level Neighbourhood Graph
The designer can construct a high level conceptual neighbourhood graph gf1 by applying the
following procedure.

1. Define an abstraction domain fragment f1 and a reference domain fragment f2.
2. Define a low level neighbourhood graph g for f2.
3. For each high level relation R in f1, define the fragment definitions σci(R) into the

reference domain f2 by implementing constraints ci.
4. Decide on the appropriate definition of conceptual neighbours Nf1.
5. Construct the neighbourhood graph gf1 such that

a. there is exactly one vertex for each high level relation, and
b. for each pair of high level relations R,R’ there is an edge between the

corresponding vertices iff Nf1(R,R’) is true.
In practice, steps 1 and 2 will require the designer to select a pair of appropriate fragments that
have already been defined in the application. A methodology for configuring the neighbour test is
described in the following subsections, and summarised in Section 6.9 below. The designer can
automate step 5 with a simple nested for-loop algorithm that executes the neighbour test on each
pair of high level relations.

6.4 Limitations of The Standard Neighbour Definition
The problem with the standard conceptual neighbour definition is that two relations possibly
being neighbours results in relations almost always being neighbours, thus the definition is too
weak to be useful. Moreover, this may lead to counter-intuitive neighbours. For example, as
illustrated in Figure 3, if any path from Rx to Ry is unobstructed then the relations are considered
neighbours. It may be more intuitive in the context of a particular application to assume that a
transition between two relations will take the most convenient, shortest transition path. In this
case a user will expect Rx and Ry to not be neighbours.
 In order to develop more appropriate neighbour definitions, the neighbour test is summarised
as follows: given a set of paths, if any of the paths are unobstructed then the two relations are
neighbours. Hence, there are two ways to focus the conceptual neighbour definition, by restricting
the set of paths considered for determining neighbour status, and by grouping paths together into
equivalence classes.

6.5 Path Restrictions to Focus The Neighbour Test

The designer can avoid impractical and counter-intuitive neighbourhoods by restricting the set of
paths used to determine whether two relations are neighbours. Two types of paths are direct paths
and critical paths.

The direct path restriction requires that low level neighbourhood transition sequences take a
shortest path in Δg(Ri,Rj) (note that there can be multiple shortest paths). This ensures that all
transitions monotonically approach the target fragment definition. Figure 4(a) illustrates the
admissible paths with this restriction, and that Rx and Ry are no longer neighbours.

Figure 4. Refined fragment definition spaces. (a) direct path restrictions, (b) critical path
restrictions, (c) equivalence class of direct paths, (d) equivalence class of critical paths in
conjunction with a direct path restriction.

The critical path restriction requires that paths only include relations that are guaranteed to

conflict between the high level fragment definitions of two relations. Intuitively, certain relations
in the reference domain will be very important cues for interpreting higher-level concepts, while
some (probably most) combinations will lie in the vast fragment definition space between these
critical points. The necessarily conflicting relations are the important, prototypical relations that
separate two high level relations and therefore critical transition paths can be a useful measure of
conceptual neighbour status. More formally, when transitioning from high level relation R to R’,
fragment definition relations with neighbourhood graph gi fall into one of the following three
categories.

R2 R7…

R’2

R’5

: R1 R8 …

R1 R8…

R’1

R’6

:

R2 R7 …
R’2

R’5

:

(a)

(c) (d)

 (b)

• Transition always required: no pair of fragment definitions from R and R’ share a
relation from gi.

• Transition never required: all pairs of fragment definitions from R and R’ share a
relation from gi.

• Transition possibly required: some, but not all, pairs of fragment definitions from R
and R’ share a relation from gi.

The designer can use these distinctions to refine their neighbour definition. For example, as
illustrated in Figure 3, one fragment definition of Rx is {R’4,R2} and one fragment definition of Ry
is {R’4,R7}, thus when transitioning from Rx to Ry it is possible that R’4 is already satisfied and no
transition through the neighbourhood of relations R’1,…,R’6 is required. On the other hand,
regardless of the Rx fragment definition, a transition through the relations in R1,…,R8 will always
be required.

Figure 4(b) illustrates the admissible transition paths through the critical paths where
transitions are always required, and shows that Rx and Ry are no longer neighbours.

6.6 Transition Path Equivalence Classes to Focus The Neighbour Test
Consider the following counter-intuitive scenario with the standard neighbour definition
illustrated in Figure 3. The transitions required to get from a fragment definition of Rx to a
fragment definition of Ry always include {(R3,R4),(R4,R5),(R5,R6)}. The transitions to get from a
fragment definition of Rz to a fragment definition of Ry always include {(R4,R5),(R5,R6)}, which is
a subset of Rx's required transitions. Moreover, for any fragment definition of Rx there is some
fragment definition of Rz where the required transitions to arrive at any given fragment definition
of Ry are a proper subset of those required by the fragment definition of Rx.

Because Rz's required transitions are a proper subset, in some applications it might be intuitive
to view Rz as an intermediate relation between Rx and Ry. However, the standard definition does
not distinguish this special case of intermediate relations.

A designer can control any such special cases by grouping a set of paths into an equivalence
class. This has the effect of removing the ordering of transitions taken in the set of paths in the
equivalence class. An alternative perspective is that, previously the neighbour test checked
whether it was possible to avoid intermediate relations, but now it is checking the stronger
condition whether it is guaranteed to avoid intermediate relations within the equivalence class of
paths.

Equivalence classes must be applied to a restricted set of paths (otherwise the neighbour test
will fail whenever there are three or more relations). Figure 4(c) illustrates defining the direct
paths as an equivalence class. Figure 4(d) illustrates defining the critical paths as an equivalence
class so that the conflicting paths must be guaranteed to be unobstructed, and at least one path
through the non-conflicting paths must be unobstructed. Thus, transition path equivalence classes
afford the designer considerable flexibility in defining neighbourhoods.

6.7 Ensuring Conceptual Neighbours Are Symmetric
Neighbour status is no longer necessarily symmetric when the designer restricts the set of
transition paths. Although asymmetric neighbourhood graphs can be valid and useful, a designer
may require neighbour status to be symmetric. The following three variations on the neighbour
definition ensure symmetry, ordered from strongest to weakest. Two relations can be defined as
symmetric neighbours if

• both directions are unobstructed (conjunction),
• either direction is unobstructed (disjunction), and
• no single intermediate relation obstructs both directions (restricted disjunction).

The first variant is the strongest stating that both directions must be clear before the relations
are considered neighbours. The second variant weakens this by only requiring one of the
directions to be unobstructed. The third variant states that no single obstruction occurs in both
directions, so that two high level relations are not neighbours if the fragment definition of a third
relation obstructs both relevant transition paths (this is useful in cases where the designer wants
the third relation to represent a guaranteed intermediate concept in between two relations).

6.8 Dealing With Multiple Fragment Definitions
If a high level relation R has multiple fragment definitions then some of its fragment definitions
may permit it to be a neighbour to some other high level relation R’, while some of its other
fragment definitions do not. It may be the case that only a single pair of fragment definitions out
of many possible pairs allows two relations to be neighbours, so that in practice it is unlikely that
the two relations will be neighbours, and most transitions between them will be obstructed.

The designer can develop a more accurate neighbourhood graph by annotating probabilities to
conceptual neighbours. Assuming that all fragment definitions of a relation R are equally likely to
be used, the probability P of employing a particular fragment definition x∈σc(R) is P(x)=|σc(R)|-1.
The probability that two high level relations R,R’ are neighbours P(N(R,R’)) is the sum of the
probabilities of selecting pairs of fragment definitions from each relation that are neighbours,
∑P(x)P(y) for all x∈σc(R), y∈σc(R’) such that (x,y)∈N.

6.9 Summary And Engineering Implications
Table 4 presents guidelines to help the designer select the appropriate neighbour definition. The
guidelines relate a problem that the designer can experience when deriving neighbourhood
graphs, the appropriate actions defined in the previous subsections, and associated effects of the
action. Note that a complete graph is not useful for any typical task that requires a
neighbourhood such as envisioning, because it does not distinguish between relations within the
fragment. Equivalently, edgeless graphs provide no information that is useful for performing
neighbourhood based tasks.

Problem with current
derived neighbourhood

Designer Action Effect on neighbourhood

Relations are almost
always neighbours (i.e.
neighbour test is too
weak).

Path restrictions. Rules out irrelevant outlier paths which bias the
neighbour tests in an unhelpful way. Outlier
paths contain impractical or counter-intuitive
low level relation transitions.

Relations that clearly lie
between two relations
have no effect on their
neighbour status.

Path restriction: only
accept shortest paths
through reference domain.

Transitions will now monotonically approach
the target definition. This avoids paths that
‘side step’ obstructions by taking impractical
and counter-intuitive transitions.

Interesting and important
cores of relations are
obstructed by other
relations, but this has no
effect on their neighbour
status.

Path restriction: only
accept paths that change
core low level relations.
Core relations are those that
conflict between every
definition of two high level

Transitions now only change the prototypical
core of a high level relation when determining
neighbour status. This avoids irrelevant and
uninformative paths that lie in the vast and
sparse ‘transition space’ between these critical
points.

relations.
Relations that clearly lie
between two relations
have no effect on their
neighbour status, even
after applying path
restrictions.

Equivalence classes: pick a
restricted set of paths that
strongly determines
neighbour status and define
the set as an equivalence
class of paths.

Ordering of transitions is ignored when
determining whether the path between two
relations is obstructed. The neighbour test is
strengthened to guarantee that no matter what
order the transitions are made, no obstruction
will occur.

Relations have multiple
definitions, and the
neighbour test is too
coarse grained. The user
needs more information
about boundary cases
where relations are
sometimes or partially
neighbours.

Neighbour probability:
include probability scores
with neighbour status.

Probabilities are a measure of the strength of
neighbour status where high probability
indicates that relations are closer neighbours
than a low probability; the user can get an
indication of the likelihood that a transition to
some other relation will be interrupted.

Sometimes R1 is a
neighbour of R2 when R2
is not a neighbour of R1,
i.e. the neighbour test
must be symmetric.

Symmetric neighbours:
consider both transition
directions between relations
before determining their
shared neighbour status.

Neighbour test now involves both transition
directions. Care must be taken in
understanding and communicating to users
what the neighbour test now entails, as one
transition direction can completely hide the
neighbour status of the other direction.

If two relations are
neighbours, then
transitioning between
them must never be
obstructed.

Symmetric neighbours:
neighbour test requires both
directions to be
unobstructed (conjunction).

This is the strongest symmetric neighbour test.
If R1 is not a neighbour of R2, it does not
necessarily mean that the transition from R1 to
R2 can be obstructed.

If two relations are
neighbours, then it is
possible to transition
between them without
being obstructed.

Symmetric neighbours:
neighbour test requires
either direction to be
unobstructed (disjunction).

If R1 is a neighbour of R2, it does not
necessarily mean that it is possible to directly
transition from R1 to R2.

When a transition
between relations is
obstructed the
intermediate relation is
often different, which is
too inconsistent.

Symmetric neighbours:
neighbour test requires that
no single intermediate
relation obstructs both
directions (restricted
disjunction).

This is the weakest symmetric neighbour test.
If R1 is a neighbour of R2, it does not
necessarily mean that it is possible to directly
transition in either direction.

Table 4. QSTR application designer guidelines for deriving effective neighbourhood graphs.
Columns list the problems with deriving neighbourhood graphs, actions that will help to address
the problem, and related effects. Rows that contain main categories of problems and actions have
a white background, and rows that immediately follow contain specific problems and actions
within a category with a grey background.

7.0 VALIDATING QSTR APPLICATION USING H-COMPLEXITY
The aim of program validation in software engineering is to determine if the system is fit for
purpose (Burnstein, 2003), explicitly evaluating the program in terms of its application context.
Researchers in QSTR typically apply general first-order theorem provers (and higher) for system
validation (Wölfl et al., 2007). However, the use of theorem provers for application level
validation is not practical in general. Firstly, applying theorem provers can be very manually
intensive, and even expert logicians in the QSTR research field find the task non-trivial (e.g. refer

to page 292 and Section 6.2 in (Cohn et al. 1997)). Secondly, they require axioms for the logic
which in many cases will not be available, making theorem provers impossible to use. For
example, particularly during the early stages of application design, software developers may need
to rapidly encode informal qualitative domain knowledge with the intention of refining the logic
later if necessary. Thus, a thorough axiomatisation would not be necessary or appropriate.

We present a significantly different methodology for QSTR application validation, inspired by
research in software engineering and finite model theory. We focus on adapting two white-box
testing approaches, namely unit testing and integration testing, so that our validation methodology
can be used iteratively during application development (rather than as a black-box post
development validation tool).

7.1 Unit Testing And Integration Testing For QSTR Applications
Unit testing aims to validate small components of a program by exercising isolated aspects of
functionality in an independent way (Burnstein, 2003). We define the units of QSTR applications
to be the two set expressions on the left hand side and right hand side of constraints. Once the
units have been exercised, the next step is to test that the constraint’s set comparator is correct. A
unit test is simply a set of inputs and a set of expected outputs, and the domain is the collection of
relations in the unit set expression being tested.

Integration testing is used to validate the interaction between different program components
(Burnstein, 2003). An integration test for a QSTR application exercises some subset of
constraints. An integration test is a set of inputs and a set of expected outputs, where the domain
is the collection of relations that appear in the set expressions of the constraints being tested.

The primary issue is determining which tests the designer must execute to achieve an adequate
degree of confidence that the application is fit for purpose. In standard software engineering, the
set of tests that can be executed on a typical software program (called the test space) is
determined by the system inputs and outputs, and the system structure such as statements,
decisions and control paths. Executing all possible tests is clearly impractical and thus software
engineers employ methods that isolate critical subsets such as boundary checking, equivalence
class partitioning, and cause-effect graphs (Burnstein, 2003).

One standard technique for identifying significant test classes is to measure the test coverage
of some type of program component (Zhu et al., 1997). For example, the set of tests that execute
every statement in a program at least once is typically considered to be a minimum coverage
requirement for validation. We adapt this software engineering methodology by defining a
concept called homogeneous sets (called H sets). H sets are used to measure the test coverage of
QSTR application components.

7.2 Homogeneous Sets
In model theory (Hodges, 1997; Marker, 2002), a set X is definable (in model M) if there is some
query in first order logic that can distinguish precisely this set of objects (that is, a formula φ
exists such that X={(v1,…,vn)∈U n | M φ(v1,…,vn)}, where entails means that the formula is
true in M).

 Homogeneous sets (or H sets) are a special class of definable sets. H sets are atomic
definable sets, that is, no query exists that can separate two objects within the same H set, thus
objects within an H set are equivalent and indistinguishable. Let H={h1, …, hn} be a set of

homogeneous sets, where each hi ⊆ U. By definition, h1, …, hn partition U. We define
H-complexity of a language to be |H|.

7.3 Using H Sets to Measure Complexity
Complexity of a QSTR application language can be considered as either the number of distinct
queries that can be expressed, or (equivalently) the number of distinct scenarios that can be
encoded.

A query is used to access a subset of objects in a scenario, and query complexity of a language
is defined as the maximum number of unique non-empty subsets that can be accessed by some
query. H sets are indivisible and mutually exclusive (by definition), so the query that defines an
H set must also be the query that returns the smallest non-empty subset of those objects. The
smallest subset containing objects from two different H sets h1, h2 must be the union of the
queries that define those two H sets, h1∪h2. It follows that any accessible subset of objects must
be the union of some combination of H sets, and thus query complexity is equal to the number of
different combinations of H sets, 2|H|.

We now consider scenario complexity. Intuitively, qualitative models do not distinguish
between numerical quantities, unlike metric systems. If two objects in a scenario can not be
separated by a query, then the objects are considered equivalent and indistinguishable, that is, the
objects must be in the same H set. Accordingly, if the only difference between two scenarios is
the number of indistinguishable objects in each non-empty H set then the scenarios are considered
equivalent. Thus, a scenario equivalence class is defined by the combination of H sets from
which objects are selected, and the number of such scenario classes, or the scenario complexity of
the language, is 2|H|.

7.4 Using H-Complexity to Quantify Test Coverage
H sets are a natural option for analysing test classes because, on one hand, they specify the
absolute limit for distinguishing between objects, and on the other hand, they can be used to
describe any possible distinct set of objects. This section presents our methodology for applying
H-complexity to measure test coverage.

When quantifying test coverage, the designer initially has a set of QSTR application
components that are currently being tested, and the set of tests (called the test suite). Five
activities that the designer must undertake are to:

1. identify the domain of the components being tested,
2. refine the test space by specifying conditions that are not appropriate for exhaustive

testing,
3. calculate the complexity of the original test space and the refined test space,
4. determine the class of each test in the test suite, and
5. calculate test coverage results.

The following sections present the details of each activity.

7.5 Activity 1: Identify Component Domains
Firstly the designer must identify the domain (a set of relations) of the components being tested.
For a unit test, the domain contains the relations in the set expression, e.g. the domain of the set
expression {x1| (x1,x2)∈R1

+
 ∧ (x3,x2)∈R2

~} is {R1, R2}. For an integration test, the domain contains

the relations that appear in the subset of constraints being tested, e.g. the domain of the
constraints

{x1| (x1,x2)∈R1
+

 ∧ (x3,x2)∈R2
~}={x1| (x2,x1)∈R3

+}
{x1| (x1,x2)∈R3

+
 ∧ (x3,x2)∈R2

~}⊆{x1| x1∈R4
+}

is {R1, R2, R3, R4}.

7.6 Activity 2: Specifying Conditions to Refine The Test Space
H-complexity is calculated as all possible combinations of H sets. When considered as a test
space, each H set is being exercised in conjunction with every other combination of H sets.
However, many H sets represent conditions that may not require this exhaustive testing. By
isolating such conditions and testing them independently, the designer can achieve a smaller,
more focused and hence more practical and effective test space.

For example, the relation in is not (usually) symmetric, that is, if x is in y, then y cannot also
be in x. If this condition is violated then the scenario is clearly inconsistent with the QSTR
application, regardless of the other remaining components of the scenario. Rather than
exhaustively testing in for every unit that it is used, the designer can isolate the erroneous
symmetric condition and test it once. They can then assume that every time in is used the
application will respond correctly regarding symmetry. Table 5 presents our suggestions for
common conditions that can be used to refine test spaces.

Condition Mathematical

Property
Example
(application specific)

Formal description

Using Object Types (special unary relations)

During testing, assume certain
objects are certain types.

n/a Object x is always a room,
and object y is always a
light.

given x,…,z in U,
R1

+(x) and … and
Rn

+(z)
used in conjunction
with other constraints

Semantically, certain types of
objects can never have certain
relations.

n/a No objects are ever inside a
light bulb object.

for all x,…,z in U,
R1

+(x)→R2
−(x,…,z)

One Binary Relation
An object is necessarily related
to itself with respect to this
relation.

Reflexive Objects are always near
themselves.

for all x in U, R+(x,x)

An object can never be related
to itself with respect to this
relation.

Irreflexive No object is inside itself. for all x in U, R−(x,x)

If the relation holds from one
object to another object, then it
must also hold in the other
direction (i.e. from the latter
object to the former object).

Symmetric If an object x is near
another object y, then object
y must also be near object
x.

for all x,y in U, R+(x,y)
→ R+(y,x)

If the relation holds from one
object to another object, then it
can never hold in the other
direction.

Asymmetric If an object x is inside
object y, then object y can
never be inside object x.

for all x,y in U, R+(x,y)
→ R−(y,x)

Two Binary Relations
If relation R1 holds from one Inverse If time interval x is before for all x,y in U,

object to another object, then
relation R2 must also hold in the
other direction (i.e. from the
latter object to the former
object).

(or converse) time interval y, then interval
y must be after interval x.

R1
+(x,y)→R2

+(y,x)

If relation R1 holds from one
object to another object, then
relation R2 can never hold in the
other direction.

n/a If object x contains object y,
then y can never be larger
than x.

for all x,y in U,
R1

+(x,y)→R2
−(y,x)

Pairs of Relations, Arbitrary Arity
One relation trivially implies
another relation.

Implication If an object x is
accelerating then it
must also be moving.

for all x,…,z in U,
R1

+(x,…,z)→R2
+(x,…,z)

If one relation does not hold,
then it trivially implies that
another particular relation must
hold.

Complement If an object x is not
stationary, then it must
be moving.

for all x,…,z in U, R1
−(

x,…,z)→R2
+(x,…,z)

Groups of Relations, Arbitrary Arity
No two relations (out of a set of
relations R) can both hold for a
given set of objects at the same
time.

Pairwise
mutually
exclusive

No pair of the relations
near, moderately near,
and far can ever hold at
the same time.

for all x,…,z in U, and for
all relations R1,R2 in R, not
(R1

+(x,…,z) and R2
+(

x,…,z))
At least one relation (out of a set
of relation R) must hold for a
given set of objects at any time.

Jointly
exhaustive

All objects are either
moving or stationary at
any time.

for all x,…,z in U, there
exists relation R in R,
R+(x,…,z)

Table 5. Common conditions for refining test spaces.

7.7 Activity 3: Calculating H-Complexity
This section derives the formula for calculating H-complexity of a language (i.e. a domain) by
counting the number of H sets, |H|. Firstly we calculate the number of H sets permitted by a
single unary relation, and then a single relation of arbitrary arity. We then observe that binary
relations (and higher) admit an infinite number of H sets, making H-complexity unusable. To
overcome this we employ restrictions on the query language to calculate the number of basic
queries that can be expressed for a set of relations. We then show that basic queries are not
jointly exhaustive and pairwise disjoint (JEPD) and so do not correspond to H sets. Thus, we
finally calculate H complexity as the smallest number of unique JEPD queries that can be
expressed using combinations of basic queries.

Initially, assume that all relations have an arity of 1 (i.e. they represent qualitative properties
such as round or large). Tuples can take one of |AR| states for a relation R (such as holds), hence
the complexity of a unary relation is |HR|=|AR|. However, once relations have an arity greater than
1 there are an infinite number of potential H sets, because a binary relation constitutes a total
order. We proceed in our analysis by using a graph to represent a scenario that consists of a
single binary relation Ri, where objects represent vertices and directed edges represent tuples as
illustrated in Figure 5.

R1={ (a,b),
 (c,b)}

R2={(a,a), (a,b), (b,c),
 (d,d), (d,e), (e,c)}

R3={(a,b), (c,d), (d,d),
 (e,f), (e,g), (g,g)}

Figure 5. Three graphs representing binary relations R1, R2 and R3. In R3, subgraphs {a,b} and
{c,d} correspond to basic queries, where {e,f,g} contains more than one basic query as induced
subgraphs.

A set theoretic query describes the structure of a graph and specifies the vertex to be selected

with v bound variables (universally or existentially quantified), e.g.
∀x1...∃xv ⋅ x1 ≠ x2 ∧ ... ∧ x1 ≠ xv ∧ ... ∧ xv-1 ≠ xv.
For brevity, we will omit explicitly stating these quantifications and conditions for all further

queries, and for simplicity the variables in our examples are only existentially quantified. For
example, the query {x2| (x1,x2)∈R1 ∧ (x3,x2)∈R1} will access b from the graph of R1 in Figure 5.

While there are an infinite number of potential graphs and unique accessible subsets,
homogeneous sets still exist that contain indistinguishable objects. Indeed, homogeneous sets
correspond to graph symmetries. For example, regarding the graph of R1, no query exists that can
separate objects a and c (without directly referring to those objects),
 {a,c} ={x1| (x1,x2)∈R1 ∧ (x3,x2)∈R1}

 ={x3| (x1,x2)∈R1 ∧ (x3,x2)∈R1},
and the graph of R2 has three H sets, accessed by the query

{xi | (x1,x1)∈R2 ∧ (x1,x2)∈R2 ∧ (x2,x3)∈R2 ∧
(x4,x4)∈R2 ∧ (x4,x5)∈R2 ∧ (x5,x3)∈R2 },

namely {a,d} when i=1 or 4, {b,e} when i=2 or 5 and {c} when i=3.
Given a graph of a scenario, the number of H sets is the number of vertices minus the number

of symmetries. However, to make |HR| a function of the entire QSTR application language, rather
than just isolated scenarios (i.e. rather than particular graphs), we apply the concept of restricted
query languages from finite model theory (normally used for studying descriptive complexity
(Marker, 2002)). If the restricted query language only recognises a finite number of graphs, it
will admit a finite number of H sets. It is then possible to quantify the complexity of a relation
independent of a particular scenario, and measure the relative difference in expressiveness
between two languages.

One common query restriction is to limit the number of variables (vertices). Previously,
queries have referred to variables xi where i can be any positive integer. For example, if i≤2 then
the allowable tuples are (x1,x1), (x1,x2), (x2,x1), and (x2,x2). If v is the number of variables allowed
in a query, and aR is the arity of relation R (i.e. the size of the tuples) then for each query, the
number of tuples is v↑aR. We refer to these queries as basic queries. For example, if v=2 then
one basic query on a binary relation is {x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R−}.
Each tuple can be assigned to one of |ΑR| relation states, thus, the number of unique basic queries
for relation R is |ΑR|number of tuples, where number of tuples = v↑aR.

c
e d

b a

a

c
b

a b

c d

e

f

g

Previously we only referred to one relation within a query. Given v bound variables, queries
will now take the form, {x1 | query R1, query R2, …, query Rn}, where query Ri is one of the
unique basic queries for relation Ri. Hence, the total number of queries permitted over n relations
is |basic R1 queries| × … × |basic Rn queries|. Moreover, each query variable can be either
existentially or universally quantified, i.e. the query can use any one of the combinations from
∃x1∃x2…∃xv to ∀x1∀x2…∀xv. In general, the number of allowable variable quantifications q is 2v
if all combinations are acceptable. Thus the number of unique basic relations including the
acceptable variable quantifications is q × |basic R1 queries| × … × |basic Rn queries|.

For H sets to truly represent the maximum refinement possible, they must be JEPD so that
every object in a scenario will appear in exactly one H set. This property is critical; if it did not
hold then further refinements could be achieved by taking H set intersections and differences.
Basic queries are not necessarily JEPD (specifically, when their corresponding graphs are
overlapping induced subgraphs of the full scenario graph) and so they do not specify H sets. For
example, consider the scenario graph R3 in Figure 5. If v=2 then two basic queries are:

{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R−}={a,e},
{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R+}={c,e}.

Vertex e appears in both results, and therefore the basic queries are not JEPD.
To calculate |H| we must determine the smallest JEPD queries that contain the basic queries.

This is achieved by taking all combinations of basic queries by intersection and difference, hence
|H|=2number of unique basic queries – 1 (we can ignore the trailing‘−1’).

To summarise,
• the language being measured has a set of relations R,
• AR is the number of relation states allowed for relation R (such as holds and does not

hold),
• aR is the arity of relation R (e.g. binary relations have arity 2),
• v is the number of variables allowed in a query (1 ≤ v),
• q is the number of variable quantifications (1 ≤ q ≤ 2v), and
• H is the set of H sets, and |H| is the H-complexity of the language.

The formula for calculating H-complexity is

|H| = 2↑(q × |basic R1 queries|
 ×…
 × |basic Rn queries|)

= 2↑(q (|AR1|↑v↑aR1) ×…× (|AR n|↑v↑aR n))
= 2↑ (q ∏R∈R (|AR|↑v↑aR)). (1)

7.8 Activity 3: Calculating H-Complexity For Refined Test Spaces
The complexity of a language can be calculated simply by applying the formula in the previous
section. However, once the designer has specified conditions for refining the test space, the
formula can no longer be used. In this section we present a method for calculating the refined test
space complexity by encoding it as a constraint satisfaction problem (CSP). The designer can
then use any standard CSP solver, such as JaCoP (Kuchcinski, 2003), to calculate the complexity.

A CSP is a finite number of variables (where each variable has a finite domain), and a set of
constraints between variables. In our case, given a domain of relations R and the number of
allowable query variables v, the CSP solver will return the number of basic queries permitted,

∏R∈R |basic R queries|. Equation 1 from the previous section can then be used to calculate the
refined test space complexity.

We now present our CSP encoding. Each variable represents a tuple from a basic query.
From the previous section, the number of tuples for relation R is v↑aR. Let integers 1,2,3,4
represent holds, does not hold, not applicable, and indefinite respectively. For each relation R,
declare v↑aR variables with domain AR, encoded as the appropriate subset of {1,2,3,4}. Next,
specify the refinement conditions from Section 7.6. Finally, execute the solver and have it return
the number of solutions (there is no need to record the solutions).

If computation is not too time consuming, the solver can be executed multiple times to
determine the impact of each constraint. Do this by executing the solver with only one constraint
at a time, and record the different complexities. Alternatively, execute the solver with all but one
constraint (for each constraint) to quickly determine whether any constraints are redundant.

For example, given the domain R={light, room, warm, in}, v=2 allowable query variables,
and for every relation AR={+,−,~,?}, q=1 variable quantification (both variables existentially
quantified), the number of basic queries is

q ∏R∈R (|AR|↑v↑aR)
= (4↑2↑1) (4↑2↑1) (4↑2↑1) (4↑2↑2)
= 16⋅16⋅16⋅256
= 1 048 576,

yielding a completely intractable test space, with complexity |H| = 2↑1048576. A designer then
refines this test space by specifying the following conditions:

• only test when x is a light and y is a room
• because both object types are assumed, ignore the not applicable relation state (all

relations apply for lights and rooms)
• the types light and room are mutually exclusive
• in is not reflexive
• in is not symmetric
• nothing is ever in a light

The designer then encodes the CSP problem1 using JaCoP (Kuchcinski, 2003). Firstly the
variables are declared, using a restricted domain that excludes not applicable.

Store network = new Store();
Variable light_x = new Variable(network, “light_x”, domain(1,2,4));
Variable light_y = new Variable(network, “light_y”, domain(1,2,4));
Variable room_x = new Variable(network, “room_x”, domain(1,2,4));
Variable room_y = new Variable(network, “room_y”, domain(1,2,4));
Variable warm_x = new Variable(network, “warm_x”, domain(1,2,4));
Variable warm_y = new Variable(network, “warm_y”, domain(1,2,4));
Variable in_x_x = new Variable(network, “in_x_x”, domain(1,2,4));
Variable in_y_y = new Variable(network, “in_y_y”, domain(1,2,4));
Variable in_x_y = new Variable(network, “in_x_y”, domain(1,2,4));
Variable in_y_x = new Variable(network, “in_y_x”, domain(1,2,4));

1 Here we have explicitly enumerated variables and constraints for clarity. In practice, generator methods
should be used that accept a set of relation names, domains AR, and the number of query variables v, and
return the set of variables. Convenience methods should also be created that accept relation names,
parameter patterns, and a constraint type, and impose the appropriate set of constraints (rather than explicit
enumeration). Please contact the first author (csch050@aucklanduni.ac.nz) for a Java implementation of an
H complexity calculator.

Next, the designer encodes the constraints.

//- only test when x is a light and y is a room
network.impose(new XeqC(light_x, 1));
network.impose(new XeqC(room_y, 1));

//- types “light” and “room” are mutually exclusive
network.impose(new IfThen(new XeqC(light_x, 1),
 new XeqC(room_x, 2)));
network.impose(new IfThen(new XeqC(light_y, 1),
 new XeqC(room_y, 2)));
network.impose(new IfThen(new XeqC(room_x, 1),
 new XeqC(light_x, 2)));
network.impose(new IfThen(new XeqC(room_y, 1),
 new XeqC(light_y, 2)));

//- "in" is not reflexive
network.impose(new XeqC(in_x_x, 2));
network.impose(new XeqC(in_y_y, 2));

//- "in" is not symmetric
network.impose(new IfThen(new XeqC(in_x_y, 1),
 new XeqC(in_y_x, 2)));
network.impose(new IfThen(new XeqC(in_y_x, 1),
 new XeqC(in_x_y, 2)));

//- nothing is ever "in" a “light”
network.impose(new IfThen(new XeqC(light_x, 1),
 new XeqC(in_y_x, 2)));
network.impose(new IfThen(new XeqC(light_y, 1),
 new XeqC(in_x_y, 2)));

Next, the designer runs the solver which returns 27 solutions. The test space of size 227 is now
practical for certain important coverage metrics, although further refinements can be made, for
example, choosing to only test one room at a time (Schultz et al., 2009).

The designer executes the solver multiple times, each run using only one of the constraints,
and determines that constraints 1 and 4 have the most impact. Once again the designer executes
the solver multiple times, each run using all but one constraint (for each constraint) and
determines that some constraints are redundant and can be removed such as

network.impose(new IfThen(new XeqC(light_y, 1),
 new XeqC(room_y, 2)));

Note that, after removing one constraint, the process should be repeated rather than removing
multiple constraints at once.

7.9 Activity 4: Calculate The Class of a Given Test Instance
To determine the test coverage of a given set of tests, the designer must compare the tests to the
test space in terms of H-complexity. That is, the designer needs to determine which combination
of H sets are exercised in a given test.

A test is a set of input premises and expected outputs. The input premise information is a set
of relations that contain object tuples, such as within+={(a,b), (b,c)}, school+={a},
Downtown+={b}, Auckland+={c}, near−={(c,d)}, within?={(a,c)}. By convention, for each

relation, any unspecified tuples can be assumed to be in the indefinite relation state (e.g.
Auckland?={a,b,d}). The expected output is again a set of relations that contain object tuples,
such as within+={(a,b), (b,c), (a,c)}. A test is satisfied by a QSTR application if, given the
premises, reasoning produces a scenario that satisfies the expected outputs.

Given a domain being tested and a test instance, the designer needs to determine which test
class the given test is in with respect to the domain’s test space. Using H sets we define a test
class as the premise scenario specified in the test (that is, we ignore the expected output). To
calculate the class of a given test we use a CSP encoding.

To summarise, query variables and scenario objects are encoded. CSP is then used to select
every possible combination of scenario objects for the query variables, and for each combination
it constructs the H set from the relation states for the particular chosen objects.

Firstly, we use an integer coding system for representing each unary object tuple, binary
object tuple, and so on, up to each n-ary tuple. The following integer coding is one example of
how this can be accomplished. The greatest tuple arity (i.e. the n-ary tuples) required to express
the scenario is equal to the greatest relation arity; in the above example the greatest relation arity
is 2. Thus, given a scenario with n objects, let integers 0 to n−1 represent each object. Next, let
integers n to 2n−1 represent tuples (0,0), (0,1),…,(0,n−1), integers 2n+1 to 3n−1 represent tuples
(1,0), (1,1),…, (1,n−1), and so on; hence, n2 binary tuples are represented by integers n to n+n2−1.
The relationship between the object identifiers and the tuple identifier is (x+1)n+y (that is, the last
tuple is represented by the integer (n−1+1)n+n−1= n+n2−1).

Secondly, for each allowable tuple of query variables, create one CSP variable, with domains
of values representing every object tuple of the appropriate arity. For example, if v=2 then six
variable tuples are required.

Variable x = new Variable(store, “x”, 0, n-1)

Variable y = new Variable(store, “y”, 0, n-1)

Variable x_x = new Variable(store, “x_x”, n, n*n+n-1)

Variable x_y = new Variable(store, “x_y”, n, n*n+n-1)

Variable y_x = new Variable(store, “y_x”, n, n*n+n-1)

Variable y_y = new Variable(store, “y_y”, n, n*n+n-1)

Impose the constraint that the variables are not equal to ensure that they represent different
objects in each solution.

store.impose(new Alldifferent(new Variable[]{x,y}));

store.impose(new Alldifferent(new Variable[]{x_x,x_y,y_x,y_y}));

 Thirdly, encode the basic queries in terms of H sets using the method from the previous
section. That is, for each tuple from a basic query of relation R, create a variable with a domain
that represents the allowable tuple states AR, i.e. some subset of {1,2,3,4} where integers 1,2,3,4
represent holds, does not hold, not applicable, and indefinite respectively. Do not encode the test
space refinement constraints.

Finally, link the scenario encoding to the basic query encoding. For each relation, create an
implication constraint that associates the object tuple selected by the query variables to the
relation state in the H set. For example, encoding within+={(a,b), (b,c)}, where a=0, b=1, c=2,
d=3, (a,b)=5 and (b,c)=10 requires the following constraint.

store.impose(new IfThenElse(

 new Or(XeqC(x_y,5), XeqC(x_y,10)), //- if variable matches a tuple

 new XeqC(within_x_y,1), //- then H set relation state holds

 new XeqC(within_x_y,2))); //- else relation state does not hold

Note that further nested IfThenElse constraints are required to also explicitly specify the not
holds, not applicable and indefinite states.

Execute the solver to get all solutions. The class of a test is determined by the set of solutions
for the basic query encoding variables, and the value of the object variables that satisfy those
basic queries. Once the designer knows the class that each test is in (that is, the combination of H
sets from which objects are specified), they can run the test coverage metrics presented in the
following section.

7.10 Activity 5: Test Coverage Metrics
This section presents four test coverage metrics based on H-complexity. To illustrate the test
coverage metrics we will use the following running example. Let the domain being tested contain
one binary relation R that can take two states AR={+,−}. Two query variables are allowed, v=2
and one variable quantification, q=1. The number of query tuples is v↑aR=22=4, which are
 (x1,x1)∈R, (x1,x2)∈R, (x2,x1)∈R, and (x2,x2)∈R.
The number of basic queries is q ∏R∈R (|AR|↑v↑aR)=1⋅24=16, which are

 b1={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧ (x2,x2)∈R+},
 b2={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧ (x2,x2)∈R−},
 b3={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R+},
 …
 b16={x1 | (x1,x1)∈R− ∧ (x1,x2)∈R− ∧ (x2,x1)∈R− ∧ (x2,x2)∈R−}.

The number of H sets is |H| = 2↑(q ∏R∈R (|AR|↑v↑aR))=216. The number of scenario classes is
2|H|=2↑(216). Let the example test set consist of two tests with the following H sets

• test t1: (b1, b2)
• test t2: (b1), (b2,b3).

Our four test coverage metrics, strictly ordered in terms of coverage strength (from weakest to
strongest) are

• tuple state coverage (TS),
• basic query coverage (BQ),
• H set coverage (H), and
• scenario coverage (S).

Tuple state (TS) coverage measures the number of query tuples that have taken a particular
state in at least one test. Full TS coverage means that every query tuple has been assigned to
every allowable relation state in at least one test. This should be viewed as an absolute minimum
coverage requirement that all QSTR application test sets must satisfy. The total number of tuples
with states that a language admits is ∑R∈R |AR| ⋅ (v↑aR). In the running example there are 4 query
tuples, and each tuple can take 2 states, giving 2⋅4=8 possible tuples with states, namely

(x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+, (x2,x2)∈R+,
(x1,x1)∈R−, (x1,x2)∈R−, (x2,x1)∈R−, (x2,x2)∈R−.

The example test set contains the following tuples (x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+ , (x2,x2)∈R+,
(x2,x1)∈R− , (x2,x2)∈R−. Hence percent TS coverage is 5/8=62.5%.

Basic query (BQ) coverage measures the number of basic queries that have appeared in at
least one test. Full BQ coverage means that every basic query has been used to describe some
test scenario. While stronger than full TS coverage, full BQ coverage should also be viewed as a
minimum coverage requirement for application validation. In the running example, the test set
contains 3 basic queries (b1, b2, b3), giving a percent BQ coverage of 3/16=18.75%.

H set (H) coverage measures the number of H sets that have been used to specify scenarios in
at least one test. In practice, full H coverage is often very difficult to achieve, as it constitutes a
vast class of tests. Instead the designer should focus on satisfying important subclasses within
full H coverage, discussed below. The running example test set has 3 H sets, giving a percent H
coverage of 3/(216)≈0%.

Scenario (S) coverage measures the number of scenario classes exercised in at least one test,
where a scenario class is some unique combination of H sets from which objects in the class of
scenarios are drawn. In practice full S coverage is impossible to achieve, except for trivially
small domains. However, after test space refinement S coverage can be a useful measure. In the
running example two scenario classes are exercised, namely {(b1, b2)} and {(b1), (b2,b3)}. This
gives a percent S coverage of 2/(2↑216)≈0%.

Full BQ coverage is trivially easy to achieve, for example full BQ coverage is satisfied by one
test where the scenario returns objects from all 16 basic queries. On the other hand, achieving
full H coverage is often difficult in practice, and achieving full S coverage is, in almost all cases,
impossible. Our current research is focused on identifying valuable classes within this test space
in terms of H and S coverage. For example, two potentially significant H coverage criteria are

• all H sets that consist of exactly one basic query, and
• all H sets that consist of exactly two basic queries

The first class of tests will ensure that all basic queries have been exercised in isolation
(giving full TS and BQ coverage). The second class ensures that the interactions between all
pairs of basic queries have been exercised. Both of these test classes are relatively small and
often practical to achieve. If the number of basic queries is b then the test class sizes are b and
b(b−1) respectively, where the maximum size of b is (q ∏R∈R (|AR|↑v↑aR)).

8.0 FUTURE RESEARCH
Our long term aim is to develop a QSTR application development environment inspired by Garp3
and other UML software tools. This will be used for designing, validating and automatically
implementing the reasoning component of a QSTR application, and will integrate software tools
that support the methodologies discussed in this chapter. The workbench will allow the designer
to easily employ existing QSTR libraries such as SparQ and GQR, structure their application by
declaring fragments and design patterns such as fragment definitions, derive high level
neighbourhoods, automatically generate tests from critical test classes, and execute validation
metrics such as test coverage. Additionally, a suite of metrics will be available that analyse an
application based on external test data, e.g. using classification techniques on test data to analyse
the quality of a designer’s fragment definitions. Once a QSTR application design has been
finalised, our workbench will generate a standalone implementation, such as a jar file, that will
accept a scenario description and perform the required task, such as envisioning.

We are also planning to compile a library of application contexts, such as a qualitative GIS
suite, an office environment suite, a sports field suite, architectural lighting suite, and so on. Each

library component would consist of the relevant existing QSTR calculi, along with other standard
high level commonsense relations and rules.

9.0 CONCLUSIONS
A number of critical barriers to QSTR application development must be addressed, namely that
the important characteristics of QSTR problems need to be defined, QSTR application designers
need to develop task specific qualitative relations and constraints, there are no methodologies for
developing or analysing QSTR applications, and that application designers will typically be
software engineers rather than logicians. In this chapter we address these problems with a
collection of methodologies that support the design and validation of QSTR applications.

We established a theoretical foundation for QSTR applications, and used this to define the
roles of application designers and users, and to identify three fundamental QSTR application
operations, selection, insertion, and scenario universe modification.

We presented four central properties of QSTR applications, specifically, reasoning across a
broad range of abstraction levels, continuity assumption, modelling infinite domains, and
reasoning about objects in multi-dimensional models. Our methodologies for QSTR application
development focused on supporting the designer in three of these key areas.

 We adapted two standard formal requirements from software engineering for QSTR
applications, which were the customer’s operational requirements and functional requirements.
We presented critical characteristics of QSTR problems based on our theoretical foundations of
QSTR applications and a review of existing QSTR literature, and showed how these
characteristics determine the customer’s operational profile. We enumerated a set of significant
purely qualitative tasks that defines the exact extent to which QSTR can be applied, and we
established a template that covers all general QSTR application behaviour sequences in a UML
state diagram.

QSTR applications are organised into groups of relations, called fragments. We presented two
design patterns, fragment definitions and fragment generalisations, for structuring fragments.

We presented a methodology for defining high level neighbourhoods that are consistent with
the structure of fragments in a QSTR application. For this we defined two novel components of
conceptual neighbours, path restrictions and transition equivalence classes, and showed how the
designer can use these to customise a derived high level neighbourhood graph.

Finally, we presented a novel methodology for QSTR application validation, inspired by
research in software engineering and finite model theory. We defined a complexity metric called
H-complexity, and developed test coverage metrics for assessing the quality of unit and
integration test sets.

REFERENCES

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM. 26 (11) (pp. 832-843). ACM Press.

Bhatt, M. (2007) A Causal Approach for Modelling Spatial Dynamics: A Preliminary Report.
Proceedings of the Workshop on Spatial and Temporal Reasoning, 20th International Joint
Conference on Artificial Intelligence (IJCAI-07).

Bredeweg, B., Bouwer, A., Jellema, J., Bertels, D., Linnebank, F. & Liem, J. (2007) Garp3: a new
workbench for qualitative reasoning and modelling. Proceedings of the 4th international
conference on Knowledge Capture (K-CAP’07) (pp. 183-184).

Burnstein, I. (2003). Practical software testing: a process oriented approach. Springer, New York.

Cohn, A. (2008) Conceptual Neighborhood. Definition in Shekhar, S., Xiong, H., Encyclopedia
of GIS (pp. 123). SpringerScience, New York, United States of America.

Cohn, A. G., & Renz, J. (2008). Qualitative Spatial Representation and Reasoning. In van
Hermelen, F., Lifschitz, V., Porter, B. (Eds), Handbook of Knowledge Representation
(pp. 551-596). Elsevier.

Cunningham, W. (1995), About the Portland form. http://c2.com/ppr/about/portland.html
[Available: 8 August 2009].

Dylla, F. & Wallgrün, J.O. (2007). Qualitative Spatial Reasoning with Conceptual
Neighborhoods for Agent Control. In Journal of Intelligent and Robotic Systems, 48 (1)
(pp. 55-78).

Dylla, F., Frommberger, L., Wallgrün, J. O. & Wolter, D. (2006). SparQ: A Toolbox for
Qualitative Spatial Representation and Reasoning. Proceedings of the Workshop on Qualitative
Constraint Calculi: Application and Integration.

Freksa C. (1992), Temporal reasoning based on semi-intervals, Artificial Intelligence, 54, pp.
199–227.

Gantner, Z., Westphal, M. & Wölfl, S. (2008). GQR - A Fast Reasoner for Binary Qualitative
Constraint Calculi. Proceedings of the AAAI'08 Workshop on Spatial and Temporal Reasoning
(pp. 24-29), Chicago, United States of America.

Guesgen, H. W. (2002) “Fuzzifying Spatial Relations”. Applying soft computing in defining
spatial relations, Matsakis P. and Sztandera L. (Eds.), Physica-Verlag, Hei-delberg, Germany,
pp.1-16.

Hodges, W. (1997) A Shorter Model Theory. Cambridge University Press.

Iwasaki, Y. (1997) Real-World Applications of Qualitative Reasoning. IEEE Expert 12(3)
(pp. 16-21).

Kuchcinski, K. (2003) Constraints-driven scheduling and resource assignment. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 8(3) (pp. 355-383).

Li, J. J., Huang, J. & Renz, J. (2009). A Divide-and-Conquer Approach for Solving Interval
Algebra Networks. Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009) (pp. 572- 577), Pasadena, United States of America.

Ligozat, G., Mitra, D. & Condotta, J. (2004). Spatial and temporal reasoning: beyond Allen’s
calculus. AI Communications 17(4) (pp. 223–233).

Marker, D. (2002) Model Theory: An Introduction. Springer Verlag New York.

Nebel, B., & Bürckert, H. J. (1995). Reasoning about temporal relations: A maximal tractable
subclass of Allen’s interval algebra. Journal of the ACM 42(1) (pp. 43-66).

Pooley, R. J. (2004) Applying UML advanced application. Elsevier, Oxford.

Qayyum, Z.U. & Cohn, A.G. (2007) Image retrieval through qualitative representations over
semantic features. Proceedings of the 18th British Machine Vision Conference (BMVC2007)
(pp. 610-619).

Renz, J. (1999). Maximal Tractable Fragments of the Region Connection Calculus: A Complete
Analysis. Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI'99) (pp. 448-455), Stockholm, Sweden.

Renz, J. (2007). Qualitative Spatial and Temporal Reasoning: Efficient Algorithms for Everyone.
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07)
(pp. 526-531), Hyderabad, India.

Schultz, C., Amor, R. & Guesgen, H.W. (2009) Unit Testing for Qualitative Spatial and Temporal
Reasoning. Proceedings of the 22nd Florida Artificial Intelligence Research Society Conference
(FLAIRS-22), Sanibel Island, United States of America.

Schultz, C., Clephane, T.R., Guesgen, H.W. & Amor, R. (2006) Utilisation of qualitative spatial
reasoning in geographic information systems. Proceedings of the International Symposium on
Spatial Data Handling (SDH-06) (pp. 27-42), Vienna, Austria.

Schultz, C., Guesgen, H.W. & Amor, R. (2007) A system for querying with qualitative distances
in networks. Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE'07) (pp. 640-645), London, England.

SETC - Software Engineering Technical Committee, (1984) IEEE guide to software requirements
specifications, IEEE Computer Society, New York, United States of America.

Van de Weghe, N., Cohn, A.G., De Tré, G. & De Maeyer, P. (2006) A Qualitative Trajectory
Calculus as a Basis for Representing Moving Objects in Geographical Information Systems.
Control and Cybernetics 35(1) (pp. 97-119).

Westphal, M. & Wölfl, S. (2009). Qualitative CSP, finite CSP, and SAT: Comparing methods for
qualitative constraint-based reasoning. Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009) (pp. 628-633), Pasadena, United States of America.

Wölfl, S., Mossakowski, T. & Schröder, L. (2007) Qualitative constraint calculi: Heterogeneous
verification of composition tables. In Proceedings of the 20th International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2007) (pp. 665-670). AAAI Press.

Zhu, H., Hall, P. A. V. & May, J. H. R. (1997) Software unit test coverage and adequacy. In
ACM Computing Surveys (CSUR), 29(4) (pp. 366-427), ACM New York, United States of
America.

KEY TERMS & DEFINITIONS

Application designer: determines the QSTR application language and model, given
formal software requirements.

Validation: process conducted to ensure that a software system is fit for purpose.

Complexity: a measure of the expressiveness of a relational language; specifically, the
number of distinct scenarios that can be represented.

Requirements: the necessary properties of the intended application for that application to
have value, such as characteristics of the domain being modelled, the tasks that the
intended system needs to be capable of performing, and the system’s behaviour during
runtime.

Neighbourhood: a graph where vertices represent relations are edges represent conceptual
neighbours; two relations are conceptual neighbours if it is possible for a tuple of objects
to transition between those relations without requiring a third, intermediate relation.

Test coverage: the proportion of a selected class of software components exercised by a
test suite.

QSTR applications: a class of relational systems, typically characterised by modelling a
broad range of abstraction levels, modelling continuity in dynamic scenarios, and
modelling infinite, partially ordered domains.

