
Unit Testing for Qualitative Spatial and Temporal Reasoning

Carl Schultz, Robert Amor, Hans Guesgen

Affiliation(s) Go Here in 9 Point Times Roman
Author(s) Address(es) Go(es) Here in 9 Point Times Roman
Author(s) Address(es) Go(es) Here in 9 Point Times Roman
Author(s) E-mail(s) Go(es) Here in 9 Point Times Roman

Abstract
Researchers in commonsense, qualitative spatial and
temporal reasoning (QSTR) provide flexible and intuitive
methods for reasoning about vague and uncertain
information including spatial orientation, topology and
proximity. Despite a number of theoretical advances in this
field, there are relatively few applications that employ these
methods. The central problem is a significant lack of
application-level standards and validation methods for
supporting developers in adapting and integrating QSTR
with their domain specific qualitative spatial and temporal
models. To address this we present a significantly novel
methodology for QSTR application validation, inspired by
research in software engineering. In this paper we focus on
unit testing, and adapt the software engineering strategy of
defining boundary cases. We present two critical boundary
concepts, a methodology for isolating the units under testing
from other parts of the model, and methods to assist the
designer in integrating our critical boundary unit testing
approach with a broader validation plan.

Introduction

Intuitive commonsense reasoning is a prominent area in
artificial intelligence research (Hayes 1979; Kuipers 1994).
An important subdiscipline that specialises in qualitative
spatial and temporal reasoning (QSTR) has also gained a
lot of attention in the AI community (Cohn and Renz
2007). Over the last 25 years, AI researchers have
developed a variety of sophisticated QSTR methods that
provide flexible querying and reasoning for vague and
uncertain spatial and temporal data. A seminal example of
QSTR is Allen’s interval calculus (Allen 1983) which
defines a set of thirteen atomic relations between time
intervals, and an algorithm for reasoning about networks of
temporal relations, e.g. (where • is a composition operator)
 t1 before t2 • t2 contains t3 = t1 before t3
 t1 overlaps t2 • t2 during t3 =
 t1 (overlaps, or during, or starts) t3
Despite significant theoretical advances, there is a distinct
absence of applications that make use of these techniques

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Dylla et al. 2006). The central problem is the significant
lack of support for adapting and integrating existing QSTR
methods with other domain specific qualitative spatial and
temporal models. Because there are no application-level
standards, metrics or validation methods, QSTR systems
are developed in a very ad hoc manner and it is impossible
to make an effective assessment of a QSTR system’s
validity; in fact, this is a systemic issue that has led to
erroneous systems, e.g. refer to page 666, first column in
(Wölfl et al. 2007). This problem of validation clearly
presents a significant barrier for the development of QSTR
applications.
 Researchers in QSTR typically apply general first-order
theorem provers (and higher) for system validation (Wölfl
et al. 2007). However, the use of theorem provers for
application level validation is not practical in general.
Firstly, applying theorem provers can be very manually
intensive, and even expert logicians in the QSTR research
field find the task non-trivial (e.g. refer to page 292 and
Section 6.2 in (Cohn et al. 1997)). Secondly, they require
axioms for the logic which in many cases will not be
available, making theorem provers impossible to use. For
example, particularly during the early stages of application
design, software developers may need to rapidly encode
informal qualitative domain knowledge with the intention
of refining the logic later if necessary. Thus, a thorough
axiomatisation would not be necessary or appropriate.
 We present a significantly different methodology for
QSTR application validation, inspired by research in
software engineering. In this paper we focus on unit
testing, and adapt the software engineering strategy of
defining boundary cases. Boundary scenarios partition the
infinite space of testable scenarios into a manageable,
finite number of equivalence classes, thus facilitating
practical unit testing. An application designer can then use
boundary case unit testing in conjunction with other QSTR
specific validation approaches to achieve the necessary
level of confidence that the QSTR application is fit for
purpose. The following section provides an overview of
the main concepts in QSTR and unit testing. We then
present our unit testing critical boundaries with a worked
example.

Foundations of QSTR and Unit Testing
QSTR systems model, infer, and check the consistency of
object relations in a scenario. Unit testing isolates and
tests the system’s atomic components with the aim of
covering all scenarios by recognising that different
scenarios can fall into the same logically equivalent
category. Thus, designers achieve full coverage by
exercising unit tests for at least one prototypical scenario
from each category. This is analogous to standard software
unit testing that covers all decisions and control paths in a
unit of code (e.g. an object’s method in object-oriented
software) and reduces the test space with boundary
checking, equivalence class partitioning and cause-effect
graphs. Once unit correctness has been established,
integration tests ensure that the designers intention holds
when the atomic components are combined and
incorporated into a more complex model (Burnstein 2003).
 A QSTR scenario consists of a finite set of objects O,
and qualitative relationships between those objects.
Formally, an object o∈O is an atom and a qualitative
relation r is a set of object tuples of fixed arity d, r⊆Od. A
QSTR system consists of relation types and constraints
between relations that are evaluated in the scenario.
 Often parts of the scenario are indefinite or unknown,
and reasoning is used to resolve this ambiguity. Ambiguity
about a scenario is encoded by explicitly representing
definitely holds, definitely not holds and indefinite. A
further case not applicable can also occur when qualities
require preconditions. So for any relation type r in a
QSTR system, the scenario model requires four mutually
exclusive sets r+ (definitely holds), r− (definitely not
holds), r? (indefinite), r ~ (not applicable) such that

Od = Δα∈{+,−,?,~} r αd

for integers d≥1 where Δ is symmetric difference (mutual
exclusion). For our purposes, we do not need to discuss
the semantics of these scenarios in further detail, and
instead refer the reader to (Ligozat et al. 2004).
 The structure of a QSTR system is defined by
constraints between the qualitative relations of the form

X δ Y,
where δ∈{⊂,⊆,⊄,≠,=}is a set comparison and X, Y are set
expressions to be evaluated in a scenario. Set expressions
are either sets, or the result of set operations. If a scenario
does not satisfy a constraint then reasoning attempts to
move the offending tuples out of indefinite sets and into
one of the definite sets. If offending tuples are not
indefinite then reasoning has identified a contradiction and
the scenario is inconsistent.
 An example of a scenario is

O={kitchen, lounge, study}
adjacent+ ={(lounge, study), (lounge, kitchen)}
adjacent? ={(lounge, lounge), (study, lounge), …}
adjacent− ={}.

The adjacent relation can be defined as symmetric using
the constraint

{(x,y) | (y,x) ∈ adjacent+} ⊂ adjacent+.

The LHS of the constraint as evaluated in the scenario is
{(study,lounge), (kitchen,lounge)}. The RHS as evaluated
in the scenario does not contain these tuples as required by
the proper subset relation, and so reasoning moves the
offending tuples out of adjacent? and into adjacent+ thus
satisfying symmetry.

Critical Boundaries for Unit Testing
Unit testing aims to validate an infinite number of
scenarios by defining equivalence classes and ensuring at
least one scenario from each class is tested. We define the
testable units of a QSTR system as set expressions within
constraints. Based on an analysis of set expressions, we
establish two critical scenario boundaries that form
equivalence classes.
 Set expressions form new sets by collecting elements
from existing sets according to specified conditions. The
conditions used to build a set can be divided into two
categories. For each tested element (or tuple of elements)
a condition either allows the element into the new set, or
rejects the element. It follows that each condition from a
set expression either

• triggers the constraint (the constraint will not
apply if these conditions are never satisfied)

• overrides the constraint (even if the constraint has
been triggered, if these conditions hold then they
will stop the constraint from applying), or

• is independent (has no effect).

For a constraint to apply, it must have one or more triggers
that are not overridden. We use this insight to define
equivalence classes based on the following simple
structure for programming QSTR constraints

select tuple :

exists tuple : trigger conditions
and not exists tuple : override conditions

As a programming construct this format has a number of
desirable properties. Most importantly, it is a modular
construct that facilitates uniform testing by structuring the
set expressions which function as units in a QSTR system.
Moreover, the construct is orthogonal as conditions can
themselves contain nested selections, and it supports both
bottom-up and top-down design as nested selections can be
either well-developed units or unspecified stubs.

Scenario Equivalence Classes
We will now derive two critical boundary concepts based
on equivalence assumptions. The conditions for tuple
selection can be listed in two decision tables, one for the

exists clause, and one for the not exists clause. Every
scenario can be expressed as zero or more rows from each
table, and conversely, an infinite number of scenarios exist
for each combination of rows. The first equivalence
assumption is that scenarios resulting in the same
combination of rows in the decision tables are equivalent,
and thus at least one scenario for each row combination
must be tested. This places a critical boundary between a
qualitative relation being empty ¬∃x·x∈r+, and having one
or more objects ∃x·x∈r+. It thus prescribes at least one test
for each combination of qualitative relation states in the
conditions of a set expression. This yields a finite critical
test set size of

Σi=0…n C(n,i), (1)

where n=2l+2m is the number of rows (where l and m are
the number of trigger and override conditions respectively)
and C(n,k) is the number of k-sized combinations out of n,

C(n,k) = n! / (k!(n-k)!) for 0≤k≤n.

A further useful distinction is the interaction of different
condition classes, where the effect of the interaction of
rows is different to the effect of the rows taken individually.
Thus, the second equivalence assumption is that, if a set of
scenarios each result in a single row of the same condition
class (such as trigger) then any scenario that results in
some combination of these rows is equivalent to the set of
individual scenarios. For example, after testing all trigger
rows individually we can ignore pairwise (and higher)
comparisons of trigger rows. This is because, if two
conditions correctly select an element when individually
exercised (each satisfying some Boolean trigger condition
∃x·x∈r+), then there is no logical way that they can
erroneously prevent that same element being selected when
both conditions are true in the same scenario. Note that if
two triggers are intended to be mutually exclusive then an
override condition is used. By focusing on this important
class of tests we further reduce the critical test set size
without decreasing the effective test coverage. The critical
test set size is now

1 + (t+o+i) + (t⋅i + t⋅o + o⋅i) + (t⋅o⋅i) (2)

where t, i, o are the number of trigger, independent and
override rows respectively, with an additional scenario that
corresponds to zero rows.
 This defines complete boundary case unit testing for a
set expression and thus provides an ideal target for logic
validation. Furthermore, the development cost is relatively
low as these test scenarios can be easily generated
automatically.

Worked Example
Consider the following application-specific constraint for
determining apparent room colour temperature

(Schultz et al. 2008), with a selection of cases illustrated in
Figure 1:

“If a room has at least one warm light, and does not have
lights of any other temperature, then the room has a
warm colour temperature”

Figure 1. Five independent scenarios illustrating the function of
the apparent room colour temperature constraint. Each scenario

contains a room (represented by a cube) and light sources.

This constraint may then be integrated into an existing
QSTR system that reasons about spatial arrangements of
light sources and surfaces. One formal encoding of this
constraint might be

{x | (∃y. light+(y) ∧ in+(y,x) ∧ warm+(y)) (3)
 ∧¬(∃y’. light+(y’) ∧ in+(y’,x) ∧ warm−(y’))} ⊆ warm+.

Table 1 shows the decision tables for the LHS set
expression that enumerate the different relation states and
the condition class of each state combination.

y∈light (y,x)∈in y∈warm cond. class
holds holds holds trigger
holds holds not holds independent
… … … …
not holds not holds not holds independent

y’∈light (y’,x)∈in y’∈warm cond. class
holds holds holds independent
holds holds not holds override
… … … …
not holds not holds not holds independent

Not all rows between the decision tables are independent,
for example, if there exists y such that y∈warm+ then there
must also exist y’ such that y’∈warm+. Thus, the decision
tables are merged to achieve node consistent unit
validation, based on the shared qualitative relations light,
in and warm. The dimensionality is now low enough to
represent the table in matrix form as shown in Table[x].

We use ŷ to represent both y and y’ and refer to this as the
constraint matrix.

ŷ∈light: holds

 holds not holds

holds 1) trigger 2) independent
not holds 3) override 4) independent

ŷ∈light: not holds

 holds not holds

holds 1) independent 2) independent
not holds 3) independent 4) independent

Every scenario can be expressed as some combination of
zero or more cells in these matrices. For example,
Figure 1a is cell 1, Figure 1c is cell 3 and Figure 1d is the
case with zero cells.
 Our first critical boundary prescribes at least one test for
each combination of cells in the constraint matrix.
Applying equation (1) for n=8 gives a unit test set size of
256. Our second critical boundary only considers the
interaction between different condition classes. Applying
equation (2) for t=1, o=1, i=6 gives a unit test set size of
28, which is an order of magnitude smaller.

Deriving Constraint Intent for
Effective Unit Testing

There are two problems with the given critical boundaries.
Firstly, covering all the resulting unit tests may not be
practical as the number of possible tests explodes with an
increase in the number of conditions. Let n be the number
of decision table rows, n=t+o+i. In the worst case1
t=o=i=n/3, and the test set size from substituting into
equation (3) is

1+n+n2/3 + n3/27.

If we assume for simplicity that the number of trigger l and
override m conditions are the same, l=m then
n=2l+2m=2m+1, and the order2 of the test set size is 23m.
Secondly, covering the huge number of unit tests with
equal attention may obscure tests that are more logically

relevant. A bias is required to determine which tests are
more important than others.
 To address this, we observe that constraint domains
often have a number of qualitative relations that primarily
support the interaction between constraints and other
external modelling requirements. However, unit testing
focuses on testing the constraint in isolation of other parts
of the model (Burnstein 2003). Thus, our critical
boundaries define a test set that is a superset of the target
unit test set. For example, the domain of constraint (3)
contains the relations warm, light and in, giving 28 unit
tests after merging. However, if (3) was the only
constraint in the model, then the whole system could
collapse into a simple Boolean test,

room_is_warm = ∃y.warm+(y) ∧ ¬∃y’.warm−(y’).

This system only models one room in a scenario, and every
defined object is a light source located in that room,
yielding 5 unit tests (3 after merging). While this
simplification might appear arbitrary, reasoning will arrive
at the same conclusion as the more complex system about
which rooms are warm. Any other simplification that only
implicitly models warm will not always provide the same
inference results.
 Hence, the task is to identify the important components
in a set expression that capture the designer’s purpose or
the intent of the constraint. It is desirable to have an
objective definition of constraint intent, so that unit tests
that exercise interesting boundary cases centred on the
important components can be created in a systematic way.
The problem is that a designer’s intent can be both vague
and subjective, thus eluding any formal, objective
definition.
 We propose that the intent of a constraint is reflected in
the tension between the trigger and override conditions,
thus interesting conditions are those that separate triggers
and overrides. We refer to this concept as the principle of
trigger-override separation. A condition implements this
tension if it supports triggers, while not supporting
overrides, and vice versa. A condition does not implement
this tension if it supports both triggers and overrides. This
is because a change in its truth value will cause the trigger
and override conditions to change in step with each other,
and thus will have no net effect on triggering or overriding
the constraint. One very useful result of this definition is
that shared conditions can be easily and objectively
identified, allowing unit tests that exercise constraint intent
to be discovered and generated automatically.
 Following from the worked example in the previous
section, we reformat the expression by placing the shared
conditions in a given clause

select R :

exists Y : warm+(Y)
and not exists Y’: warm−(Y’)

given : light+(Y) ∧ in+(Y,R) .

ŷ∈warm
(x,ŷ)∈in

ŷ∈warm
(x,ŷ)∈in

1 Equation (2) is maximised when the product of the variables is
maximised. The product of two numbers that have a difference of 2j is
(i+j)(i-j)=i2-j2. This is maximised when j=0; it follows that the product
of any numbers (that must sum to n) is maximised when they are
equal.

2 The given complexity is somewhat misleading; typically constraints
contain a small number of conditions (anything below 8 is
manageable), so the constants become significant making the average
case for l+m < 10 much lower than 23m.

Capitalised words are variables following Prolog syntax
conventions. The semantics of this expression are
equivalent to the LHS set expression in (3). That is, the
scope of variables declared in either the exists or not exists
clause is limited to that clause, in this case Y and Y’. The
special given clause is evaluated in conjunction with the
other two clauses where Y is interpreted as any Y variable
with zero or more primes. Note that light+(Y) is not
equivalent to light+(Y) ∧ light+(Y’) because Y’ is outside
the scope of the exists clause and Y is outside the scope of
the not exists clause. Applying the principle of trigger-
override separation, the refined test set contains 3 unit tests
that exercise the set expression in isolation of other model
components.
 While constraints necessarily have trigger conditions,
they may not have overrides, in which case our principle of
trigger-override separation as a definition of constraint
intent does not apply. Determining an objective definition
that can apply to constraints without overrides remains an
open problem and in these cases designers either must
formally specify the important components or exhaustively
test the constraint domain.

Incorporating Critical Boundaries into
a Unit Testing Plan

Unit testing using critical boundaries is only one technique
for validation and must be used as part of a suite of tools to
determine that a QSTR application is fit for purpose. In
this section we present methods that build on the results of
set expression unit testing so that critical boundary analysis
can be incorporated into a broader validation plan. The
first method applies set expression results to constraint-
level testing, and the second method eliminates invalid
scenarios to refine unit testing.
 It must be noted that our critical boundaries are relative
to the set expression being tested, and not relative to the
model or the requirements specification. If a condition is
not present in the set expression then it will not be
considered to provide a logically distinct class of scenarios
and will not be tested. Thus, the given critical boundaries
must be used in conjunction with black-box tests derived
from the requirements specification and white-box testing
methods such as test coverage and mutation testing
(Schultz et al. 2008).

Unit Testing Constraints
Once the set expressions on the LHS and RHS of a
constraint have been unit tested, the next step is to test the
constraint directly by ensuring that the constraint’s set
comparator δ is valid for all logically distinct scenarios.
The relevant scenarios are the cross product of the LHS
and RHS set expression equivalence classes, and for each
scenario the constraint will either be satisfied or
contradicted. A robust validation target is to ensure that
the constraint behaves correctly for all of these logically

distinct scenarios. For example, constraint (3) has 28
distinct LHS scenarios and 2 distinct RHS scenarios,
giving a cross product of 56 logically distinct scenarios. If
the designer agrees with the constraint being satisfied or
contradicted in each of these 56 scenarios, then the
constraint is valid with respect to the critical boundaries of
the set expressions.

Merging Decision Tables
Rows between the decision tables may not be independent,
meaning that some combinations of rows represent
inconsistent or invalid scenarios. These invalid classes of
scenarios can be excluded from testing by merging the
decision tables. This can dramatically reduce the size of
the test set, thus making unit testing more practical and
effective by limiting the focus to relevant scenarios. The
three possible reasons for rejecting scenarios are
• the principle of contradiction ∀P.¬(P∧¬P) where P

is a proposition, e.g. this caused the decision table
merge in the worked example for constraint (3),

• a second constraint between two relations, e.g. two
relations might be defined as mutually exclusive
such as warm and cool in some other constraint, and

• a series of k constraints that ultimately restrict two
relations.

These three cases define classes of local consistency
analogous to those in constraint satisfaction, namely node,
arc and k-path consistency. For arc and k-path consistency
to be valid, each constraint in the path must also be valid,
hence only node consistency is strictly set expression unit
testing. However, if a collection of constraints are taken as
an atomic module then the designer can apply these local
consistency criteria to merge particular decision tables and
benefit from the reduced test set size with no loss in
validation quality.

Conclusions
Despite a wide variety of qualitative spatial and temporal
reasoning (QSTR) systems, there is a distinct lack of
applications that make significant use of these methods.
The main problem is that there are no application-level
metrics and validation methods for assessing the quality of
QSTR applications. We address this problem by
presenting a methodology for unit testing based on critical
QSTR boundary scenarios. The units of a QSTR system
are defined as set expressions within constraints. To allow
unit testing to cover the range of expressible scenarios we
separate set expression conditions into three classes
depending on whether the condition collects an element
(trigger), rejects an element (override) or ignores an
element (independent). The result is that all scenarios are
represented by some combination of zero or more of these
conditions.
 We use the three condition classes as a basis for defining
critical boundaries for unit testing. Our first critical
boundary distinguishes between a qualitative relation being

empty and non-empty, and thus prescribes at least one test
for each combination of these qualitative relation states in
the conditions of a set expression. Our second, more
refined critical boundary ignores the interaction of
conditions of the same class. That is, it emphasises
scenarios where the effect of the interaction of conditions
is different to the effect of the conditions taken
individually. This improves the effectiveness of unit
testing by refining the test set without incurring a loss in
the quality of test coverage.
 We identify an important class of unit tests that exercise
the designer’s intent in a constraint (that is, the core
components of a constraint that operate in isolation from
the rest of the model) by proposing that constraint intent is
reflected in the separation between trigger and override
conditions. This objective definition allows the class of
unit tests that exercise constraint intent to be discovered
and generated automatically.
 Finally, we present methods to assist the designer in
integrating our critical boundary unit testing approach with
a broader validation plan. The first method applies set
expression results to constraint-level testing, and the
second method eliminates invalid scenarios to focus and
refine unit testing.

Acknowledgements
This work has been funded by the Bright Future Top
Achiever Doctoral Scholarship (Tertiary Education
Commission, New Zealand).

References
Engelmore, R., and Morgan, A. eds. 1986. Blackboard Sys-
tems. Reading, Mass.: Addison-Wesley.

Hayes, P. 1979. The Naive Physics Manifesto. In Michie,
D. (ed.) Expert Systems in the Microelec-
tronic Age. Edinburgh: Edinburgh University Press.

Kuipers B., Qualitative reasoning, MIT Press, 1994.

Cohn AG, Renz J, Qualitative spatial reasoning. In van
Harmelen F, Lifschitz V, Porter B
(eds): Handbook of Knowledge Representation; Elsevier
Science, 2007.

Allen JF, Maintaining knowledge about temporal intervals.
Communications of the ACM;
1983, 26, 11, pp. 832-843.

F. Dylla, L. Frommberger, J.O. Wallgrün, D. Wolter
(2006). SparQ: A Toolbox for Qualitative Spatial
Representation and Reasoning. In Proceedings of the

Workshop on Qualitative Constraint Calculi: Application
and Integration.

Stefan Wölfl, Till Mossakowski and Lutz Schröder.
Qualitative constraint calculi: Heterogeneous verification
of composition tables. In Proceedings of the Twentieth
International Florida Artificial Intelligence Research
Society Conference (FLAIRS 2007), pp. 665-670. AAAI
Press 2007.

G. Ligozat, D. Mitra, J. Condotta (2004) Spatial and
temporal reasoning: beyond Allen’s calculus. AI
Communications 17 (4) 223–233.

I. Burnstein (2003) Practical software testing : a
processoriented approach. Springer, New York.

Schultz CPL, Amor R, Lobb B, Guesgen HW (2008)
"Qualitative design support for engineering and
architecture" To appear in Advanced Engineering
Informatics, Elsevier.

A.G. Cohn, B. Bennett, J. Gooday, N.M. Gotts, Qualitative
spatial representation and reasoning with the region
connection calculus, GeoInformatica Springer, Berlin 1 (3)
(1997) 275–316.

[2] C. Freksa (1991) Qualitative Spatial Reasoning. In
D.M. Mark & A.U. Frank (eds.), Cognitive and Linguistic
Aspects of Geographic Space, 361-372, Kluwer Academic
Publishers.

[3] Y. Iwasaki (1997) Real-World Applications of
Qualitative Reasoning. IEEE Expert 12(3), 16-21.

[4] J. Fernyhough, A.G. Cohn, D.C. Hogg (2000)
Constructing qualitative event models automatically from
video input. Image and Vision Computing 18 (2000) 81–
103. Elsevier.

[5] A.G. Cohn, B. Bennett, J. Gooday, N.M. Gotts (1997)
Qualitative spatial representation and reasoning with the
region connection calculus. GeoInformatica 1 (3) 275-316.
Springer, Berlin.

[6] J.E. Flynn (1977) A study of subjective responses to
low energy and nonuniform lighting systems. Lighting
Design & Application 7 (2) 6–15.

[7] C. Cuttle (2003) Lighting by Design, Elsevier,
Amsterdam.

[9] Z.U. Qayyum, A.G. Cohn (2007) Image retrieval
through qualitative representations over semantic features.

Proceedings of the 18th British Machine Vision
Conference (BMVC2007), 610-619.

[10] J. Vogel, B. Schiele (2007) Semantic Scene Modeling
and Retrieval for Content-Based Image Retrieval.
International Journal of Computer Vision 72 (2) 133-157.

[11] C.E. Shannon (1948) A Mathematical Theory of
Communication. Bell System Technical Journal, 27, 379-
423.

[12]

[13] A. Fuxman, E. Fazli, R. J. Miller (2005) ConQuer:
efficient management of inconsistent databases.
Proceedings of the 2005 ACM SIGMOD, International
Conference on Management of Data, Baltimore, Maryland.
155-166.

