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Abstract 
Researchers in commonsense, qualitative spatial and 
temporal reasoning (QSTR) provide flexible and intuitive 
methods for reasoning about vague and uncertain 
information including spatial orientation, topology and 
proximity.  Despite a number of theoretical advances in this 
field, there are relatively few applications that employ these 
methods.  The central problem is a significant lack of 
application-level standards and validation methods for 
supporting developers in adapting and integrating QSTR 
with their domain specific qualitative spatial and temporal 
models.  To address this we present a significantly novel 
methodology for QSTR application validation, inspired by 
research in software engineering.  In this paper we focus on 
unit testing, and adapt the software engineering strategy of 
defining boundary cases.  We present two critical boundary 
concepts, a methodology for isolating the units under testing 
from other parts of the model, and methods to assist the 
designer in integrating our critical boundary unit testing 
approach with a broader validation plan.   

Introduction   
 
Intuitive commonsense reasoning is a prominent area in 
artificial intelligence research (Hayes 1979; Kuipers 1994).  
An important subdiscipline that specialises in qualitative 
spatial and temporal reasoning (QSTR) has also gained a 
lot of attention in the AI community (Cohn and Renz 
2007).  Over the last 25 years, AI researchers have 
developed a variety of sophisticated QSTR methods that 
provide flexible querying and reasoning for vague and 
uncertain spatial and temporal data.  A seminal example of 
QSTR is Allen’s interval calculus (Allen 1983) which 
defines a set of thirteen atomic relations between time 
intervals, and an algorithm for reasoning about networks of 
temporal relations, e.g. (where • is a composition operator) 
 t1 before t2 • t2 contains t3 = t1 before t3 
 t1 overlaps t2 • t2 during t3 = 
   t1 (overlaps, or during, or starts) t3 
Despite significant theoretical advances, there is a distinct 
absence of applications that make use of these techniques 
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(Dylla et al. 2006).  The central problem is the significant 
lack of support for adapting and integrating existing QSTR 
methods with other domain specific qualitative spatial and 
temporal models.  Because there are no application-level 
standards, metrics or validation methods, QSTR systems 
are developed in a very ad hoc manner and it is impossible 
to make an effective assessment of a QSTR system’s 
validity; in fact, this is a systemic issue that has led to 
erroneous systems, e.g. refer to page 666, first column in 
(Wölfl et al. 2007).  This problem of validation clearly 
presents a significant barrier for the development of QSTR 
applications. 
 Researchers in QSTR typically apply general first-order 
theorem provers (and higher) for system validation (Wölfl 
et al. 2007).  However, the use of theorem provers for 
application level validation is not practical in general.  
Firstly, applying theorem provers can be very manually 
intensive, and even expert logicians in the QSTR research 
field find the task non-trivial (e.g. refer to page 292 and 
Section 6.2 in (Cohn et al. 1997)).  Secondly, they require 
axioms for the logic which in many cases will not be 
available, making theorem provers impossible to use.  For 
example, particularly during the early stages of application 
design, software developers may need to rapidly encode 
informal qualitative domain knowledge with the intention 
of refining the logic later if necessary.  Thus, a thorough 
axiomatisation would not be necessary or appropriate. 
 We present a significantly different methodology for 
QSTR application validation, inspired by research in 
software engineering.  In this paper we focus on unit 
testing, and adapt the software engineering strategy of 
defining boundary cases.  Boundary scenarios partition the 
infinite space of testable scenarios into a manageable, 
finite number of equivalence classes, thus facilitating 
practical unit testing.  An application designer can then use 
boundary case unit testing in conjunction with other QSTR 
specific validation approaches to achieve the necessary 
level of confidence that the QSTR application is fit for 
purpose.  The following section provides an overview of 
the main concepts in QSTR and unit testing.  We then 
present our unit testing critical boundaries with a worked 
example. 



Foundations of QSTR and Unit Testing 
QSTR systems model, infer, and check the consistency of 
object relations in a scenario.  Unit testing isolates and 
tests the system’s atomic components with the aim of 
covering all scenarios by recognising that different 
scenarios can fall into the same logically equivalent 
category.  Thus, designers achieve full coverage by 
exercising unit tests for at least one prototypical scenario 
from each category.  This is analogous to standard software 
unit testing that covers all decisions and control paths in a 
unit of code (e.g. an object’s method in object-oriented 
software) and reduces the test space with boundary 
checking, equivalence class partitioning and cause-effect 
graphs.  Once unit correctness has been established, 
integration tests ensure that the designers intention holds 
when the atomic components are combined and 
incorporated into a more complex model (Burnstein 2003). 
 A QSTR scenario consists of a finite set of objects O, 
and qualitative relationships between those objects.  
Formally, an object o∈O is an atom and a qualitative 
relation r is a set of object tuples of fixed arity d, r⊆Od.  A 
QSTR system consists of relation types and constraints 
between relations that are evaluated in the scenario. 
 Often parts of the scenario are indefinite or unknown, 
and reasoning is used to resolve this ambiguity.  Ambiguity 
about a scenario is encoded by explicitly representing 
definitely holds, definitely not holds and indefinite.  A 
further case not applicable can also occur when qualities 
require preconditions.  So for any relation type r in a 
QSTR system, the scenario model requires four mutually 
exclusive sets r+ (definitely holds), r− (definitely not 
holds), r? (indefinite), r ~ (not applicable) such that 
 

Od = Δα∈{+,−,?,~} r αd 
 
for integers d≥1 where Δ is symmetric difference (mutual 
exclusion).  For our purposes, we do not need to discuss 
the semantics of these scenarios in further detail, and 
instead refer the reader to (Ligozat et al. 2004).   
 The structure of a QSTR system is defined by 
constraints between the qualitative relations of the form 

X δ Y, 
where δ∈{⊂,⊆,⊄,≠,=}is a set comparison and X, Y are set 
expressions to be evaluated in a scenario.  Set expressions 
are either sets, or the result of set operations.  If a scenario 
does not satisfy a constraint then reasoning attempts to 
move the offending tuples out of indefinite sets and into 
one of the definite sets.  If offending tuples are not 
indefinite then reasoning has identified a contradiction and 
the scenario is inconsistent. 
 An example of a scenario is 
 
O={kitchen, lounge, study} 
adjacent+ ={(lounge, study), (lounge, kitchen)} 
adjacent? ={(lounge, lounge), (study, lounge), …}
adjacent− ={}. 
 

The adjacent relation can be defined as symmetric using 
the constraint 
 
{(x,y) | (y,x) ∈ adjacent+} ⊂ adjacent+. 
 
The LHS of the constraint as evaluated in the scenario is 
{(study,lounge), (kitchen,lounge)}.  The RHS as evaluated 
in the scenario does not contain these tuples as required by 
the proper subset relation, and so reasoning moves the 
offending tuples out of adjacent? and into adjacent+ thus 
satisfying symmetry. 

Critical Boundaries for Unit Testing 
Unit testing aims to validate an infinite number of 
scenarios by defining equivalence classes and ensuring at 
least one scenario from each class is tested.  We define the 
testable units of a QSTR system as set expressions within 
constraints.  Based on an analysis of set expressions, we 
establish two critical scenario boundaries that form 
equivalence classes. 
 Set expressions form new sets by collecting elements 
from existing sets according to specified conditions.  The 
conditions used to build a set can be divided into two 
categories.  For each tested element (or tuple of elements) 
a condition either allows the element into the new set, or 
rejects the element.  It follows that each condition from a 
set expression either 

• triggers the constraint (the constraint will not 
apply if these conditions are never satisfied) 

• overrides the constraint (even if the constraint has 
been triggered, if these conditions hold then they 
will stop the constraint from applying), or 

• is independent (has no effect). 
 
For a constraint to apply, it must have one or more triggers 
that are not overridden.  We use this insight to define 
equivalence classes based on the following simple 
structure for programming QSTR constraints  
 
select tuple :

exists tuple : trigger conditions 
and not exists tuple : override conditions 
 
As a programming construct this format has a number of 
desirable properties.  Most importantly, it is a modular 
construct that facilitates uniform testing by structuring the 
set expressions which function as units in a QSTR system.  
Moreover, the construct is orthogonal as conditions can 
themselves contain nested selections, and it supports both 
bottom-up and top-down design as nested selections can be 
either well-developed units or unspecified stubs. 

Scenario Equivalence Classes 
We will now derive two critical boundary concepts based 
on equivalence assumptions.  The conditions for tuple 
selection can be listed in two decision tables, one for the 



exists clause, and one for the not exists clause.  Every 
scenario can be expressed as zero or more rows from each 
table, and conversely, an infinite number of scenarios exist 
for each combination of rows.  The first equivalence 
assumption is that scenarios resulting in the same 
combination of rows in the decision tables are equivalent, 
and thus at least one scenario for each row combination 
must be tested.  This places a critical boundary between a 
qualitative relation being empty ¬∃x·x∈r+, and having one 
or more objects ∃x·x∈r+.  It thus prescribes at least one test 
for each combination of qualitative relation states in the 
conditions of a set expression.  This yields a finite critical 
test set size of 
 

Σi=0…n  C(n,i), (1)
 
where n=2l+2m is the number of rows (where l and m are 
the number of trigger and override conditions respectively) 
and C(n,k) is the number of k-sized combinations out of n, 
 

C(n,k) = n! / (k!(n-k)!) for 0≤k≤n. 
 
A further useful distinction is the interaction of different 
condition classes, where the effect of the interaction of 
rows is different to the effect of the rows taken individually.  
Thus, the second equivalence assumption is that, if a set of 
scenarios each result in a single row of the same condition 
class (such as trigger) then any scenario that results in 
some combination of these rows is equivalent to the set of 
individual scenarios.  For example, after testing all trigger 
rows individually we can ignore pairwise (and higher) 
comparisons of trigger rows.  This is because, if two 
conditions correctly select an element when individually 
exercised (each satisfying some Boolean trigger condition 
∃x·x∈r+), then there is no logical way that they can 
erroneously prevent that same element being selected when 
both conditions are true in the same scenario.  Note that if 
two triggers are intended to be mutually exclusive then an 
override condition is used.  By focusing on this important 
class of tests we further reduce the critical test set size 
without decreasing the effective test coverage.  The critical 
test set size is now 
 

1 + (t+o+i) + (t⋅i + t⋅o + o⋅i) + (t⋅o⋅i) (2)
 
where t, i, o are the number of trigger, independent and 
override rows respectively, with an additional scenario that 
corresponds to zero rows.   
 This defines complete boundary case unit testing for a 
set expression and thus provides an ideal target for logic 
validation.  Furthermore, the development cost is relatively 
low as these test scenarios can be easily generated 
automatically.  

Worked Example 
Consider the following application-specific constraint for 
determining apparent room colour temperature 

(Schultz et al. 2008), with a selection of cases illustrated in 
Figure 1: 
 

“If a room has at least one warm light, and does not have 
lights of any other temperature, then the room has a 
warm colour temperature” 

 

 
Figure 1. Five independent scenarios illustrating the function of 
the apparent room colour temperature constraint.  Each scenario 

contains a room (represented by a cube) and light sources.   
 

This constraint may then be integrated into an existing 
QSTR system that reasons about spatial arrangements of 
light sources and surfaces.  One formal encoding of this 
constraint might be 
 
{x | (∃y. light+(y) ∧ in+(y,x) ∧ warm+(y))  (3)
  ∧¬(∃y’. light+(y’) ∧ in+(y’,x) ∧ warm−(y’))}  ⊆ warm+.
 
Table 1 shows the decision tables for the LHS set 
expression that enumerate the different relation states and 
the condition class of each state combination. 
 
y∈light (y,x)∈in y∈warm cond. class
holds holds holds trigger 
holds holds not holds independent
… … … … 
not holds not holds not holds independent
 
y’∈light (y’,x)∈in y’∈warm cond. class
holds holds holds independent
holds holds not holds override 
… … … … 
not holds not holds not holds independent
 
Not all rows between the decision tables are independent, 
for example, if there exists y such that y∈warm+ then there 
must also exist y’ such that y’∈warm+.  Thus, the decision 
tables are merged to achieve node consistent unit 
validation, based on the shared qualitative relations light, 
in and warm.  The dimensionality is now low enough to 
represent the table in matrix form as shown in Table[x]. 



We use ŷ to represent both y and y’ and refer to this as the 
constraint matrix. 
 

ŷ∈light: holds 
 
 holds not holds 

holds 1) trigger 2) independent
not holds 3) override 4) independent

 
ŷ∈light: not holds 

 
 holds not holds 

holds 1) independent 2) independent
not holds 3) independent 4) independent

 
Every scenario can be expressed as some combination of 
zero or more cells in these matrices.  For example, 
Figure 1a is cell 1, Figure 1c is cell 3 and Figure 1d is the 
case with zero cells. 
 Our first critical boundary prescribes at least one test for 
each combination of cells in the constraint matrix.  
Applying equation (1) for n=8 gives a unit test set size of 
256.  Our second critical boundary only considers the 
interaction between different condition classes.  Applying 
equation (2) for t=1, o=1, i=6 gives a unit test set size of 
28, which is an order of magnitude smaller.  

Deriving Constraint Intent for 
Effective Unit Testing 

There are two problems with the given critical boundaries.  
Firstly, covering all the resulting unit tests may not be 
practical as the number of possible tests explodes with an 
increase in the number of conditions.  Let n be the number 
of decision table rows, n=t+o+i.  In the worst case1 
t=o=i=n/3, and the test set size from substituting into 
equation (3) is 
 

1+n+n2/3 + n3/27. 
 
If we assume for simplicity that the number of trigger l and 
override m conditions are the same, l=m then 
n=2l+2m=2m+1, and the order2 of the test set size is 23m.  
Secondly, covering the huge number of unit tests with 
equal attention may obscure tests that are more logically 

relevant.  A bias is required to determine which tests are 
more important than others. 
 To address this, we observe that constraint domains 
often have a number of qualitative relations that primarily 
support the interaction between constraints and other 
external modelling requirements.  However, unit testing 
focuses on testing the constraint in isolation of other parts 
of the model (Burnstein 2003).  Thus, our critical 
boundaries define a test set that is a superset of the target 
unit test set.  For example, the domain of constraint (3) 
contains the relations warm, light and in, giving 28 unit 
tests after merging.  However, if (3) was the only 
constraint in the model, then the whole system could 
collapse into a simple Boolean test, 
 

room_is_warm = ∃y.warm+(y) ∧ ¬∃y’.warm−(y’). 
 
This system only models one room in a scenario, and every 
defined object is a light source located in that room, 
yielding 5 unit tests (3 after merging).  While this 
simplification might appear arbitrary, reasoning will arrive 
at the same conclusion as the more complex system about 
which rooms are warm.  Any other simplification that only 
implicitly models warm will not always provide the same 
inference results. 
 Hence, the task is to identify the important components 
in a set expression that capture the designer’s purpose or 
the intent of the constraint.  It is desirable to have an 
objective definition of constraint intent, so that unit tests 
that exercise interesting boundary cases centred on the 
important components can be created in a systematic way.  
The problem is that a designer’s intent can be both vague 
and subjective, thus eluding any formal, objective 
definition. 
 We propose that the intent of a constraint is reflected in 
the tension between the trigger and override conditions, 
thus interesting conditions are those that separate triggers 
and overrides.  We refer to this concept as the principle of 
trigger-override separation.  A condition implements this 
tension if it supports triggers, while not supporting 
overrides, and vice versa.  A condition does not implement 
this tension if it supports both triggers and overrides.  This 
is because a change in its truth value will cause the trigger 
and override conditions to change in step with each other, 
and thus will have no net effect on triggering or overriding 
the constraint.  One very useful result of this definition is 
that shared conditions can be easily and objectively 
identified, allowing unit tests that exercise constraint intent 
to be discovered and generated automatically. 
 Following from the worked example in the previous 
section, we reformat the expression by placing the shared 
conditions in a given clause 

 
select R :  

exists Y : warm+(Y)  
and not exists Y’: warm−(Y’)  

given : light+(Y) ∧ in+(Y,R) . 
 

ŷ∈warm 
(x,ŷ)∈in 

ŷ∈warm 
(x,ŷ)∈in 

 
1 Equation (2) is  maximised when the product of the variables is
maximised.  The product of two numbers that have a difference of 2j is
(i+j)(i-j)=i2-j2.  This is maximised when j=0; it follows that the product
of any numbers (that must sum to n) is maximised when they are
equal. 
 
2 The given complexity is somewhat misleading; typically constraints
contain a small number of conditions (anything below 8 is
manageable), so the constants become significant making the average
case for l+m < 10 much lower than 23m.   



 
Capitalised words are variables following Prolog syntax 
conventions.  The semantics of this expression are 
equivalent to the LHS set expression in (3).  That is, the 
scope of variables declared in either the exists or not exists 
clause is limited to that clause, in this case Y and Y’.  The 
special given clause is evaluated in conjunction with the 
other two clauses where Y is interpreted as any Y variable 
with zero or more primes.  Note that light+(Y) is not 
equivalent to light+(Y) ∧ light+(Y’) because Y’ is outside 
the scope of the exists clause and Y is outside the scope of 
the not exists clause.  Applying the principle of trigger-
override separation, the refined test set contains 3 unit tests 
that exercise the set expression in isolation of other model 
components.   
 While constraints necessarily have trigger conditions, 
they may not have overrides, in which case our principle of 
trigger-override separation as a definition of constraint 
intent does not apply.  Determining an objective definition 
that can apply to constraints without overrides remains an 
open problem and in these cases designers either must 
formally specify the important components or exhaustively 
test the constraint domain. 

Incorporating Critical Boundaries into 
a Unit Testing Plan 

Unit testing using critical boundaries is only one technique 
for validation and must be used as part of a suite of tools to 
determine that a QSTR application is fit for purpose.  In 
this section we present methods that build on the results of 
set expression unit testing so that critical boundary analysis 
can be incorporated into a broader validation plan.  The 
first method applies set expression results to constraint-
level testing, and the second method eliminates invalid 
scenarios to refine unit testing. 
 It must be noted that our critical boundaries are relative 
to the set expression being tested, and not relative to the 
model or the requirements specification.  If a condition is 
not present in the set expression then it will not be 
considered to provide a logically distinct class of scenarios 
and will not be tested.  Thus, the given critical boundaries 
must be used in conjunction with black-box tests derived 
from the requirements specification and white-box testing 
methods such as test coverage and mutation testing 
(Schultz et al. 2008). 

Unit Testing Constraints 
Once the set expressions on the LHS and RHS of a 
constraint have been unit tested, the next step is to test the 
constraint directly by ensuring that the constraint’s set 
comparator δ is valid for all logically distinct scenarios.  
The relevant scenarios are the cross product of the LHS 
and RHS set expression equivalence classes, and for each 
scenario the constraint will either be satisfied or 
contradicted.  A robust validation target is to ensure that 
the constraint behaves correctly for all of these logically 

distinct scenarios.  For example, constraint (3) has 28 
distinct LHS scenarios and 2 distinct RHS scenarios, 
giving a cross product of 56 logically distinct scenarios.  If 
the designer agrees with the constraint being satisfied or 
contradicted in each of these 56 scenarios, then the 
constraint is valid with respect to the critical boundaries of 
the set expressions.    

Merging Decision Tables 
Rows between the decision tables may not be independent, 
meaning that some combinations of rows represent 
inconsistent or invalid scenarios.  These invalid classes of 
scenarios can be excluded from testing by merging the 
decision tables.  This can dramatically reduce the size of 
the test set, thus making unit testing more practical and 
effective by limiting the focus to relevant scenarios.  The 
three possible reasons for rejecting scenarios are 
• the principle of contradiction ∀P.¬(P∧¬P) where P 

is a proposition, e.g. this caused the decision table 
merge in the worked example for constraint (3), 

• a second constraint between two relations, e.g. two 
relations might be defined as mutually exclusive 
such as warm and cool in some other constraint, and 

• a series of k constraints that ultimately restrict two 
relations. 

These three cases define classes of local consistency 
analogous to those in constraint satisfaction, namely node, 
arc and k-path consistency.  For arc and k-path consistency 
to be valid, each constraint in the path must also be valid, 
hence only node consistency is strictly set expression unit 
testing.  However, if a collection of constraints are taken as 
an atomic module then the designer can apply these local 
consistency criteria to merge particular decision tables and 
benefit from the reduced test set size with no loss in 
validation quality.   

Conclusions 
Despite a wide variety of qualitative spatial and temporal 
reasoning (QSTR) systems, there is a distinct lack of 
applications that make significant use of these methods.  
The main problem is that there are no application-level 
metrics and validation methods for assessing the quality of 
QSTR applications.  We address this problem by 
presenting a methodology for unit testing based on critical 
QSTR boundary scenarios.  The units of a QSTR system 
are defined as set expressions within constraints.  To allow 
unit testing to cover the range of expressible scenarios we 
separate set expression conditions into three classes 
depending on whether the condition collects an element 
(trigger), rejects an element (override) or ignores an 
element (independent).  The result is that all scenarios are 
represented by some combination of zero or more of these 
conditions. 
 We use the three condition classes as a basis for defining 
critical boundaries for unit testing.  Our first critical 
boundary distinguishes between a qualitative relation being 



empty and non-empty, and thus prescribes at least one test 
for each combination of these qualitative relation states in 
the conditions of a set expression.  Our second, more 
refined critical boundary ignores the interaction of 
conditions of the same class.  That is, it emphasises 
scenarios where the effect of the interaction of conditions 
is different to the effect of the conditions taken 
individually.  This improves the effectiveness of unit 
testing by refining the test set without incurring a loss in 
the quality of test coverage. 
 We identify an important class of unit tests that exercise 
the designer’s intent in a constraint (that is, the core 
components of a constraint that operate in isolation from 
the rest of the model) by proposing that constraint intent is 
reflected in the separation between trigger and override 
conditions.  This objective definition allows the class of 
unit tests that exercise constraint intent to be discovered 
and generated automatically.   
 Finally, we present methods to assist the designer in 
integrating our critical boundary unit testing approach with 
a broader validation plan.  The first method applies set 
expression results to constraint-level testing, and the 
second method eliminates invalid scenarios to focus and 
refine unit testing. 
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