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Abstract 

A wide variety of qualitative spatial and temporal reasoning 
systems have now been developed that formalise various 
commonsense aspects of space and time.  Despite this, 
relatively few applications have made use of the reasoning 
tasks provided by these systems.  We address this in a novel 
way by adopting the perspective of application designers.  
We present an outline of QSTR application theory, and use 
this to develop methodologies that support designers in 
creating suitable qualitative models, implementing metrics 
for analysing QSTR applications, and conducting 
application-level QSTR logic validation.   

Introduction  

While a variety of sophisticated QSTR methods have been 
developed over the last 25 years, relatively few significant 
applications have made use of these systems [1].  This is 
despite spatial and temporal information playing a critical 
role in many reasoning tasks across a range of disciplines.  
Moreover, there is a lack of QSTR applications within the 
AI community, where a more cognitively motivated, 
flexible qualitative approach to reasoning [2] is seen as 
highly desirable.  The related area of qualitative reasoning 
about scalar quantities does not have this problem [3].  It 
must also be noted that representations provided by QSTR 
systems have been found to be particularly useful in a 
number of applications such as [4].  Thus, the main issue is 
that the reasoning tasks provided by QSTR systems have 
not been widely applied. 
 We are taking a significantly novel approach for 
developing methodologies that support the application of 
QSTR systems.  The standard approach is to focus on the 
analysis of QSTR systems to determine the reasoning 
services they can provide, and methods for efficiently 
providing these services.  Alternatively, we consider the 
problem from the perspective of the application designer.  
Our view is that the QSTR community has not adequately 
addressed or acknowledged the unique issues of designing 
and developing QSTR applications compared to more 
traditional systems (e.g. numerical models).  In particular, 
standard QSTR services check consistency, identify 
consistent scenarios and perform deductive closure.  
However, from an application perspective, a task on 
average involves probability distributions over input 

premise information and required outputs.  That is, a 
typical application task has target information that 
reasoning must provide.  This suggests that completing 
partially specified constraint networks may be an 
inefficient approach for calculating the necessary target 
information, and moreover will not scale well as the 
number of objects increases.  Other reasoning methods that 
operate on an application level such as backward chaining 
may be more appropriate.  Furthermore, the additional 
information from the application requirements 
specification, such as the operational profile that includes 
likelihoods over certain inputs and necessary outputs, can 
be used to define metrics that assess the performance of 
QSTR components.  The results of these metrics can then 
be used to enhance reasoning for more probable 
application tasks. 
 The primary concerns for an application designer are 
meeting the specific requirements set out by the end users 
and the cost of development.  This requires methodologies 
for developing suitable qualitative models that address the 
required tasks, and methodologies for QSTR logic testing 
and application validation.  Note that theorem proving for 
application level validation is not practical in general 
because, firstly, it requires axioms for the logic which in 
many cases will not be available, and secondly, even 
expert logicians in the QSTR research field find the task 
non-trivial (e.g. refer to page 292 and Section 6.2 of [5]).  
These issues of application level qualitative modelling and 
validation have not been adequately addressed.  For 
example, consider the following qualitative reasoning that 
resulted from seminal lighting studies [6]: 
 

Visual clarity: Bright, cool, uniform lighting mode in the 

occupancy area. Some peripheral emphasis, such as high 

reflectance walls or wall lighting. 

Spaciousness: Uniform, peripheral (wall) lighting.  

Brightness in the occupancy area is a reinforcing factor, but 

not a decisive one. 

Relaxation: Warm, non-uniform lighting mode. Peripheral 

(wall) emphasis, rather than overhead lighting. 

Intimacy: Non-uniform lighting mode. Tendency toward low 

light intensities in the immediate locale of the user, with 

higher brightnesses remote from the user. Peripheral (wall) 

emphasis is a reinforcing factor, but not a decisive one. 

 



The reasoning describes lighting effects that directly result 
from spatial arrangements of light sources and surfaces, 
and with the order in which rooms are visited (a temporal 
component).  Other studies [7] bridge the gap between 
physical lighting arrangements and subjective lighting 
concepts.  There is no obvious, immediate correlation in 
terms of reasoning methods between this qualitative 
reasoning and the standard Allen-based form, although 
clearly an application designer implementing this 
reasoning could benefit from the QSTR community’s 
research.  Specifically, these are real-world QSTR systems, 
however, standard operators of composition and 
conversion are not defined, there are no JEPD relation sets, 
and it is not clear that a constraint-satisfaction approach is 
the only suitable implementation. 
 We address the issues of application level qualitative 
modelling and validation with a theory of application for 
QSTR systems.  Specifically we develop QSTR model 
design and validation methodologies for qualitative 
applications that solve well defined problems.  In the 
following section we present a basic theoretical framework 
for QSTR applications.  We then present metrics for 
analysing the behaviour of qualities in the context of a 
required task.  In the subsequent sections we present 
methodologies for logic validation, and a methodology for 
structuring the available options for modelling ambiguity.  
In the final section we present our conclusions. 

QSTR Application Theory 

In many cases, the reasoning services provided by an 
existing QSTR method will not directly meet the needs of a 
task.  As a result, applications often need to mix and 
combine different QSTR systems.  Furthermore, many 
applications have context specific rules that, while often 
relatively simple, need to integrate at a deep level with 
standard QSTR systems.  This is necessary so that QSTR 
theory and tools can be applied over the entire application 
(e.g. metrics, methods for reasoning, and so on) for 
complete and uniform application analysis and validation.  
From an application perspective this calls for a 
fundamental QSTR system format that is sufficiently 
general to represent a wide range of QSTR systems in a 
uniform way.  In practice, specialised reasoners such as 
SparQ [1] are employed to process particular well-defined 
sub-components, and unique, custom components are 
processed using more general reasoning methods 
(supported by QSTR specific design patterns) e.g. using 
declarative languages such as Prolog or SQL. 
 We begin with a standard definition for QSTR systems 
by Ligozat et al. [8].  Given a non-empty universe U a 
QSTR system partitions U×U into a finite set I of binary 
relations Ri 

U×U =  Ui∈I Ri. 
In general relations can be of any arity, 

U
d
 = Ui∈I Rd,i  , 

where the integer d≥1 is the dimension.  Thus a quality 
(qualitative relation) is a set that contains tuples of objects 
from U of some fixed arity. 
 A QSTR standard is to encode ambiguity as possibly 
holds with the disjunction of basic relation types between 
two objects.  Definitely not holds is represented as the 
absence of a basic relation between two objects, and 
definitely holds is implicitly inferred when the set of 
relations that possibly hold is a singleton.  In the general 
case an application may need to explicitly represent 
definitely holds, definitely not holds and ambiguous.  A 
further case not applicable can also occur when qualities 
require preconditions.  So for any quality q we require four 
mutually exclusive sets q

+
 (definitely holds), q

−
 (definitely 

not holds), q
?
 (ambiguous), q

~
 (not applicable) such that 

U
d
 = ∆α∈{+,−,~, ?} q

α
d 

for integers d≥1 where ∆ is symmetric difference (mutual 
exclusion). 
 In general we cannot assume that all relations are JEPD.  
Furthermore we cannot assume that the conversion and 
composition operators have been defined.  In general the 
structure of a QSTR system is defined by constraints 
between qualities of the form  

X δ Y, 
where δ∈{⊂,⊆,⊄,≠,=} is a set comparison, and X, Y are set 
expressions.  Set expressions are either sets (e.g. before

−
), 

the result of set operations (e.g. before
−∩during

−
) or sets 

defined using builder notation (e.g. {y|(x,y)∈before
−
}).  For 

example, the conversion constraint as given in [8] is  
R2,i^ = {(x,y)∈U×U|(y,x)∈R2,i} 

where the function ^ returns the designated converse set 
(e.g. before^ returns after).  Another example is a 
constraint used to specify when the subjective colour 
temperature of a room is cool.  If all lights x in the room y 
have a cool colour temperature, then the room y also has a 
cool colour temperature, 

{y | (x,y) ∈ in
+
 → x ∈ cool

+
 }  ⊆ cool

+
.   (1) 

 The domain of a constraint is the set of qualities that 
occur in the constraint, for example the domain of (1) is 
{in, cool}.  
 We can now represent a wide range of QSTR systems.  
Allen-based systems can be represented as a set of 
relations Ri using a definition of U and constraints for 
conversion, composition, and identity. 
 We can also represent systems that do not necessarily 
adhere to the standard Allen-based form.  For example, in 
[9] Qayyum and Cohn present a method for image retrieval 
using qualitative spatial representations.  Each image is 
divided into cells that are annotated with a semantic 
concept such as sky or grass [10].  Qualitative relationships 
between all pairs of semantic concepts are calculated for an 
image, e.g. greater-than (meaning that more cells of one 
concept are present in an image compared to some other 
concept).  Thus U is the set of semantic concepts, and each 
image is a different scenario s defined by the way the 
relations R

s
i (e.g. greater-than, equal-to, less-than) divide 

up U×U such that ∆∆∆∆i∈IR
s
i=U×U.  Images are compared by 



determining the differences between equivalent relations 
e.g. if R

x
i=R

y
i for i∈I then two images are equivalent.   

 The same principle applies to dynamic and multi-
granular QSTR systems.  Each snapshot of a scene is 
represented by a new scenario st, where the contents of the 
relations in st+1 are constrained by the relations in st.  For 
example, the continuity assumption means that an object 
with relation Rx in scenario st can take Rx or relations 
adjacent to Rx in the neighbourhood graph during scenario 
st+1.  Note that, from an application perspective, this is not 
an axiom, as the constraint can be broken during valid, 
normal operation.  For example, an application that uses 
sensor data as premise information for constructing 
scenarios may find that a pair of scenarios si and si+1 break 
the continuity constraint;   the application can then respond 
by increasing its sampling rate. 
 In the following sections we use this definition to 
develop methodologies for application level metrics, 
validation, and modelling. 

QSTR Metrics 

The application designer has task specific information in 
the form of a requirements specification.  This includes 

� desired functionality of the application 
� a source of real (but mathematically informal) 

QSTR content to be automated in software (e.g. 
client preferences, formal scientific studies, industry 
consensuses, and so on)  

� use cases that reflect the operational profile 
Using this additional information we can define metrics 
that assess the performance of components in QSTR 
applications.  Firstly we note that qualities group tuples of 
objects, and constraints assign certain qualities (categories) 
to objects based on the state of other qualities for those 
objects (attributes).  This is analogous to attributes being 
used to describe the category of an object.  We will now 
present the metrics cohesion, coupling, and entropy.  
 Cohesion is a measure of how effectively a set of 
attributes defines a category.  It measures the strength of a 
category based on a comparison of the attributes between 
each pair of objects in that category.  The comparison is a 
distance function that sums the differences between each 
attribute value of two objects, for example, based on 
weighted conceptual neighbourhoods of the attributes.  The 
algorithm accepts a category C and a set of attributes A as 
input and calculates statistics on the distances such as the 
mean and variance.   
 

cohesion (C, A) | 

for all pairs of objects i,j∈C  
calculate d=distance(i,j,A) 

store d in an array 

calculate statistics over stored distances 

 
A category is cohesive if the distances have a low mean 
and a low variance.  Ideally categories should be cohesive, 
as this indicates that all objects in the same category share 

a similar set of attribute values.  This metric can be used in 
a number of ways.  For example, cohesion can be 
calculated over real-world study data as evidence for 
including a constraint in the qualitative model that binds 
the category to the attributes.  Alternatively, categories 
may not be precisely related to the attributes, but more as a 
rule of thumb.  Using cohesion we can assess the 
performance of the distance function and our attribute 
selection as a heuristic definition of a category.  
 Coupling is a measure of how effectively a set of 
attributes distinguishes between two categories based on a 
comparison of the attributes of objects in each category.  
The algorithm accepts two categories C1, C2 and a set of 
attributes A as input and calculates statistics on the 
distances such as the mean and variance. 
  
coupling (C1, C2, A) | 

 for all pairs of objects i∈C1 , j∈C2  
calculate d=distance(i,j,A) 

store d  

 calculate statistics over stored distances 

 
Two categories have low coupling if the distances have a 
high mean and a low variance.  Ideally two supposedly 
unrelated categories should have low coupling.  As with 
cohesion, coupling can be used check constraints,  distance 
functions and attribute selections.  Furthermore, it can be 
used to assess the accuracy of a conceptual neighbourhood 
graph by checking that immediate neighbours of a category 
have higher coupling than more distant categories.  A full 
neighbourhood consistency test would ensure that, from 
the perspective of each category, all partial orderings of the 
other categories based on their coupling values (with a 
tolerance for equal coupling) approximates the 
neighbourhood graph.  Coupling can also be used to assign 
weights to the conceptual neighbourhood graph, where a 
low coupling yields a high neighbourhood weight. 
 Entropy is a measure of the information content 
provided by constraints.  That is, reasoning generates data 
at every inferential step and, according to information 
theory [11], the amount of information gain is inversely 
proportional to the end-user’s prior knowledge about the 
inferred data. If the end-user is very confident about what 
datum will be provided before an inference step has been 
taken, then the inference step provides little or no 
information. Thus, the application designer can improve 
reasoning efficiency if they make this data an assumption 
(e.g. by setting it as a default rather than making the 
reasoning engine infer it) or remove the quality entirely 
from the model. Information content I for a quality q, 
based on entropy, can be calculated as [11], 
 
 

 
where p(x) is the probability that a randomly chosen object 
in a randomly chosen scenario will have the quality x 
(calculated with use case data from the operational profile).  
Relationships between qualities can be measured using 
mutual entropy [11], 

I(q) = −p(q
α
) log2 p(q

α
) , ∑ 

α∈{+,−,~,?} 



 
 
 
 

 
where N={+,−,~,?}, p(x,y) is the probability that x and y 
occur together, and pa(x), pb(y) are marginal probabilities 
of x and y respectively. Entropy can be used to reduce the 
ambiguity from inference (e.g. composition) by removing 
qualities that are improbable based on other factors in the 
scenario.  For example, composition may reveal that a 
cup’s relation to a table is either meets above (resting on 
the table) or just above (floating above the table).  The 
QSTR system, having evaluated a number of use cases 
may determine that the conditional entropy for physical 
objects with the above relation is very low when the object 
has no meets above relations; that is, by analysing the 
conditional entropy it decides that floating objects are 
unlikely.  In this case entropy is used for induction. 
 Another example of how entropy can be used is the 
automatic construction of decision trees to respond to 
queries about whether objects have certain qualities e.g. “is 
the kitchen warm and cosy?”.  Given a set of known 
attribute values for the query object (e.g. the available 
premise information about the kitchen) and entropies that 
relate the attributes to the query quality (e.g. entropies for 
warmth and cosiness in relation to furniture arrangement, 
light source parameters,  and so on) a decision tree can be 
produced that infers the query answer with a minimum 
number of intermediate operations.  In general decision 
trees may also improve reasoning performance by ordering 
the constraints according to entropy. 

Validation 

The aim of program validation in software engineering is 
to determine if the system is fit for purpose [12], explicitly 
evaluating the program in terms of its application context.  
QSTR application validation aims to provide a level of 
confidence that the system logic, specifically the 
constraints and relations, provides the intended function by 
ensuring that the highly used and critical components have 
been adequately tested. 
 The test space is defined based on system inputs and 
outputs, and the system structure such as decisions and 
control paths.  Covering the entire, often infinite test space 
is clearly impractical and thus software engineers employ 
methods that isolate key subsets such as boundary 
checking, equivalence class partitioning, and cause-effect 
graphs [12].  However, by the very design of a QSTR 
application, only salient inputs, outputs, and constraints are 
modelled.  That is, qualitative concepts already represent 
behavioural classes and their delimiting values, and so 
traditional approaches are not useful for reducing the 
QSTR application test space.  The following sections 
analyse the characteristics of QSTR applications to derive 
methodologies for validation. 

Unit Testing 

In QSTR applications, the units for testing are the 
constraints.  In the following analysis we identify two 
critical boundary classes for constraint testing. 
  Firstly, we note that the sets in constraints can be 
defined using set builder notation, for example R1∩R2/R3 
becomes {x | x∈R1 ∧ x∈R2 ∧ x∉R3}.  The conditions in set-
builder notation can be divided into two categories, 
(a) conditions that must hold (e.g. x∈R1) and (b) conditions 
that must not hold (e.g. x∉R3).  Thus, each quality in a 
constraint’s domain either 
� triggers the constraint (the constraint will not apply if 

these conditions are not satisfied) 
� overrides the constraint (even if the constraint has been 

triggered, if these conditions hold then they will stop 
the constraint from applying) or, 

�  is independent (i.e. has no effect e.g. before
+
 

participates in a constraint which means before is in 
the constraint’s domain, but before

−
 may not be 

involved). 
For a constraint to apply, it must have one or more triggers 
and no overrides.  We can use this insight as a basis for 
defining test classes for unit testing.  To illustrate this, 
consider the room colour temperature constraint (1) on 
page 2.  For a given room y, the relevant cases for different 
objects are expressed in the constraint matrix in Table 1. 
 
TABLE 1: Constraint matrix of colour temperature constraint (1) 

 

holds not holds 

holds trigger independent 

not holds override independent 

 
We will now derive two critical boundary concepts based 
on equivalence assumptions for QSTR logic testing. 
 An infinite number of cases exist for each combination 
of cells in the constraint matrix.  For example, one cool 
light in a room will activate the same cell as one hundred 
cool lights in a room.  The first equivalence assumption is 
that cases resulting in the same combination of cells are 
equivalent and thus only one case for each cell 
combination needs to be tested.  This yields a finite critical 
test set size of 

Σi=1…n  C
n

i , 
where n is the number of cells 2

|D|
 (where D is the domain) 

and C
n
k is the number of k-sized combinations out of n. 

 We reduce the critical test set further by only testing the 
interaction of different condition classes.  Thus, the second 
equivalence assumption is that, if a set of cases each result 
in a single cell of the same condition class (such as trigger) 
then any case that results in some combination of these 
cells is equivalent to the set of individual cases.  For 
example after testing all trigger cells individually we can 
ignore pairwise (and higher) comparisons of trigger cells.  
The critical test set size is now 

(t+o+i) + (t⋅i + t⋅o + o⋅i) + (t⋅o⋅i) 

I(q;v) = p(q
α
,v

β
) log2  ∑ 

β∈N 

∑ 

α∈N 

p(q
α
,v

β
) 

pa(q
α
) ⋅ pb(v

β
) 

x∈iny 

x∈cool 



where t, i, o are the number of trigger, independent and 
override cells respectively. 
 This defines complete boundary case unit testing for a 
constraint and thus provides an ideal target for logic 
validation.  Furthermore, the development cost is relatively 
low as these test cases can be easily generated 
automatically. 

Test Coverage 

Integration and system testing is used to ensure that 
components interact as the designer has intended.  As with 
unit testing, there are often an infinite number of possible 
cases in which components interact, and so we require 
approaches that isolate relevant subsets of the test space.  
For this we use test coverage analysis to guide integration 
testing by identifying component interactions that have not 
been adequately assessed. 
 In standard software engineering, test coverage is a 
measure of the proportion of components exercised during 
testing, and typically refers to the control flow graph 
(CFG) where vertices represent program statements and 
directed edges represent control flow.  In order to adapt 
coverage measures to QSTR, we define the qualitative 
constraint graph (QCG) as an analog to the CFG, with 
vertices representing qualitative constraints and undirected 
edges representing a shared quality that occurs in the 
domains of two constraints.  The edges in the QCG 
indicate (necessarily mutual) constraint dependencies; if 
the constraint c1 modifies a relation that appears in 
constraint c2 then c2 must be revisited (although it may not 
require any further scenario modifications).  For example, 
the QCG of the lighting rules given in the Introduction 
section is illustrated in Figure 1. 
 
 
 
 
 
 
 
 

 
Figure 1. Qualitative constraint graph (QCG) of a selection of domain 

constraints for architectural lighting [6], where vertices represent 

constraints and edges represent related qualities. 

 

Analogous to statement execution and branch execution in 
a CFG, a vertex is executed in qualitative scenario s if the 
reasoning algorithm has modified s in order to satisfy the 
vertex’s constraint.  An edge between vertices v1 and v2 
with relation type r is executed if v1 is executed with the 
modification of some relation of type r, causing v2 to 
execute (at some future time).  Using these definitions we 
now adapt standard coverage measures for the QCG: 
� vertex (statement) coverage is the percentage of vertices 

executed i n at least one test 
� edge (branch) coverage is the percentage of edges 

executed in at least one test 

� k-path (path) coverage is the percentage of paths of 
length k executed in at least one test (for k>2)  

� condition (decision) coverage (applied to either vertices, 
edges, or paths) is the percentage of modification 
combinations resulting in execution, exercised in at 
least one test 

 
Condition coverage refers to the observation that when a 
constraint involves a number of relations there are multiple 
ways in which the vertex could be executed.  Similarly, 
when a constraint involves multiple relations of the same 
type there exist multiple ways for its edges to execute. 
 Figure 2 illustrates the partial ordering of the coverage 
measures in terms of strength.  While stronger coverage 
may increase the chance of detecting logical defects, it 
requires more test cases and resources to be achieved. 
 
 
 
 
 
 

 
Figure 2. Partial ordering of coverage criteria from weakest to strongest 

(if full coverage is achieved). 

Modelling Ambiguity 

Reasoning is the process of using definite premise 
information to infer values for indefinite or ambiguous 
components.  Thus the application designer must 
necessarily specify how their constraints should behave in 
scenarios where domain qualities are ambiguous.  In this 
section we present a methodology that defines ambiguity in 
a constraint, allowing the designer to easily consider 
alternative modelling options.   
 Each constraint has a number of different versions 
depending on how ambiguity is handled.  For example, 
Table 2 is the constraint matrix for the colour temperature 
rule (1) with additional cells for ambiguity; the designer 
has decided that if a light is not in the room then it is 
disregarded for this rule. 
 

TABLE 2: Constraint matrix for the neutral form of (1) 

 

holds ? not holds 

holds trigger  independent 

?   independent 

not holds override  independent 

  
 Table 2 is the neutral (or definite) form of the constraint 
where ambiguity is left unspecified.  During reasoning the 
neutral form will default to Table 3 where unspecified 
ambiguous cells become independent conditions. 
 The designer can modify the behaviour of the constraint 
by classing the unspecified cells in different ways.  We 
define categories of constraint versions by adapting the 
concepts  of  aggressive  and  conservative  used  in  the 

vertex 

edge 

k-path 

vertex condition 

edge condition 

k-path condition 

perimeter 
emphasis 

1 2 

3 

occupancy 
illumination 

perimeter 
uniformity 

4 ambient 
illumination 

colour 
temperature 
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TABLE 3: Default semantics for the neutral form of (1) 

 

holds ? not holds 

holds trigger independent independent 

? independent independent independent 

not holds override independent independent 

  
ConQuer database system [14].  The conservative form 
requires that all possible scenarios satisfy the constraint.  
Ambiguity is resolved towards overriding the constraint as 
shown in Table 4. 
 

TABLE 4: Maximally conservative form of (1) 

 

holds ? not holds 

holds trigger independent independent 

? override override independent 

not holds override override independent 

 
 The aggressive form requires that at least one possible 
scenario satisfies the constraint.  Ambiguity is resolved 
towards triggering the constraint as shown in Table 5. 
 

TABLE 5: Maximally aggressive form of (1) 

 

holds ? not holds 

holds trigger trigger independent 

? trigger trigger independent 

not holds override independent independent 

 
 Thus each constraint has a lattice of different versions 
between these two extremes, based on the following partial 
ordering: rule θx is more conservative than rule θy if  

(tx+1) / (ox+1) < (ty+1) / (oy+1) 
where ti, oi are the number of trigger and override cells in 
rule θi respectively.  This methodology makes the versions 
of a constraint readily accessible to the application 
designer.  Once the designer has specified their 
conservative and aggressive constraint versions, a number 
of variations on reasoning can be executed.  For example, a 
conservative query will reason using conservative forms of 
constraints that infer triggers and aggressive forms for 
constraints that infer overrides.   

Conclusions 

In this paper we have presented several novel 
methodologies that support the application of QSTR 
systems.  These methodologies support application 
designers in developing suitable qualitative models and 
conducting application-level QSTR logic validation.  We 
have outlined a theory of application that provides a broad, 
general representation for QSTR systems.  This allows 
validation methodologies and metrics to be developed that 
uniformly assess QSTR applications, regardless of the 
component QSTR systems or semantics.  We presented 

three application level metrics of cohesion, coupling and 
entropy for analysing the behaviour of qualities in the 
context of the required task.  Furthermore, we presented 
methodologies for validation that identify criteria for 
determining logical equivalence as a target for unit testing, 
and adapt test coverage criteria to assist in integration and 
system level testing.  Finally, we presented a design pattern 
for modelling ambiguity that assists the application 
designer by structuring the available modelling options.  
Specifically, we classified variants of a constraint 
according to the way the constraint behaves under 
ambiguity by adapting the concepts of conservative and 
aggressive queries.  Thus, by adopting a novel application 
design perspective of QSTR systems, we have developed a 
set of methodologies to aid application designers in 
producing real-world QSTR applications. 
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