
Towards A Theory of Application for QSTR Systems

Carl Schultz
1
, Robert Amor

1
, Hans Guesgen

2

1 Department of Computer Science, The University of Auckland

Private Bag 92019, Auckland, New Zealand

2 Institute of Information Sciences and Technology, Massey University

Private Bag 11222, Palmerston North, New Zealand

Abstract

A wide variety of qualitative spatial and temporal reasoning
systems have now been developed that formalise various
commonsense aspects of space and time. Despite this,
relatively few applications have made use of the reasoning
tasks provided by these systems. We address this in a novel
way by adopting the perspective of application designers.
We present an outline of QSTR application theory, and use
this to develop methodologies that support designers in
creating suitable qualitative models, implementing metrics
for analysing QSTR applications, and conducting
application-level QSTR logic validation.

Introduction

While a variety of sophisticated QSTR methods have been
developed over the last 25 years, relatively few significant
applications have made use of these systems [1]. This is
despite spatial and temporal information playing a critical
role in many reasoning tasks across a range of disciplines.
Moreover, there is a lack of QSTR applications within the
AI community, where a more cognitively motivated,
flexible qualitative approach to reasoning [2] is seen as
highly desirable. The related area of qualitative reasoning
about scalar quantities does not have this problem [3]. It
must also be noted that representations provided by QSTR
systems have been found to be particularly useful in a
number of applications such as [4]. Thus, the main issue is
that the reasoning tasks provided by QSTR systems have
not been widely applied.
 We are taking a significantly novel approach for
developing methodologies that support the application of
QSTR systems. The standard approach is to focus on the
analysis of QSTR systems to determine the reasoning
services they can provide, and methods for efficiently
providing these services. Alternatively, we consider the
problem from the perspective of the application designer.
Our view is that the QSTR community has not adequately
addressed or acknowledged the unique issues of designing
and developing QSTR applications compared to more
traditional systems (e.g. numerical models). In particular,
standard QSTR services check consistency, identify
consistent scenarios and perform deductive closure.
However, from an application perspective, a task on
average involves probability distributions over input

premise information and required outputs. That is, a
typical application task has target information that
reasoning must provide. This suggests that completing
partially specified constraint networks may be an
inefficient approach for calculating the necessary target
information, and moreover will not scale well as the
number of objects increases. Other reasoning methods that
operate on an application level such as backward chaining
may be more appropriate. Furthermore, the additional
information from the application requirements
specification, such as the operational profile that includes
likelihoods over certain inputs and necessary outputs, can
be used to define metrics that assess the performance of
QSTR components. The results of these metrics can then
be used to enhance reasoning for more probable
application tasks.
 The primary concerns for an application designer are
meeting the specific requirements set out by the end users
and the cost of development. This requires methodologies
for developing suitable qualitative models that address the
required tasks, and methodologies for QSTR logic testing
and application validation. Note that theorem proving for
application level validation is not practical in general
because, firstly, it requires axioms for the logic which in
many cases will not be available, and secondly, even
expert logicians in the QSTR research field find the task
non-trivial (e.g. refer to page 292 and Section 6.2 of [5]).
These issues of application level qualitative modelling and
validation have not been adequately addressed. For
example, consider the following qualitative reasoning that
resulted from seminal lighting studies [6]:

Visual clarity: Bright, cool, uniform lighting mode in the

occupancy area. Some peripheral emphasis, such as high

reflectance walls or wall lighting.

Spaciousness: Uniform, peripheral (wall) lighting.

Brightness in the occupancy area is a reinforcing factor, but

not a decisive one.

Relaxation: Warm, non-uniform lighting mode. Peripheral

(wall) emphasis, rather than overhead lighting.

Intimacy: Non-uniform lighting mode. Tendency toward low

light intensities in the immediate locale of the user, with

higher brightnesses remote from the user. Peripheral (wall)

emphasis is a reinforcing factor, but not a decisive one.

The reasoning describes lighting effects that directly result
from spatial arrangements of light sources and surfaces,
and with the order in which rooms are visited (a temporal
component). Other studies [7] bridge the gap between
physical lighting arrangements and subjective lighting
concepts. There is no obvious, immediate correlation in
terms of reasoning methods between this qualitative
reasoning and the standard Allen-based form, although
clearly an application designer implementing this
reasoning could benefit from the QSTR community’s
research. Specifically, these are real-world QSTR systems,
however, standard operators of composition and
conversion are not defined, there are no JEPD relation sets,
and it is not clear that a constraint-satisfaction approach is
the only suitable implementation.
 We address the issues of application level qualitative
modelling and validation with a theory of application for
QSTR systems. Specifically we develop QSTR model
design and validation methodologies for qualitative
applications that solve well defined problems. In the
following section we present a basic theoretical framework
for QSTR applications. We then present metrics for
analysing the behaviour of qualities in the context of a
required task. In the subsequent sections we present
methodologies for logic validation, and a methodology for
structuring the available options for modelling ambiguity.
In the final section we present our conclusions.

QSTR Application Theory

In many cases, the reasoning services provided by an
existing QSTR method will not directly meet the needs of a
task. As a result, applications often need to mix and
combine different QSTR systems. Furthermore, many
applications have context specific rules that, while often
relatively simple, need to integrate at a deep level with
standard QSTR systems. This is necessary so that QSTR
theory and tools can be applied over the entire application
(e.g. metrics, methods for reasoning, and so on) for
complete and uniform application analysis and validation.
From an application perspective this calls for a
fundamental QSTR system format that is sufficiently
general to represent a wide range of QSTR systems in a
uniform way. In practice, specialised reasoners such as
SparQ [1] are employed to process particular well-defined
sub-components, and unique, custom components are
processed using more general reasoning methods
(supported by QSTR specific design patterns) e.g. using
declarative languages such as Prolog or SQL.
 We begin with a standard definition for QSTR systems
by Ligozat et al. [8]. Given a non-empty universe U a
QSTR system partitions U×U into a finite set I of binary
relations Ri

U×U = Ui∈I Ri.
In general relations can be of any arity,

U
d
 = Ui∈I Rd,i ,

where the integer d≥1 is the dimension. Thus a quality
(qualitative relation) is a set that contains tuples of objects
from U of some fixed arity.
 A QSTR standard is to encode ambiguity as possibly
holds with the disjunction of basic relation types between
two objects. Definitely not holds is represented as the
absence of a basic relation between two objects, and
definitely holds is implicitly inferred when the set of
relations that possibly hold is a singleton. In the general
case an application may need to explicitly represent
definitely holds, definitely not holds and ambiguous. A
further case not applicable can also occur when qualities
require preconditions. So for any quality q we require four
mutually exclusive sets q

+
 (definitely holds), q

−
 (definitely

not holds), q
?
 (ambiguous), q

~
 (not applicable) such that

U
d
 = ∆α∈{+,−,~, ?} q

α
d

for integers d≥1 where ∆ is symmetric difference (mutual
exclusion).
 In general we cannot assume that all relations are JEPD.
Furthermore we cannot assume that the conversion and
composition operators have been defined. In general the
structure of a QSTR system is defined by constraints
between qualities of the form

X δ Y,
where δ∈{⊂,⊆,⊄,≠,=} is a set comparison, and X, Y are set
expressions. Set expressions are either sets (e.g. before

−
),

the result of set operations (e.g. before
−∩during

−
) or sets

defined using builder notation (e.g. {y|(x,y)∈before
−
}). For

example, the conversion constraint as given in [8] is
R2,i^ = {(x,y)∈U×U|(y,x)∈R2,i}

where the function ^ returns the designated converse set
(e.g. before^ returns after). Another example is a
constraint used to specify when the subjective colour
temperature of a room is cool. If all lights x in the room y
have a cool colour temperature, then the room y also has a
cool colour temperature,

{y | (x,y) ∈ in
+
 → x ∈ cool

+
 } ⊆ cool

+
. (1)

 The domain of a constraint is the set of qualities that
occur in the constraint, for example the domain of (1) is
{in, cool}.
 We can now represent a wide range of QSTR systems.
Allen-based systems can be represented as a set of
relations Ri using a definition of U and constraints for
conversion, composition, and identity.
 We can also represent systems that do not necessarily
adhere to the standard Allen-based form. For example, in
[9] Qayyum and Cohn present a method for image retrieval
using qualitative spatial representations. Each image is
divided into cells that are annotated with a semantic
concept such as sky or grass [10]. Qualitative relationships
between all pairs of semantic concepts are calculated for an
image, e.g. greater-than (meaning that more cells of one
concept are present in an image compared to some other
concept). Thus U is the set of semantic concepts, and each
image is a different scenario s defined by the way the
relations R

s
i (e.g. greater-than, equal-to, less-than) divide

up U×U such that ∆∆∆∆i∈IR
s
i=U×U. Images are compared by

determining the differences between equivalent relations
e.g. if R

x
i=R

y
i for i∈I then two images are equivalent.

 The same principle applies to dynamic and multi-
granular QSTR systems. Each snapshot of a scene is
represented by a new scenario st, where the contents of the
relations in st+1 are constrained by the relations in st. For
example, the continuity assumption means that an object
with relation Rx in scenario st can take Rx or relations
adjacent to Rx in the neighbourhood graph during scenario
st+1. Note that, from an application perspective, this is not
an axiom, as the constraint can be broken during valid,
normal operation. For example, an application that uses
sensor data as premise information for constructing
scenarios may find that a pair of scenarios si and si+1 break
the continuity constraint; the application can then respond
by increasing its sampling rate.
 In the following sections we use this definition to
develop methodologies for application level metrics,
validation, and modelling.

QSTR Metrics

The application designer has task specific information in
the form of a requirements specification. This includes

� desired functionality of the application
� a source of real (but mathematically informal)

QSTR content to be automated in software (e.g.
client preferences, formal scientific studies, industry
consensuses, and so on)

� use cases that reflect the operational profile
Using this additional information we can define metrics
that assess the performance of components in QSTR
applications. Firstly we note that qualities group tuples of
objects, and constraints assign certain qualities (categories)
to objects based on the state of other qualities for those
objects (attributes). This is analogous to attributes being
used to describe the category of an object. We will now
present the metrics cohesion, coupling, and entropy.
 Cohesion is a measure of how effectively a set of
attributes defines a category. It measures the strength of a
category based on a comparison of the attributes between
each pair of objects in that category. The comparison is a
distance function that sums the differences between each
attribute value of two objects, for example, based on
weighted conceptual neighbourhoods of the attributes. The
algorithm accepts a category C and a set of attributes A as
input and calculates statistics on the distances such as the
mean and variance.

cohesion (C, A) |

for all pairs of objects i,j∈C
calculate d=distance(i,j,A)

store d in an array

calculate statistics over stored distances

A category is cohesive if the distances have a low mean
and a low variance. Ideally categories should be cohesive,
as this indicates that all objects in the same category share

a similar set of attribute values. This metric can be used in
a number of ways. For example, cohesion can be
calculated over real-world study data as evidence for
including a constraint in the qualitative model that binds
the category to the attributes. Alternatively, categories
may not be precisely related to the attributes, but more as a
rule of thumb. Using cohesion we can assess the
performance of the distance function and our attribute
selection as a heuristic definition of a category.
 Coupling is a measure of how effectively a set of
attributes distinguishes between two categories based on a
comparison of the attributes of objects in each category.
The algorithm accepts two categories C1, C2 and a set of
attributes A as input and calculates statistics on the
distances such as the mean and variance.

coupling (C1, C2, A) |

 for all pairs of objects i∈C1 , j∈C2
calculate d=distance(i,j,A)

store d

 calculate statistics over stored distances

Two categories have low coupling if the distances have a
high mean and a low variance. Ideally two supposedly
unrelated categories should have low coupling. As with
cohesion, coupling can be used check constraints, distance
functions and attribute selections. Furthermore, it can be
used to assess the accuracy of a conceptual neighbourhood
graph by checking that immediate neighbours of a category
have higher coupling than more distant categories. A full
neighbourhood consistency test would ensure that, from
the perspective of each category, all partial orderings of the
other categories based on their coupling values (with a
tolerance for equal coupling) approximates the
neighbourhood graph. Coupling can also be used to assign
weights to the conceptual neighbourhood graph, where a
low coupling yields a high neighbourhood weight.
 Entropy is a measure of the information content
provided by constraints. That is, reasoning generates data
at every inferential step and, according to information
theory [11], the amount of information gain is inversely
proportional to the end-user’s prior knowledge about the
inferred data. If the end-user is very confident about what
datum will be provided before an inference step has been
taken, then the inference step provides little or no
information. Thus, the application designer can improve
reasoning efficiency if they make this data an assumption
(e.g. by setting it as a default rather than making the
reasoning engine infer it) or remove the quality entirely
from the model. Information content I for a quality q,
based on entropy, can be calculated as [11],

where p(x) is the probability that a randomly chosen object
in a randomly chosen scenario will have the quality x
(calculated with use case data from the operational profile).
Relationships between qualities can be measured using
mutual entropy [11],

I(q) = −p(q
α
) log2 p(q

α
) , ∑

α∈{+,−,~,?}

where N={+,−,~,?}, p(x,y) is the probability that x and y
occur together, and pa(x), pb(y) are marginal probabilities
of x and y respectively. Entropy can be used to reduce the
ambiguity from inference (e.g. composition) by removing
qualities that are improbable based on other factors in the
scenario. For example, composition may reveal that a
cup’s relation to a table is either meets above (resting on
the table) or just above (floating above the table). The
QSTR system, having evaluated a number of use cases
may determine that the conditional entropy for physical
objects with the above relation is very low when the object
has no meets above relations; that is, by analysing the
conditional entropy it decides that floating objects are
unlikely. In this case entropy is used for induction.
 Another example of how entropy can be used is the
automatic construction of decision trees to respond to
queries about whether objects have certain qualities e.g. “is
the kitchen warm and cosy?”. Given a set of known
attribute values for the query object (e.g. the available
premise information about the kitchen) and entropies that
relate the attributes to the query quality (e.g. entropies for
warmth and cosiness in relation to furniture arrangement,
light source parameters, and so on) a decision tree can be
produced that infers the query answer with a minimum
number of intermediate operations. In general decision
trees may also improve reasoning performance by ordering
the constraints according to entropy.

Validation

The aim of program validation in software engineering is
to determine if the system is fit for purpose [12], explicitly
evaluating the program in terms of its application context.
QSTR application validation aims to provide a level of
confidence that the system logic, specifically the
constraints and relations, provides the intended function by
ensuring that the highly used and critical components have
been adequately tested.
 The test space is defined based on system inputs and
outputs, and the system structure such as decisions and
control paths. Covering the entire, often infinite test space
is clearly impractical and thus software engineers employ
methods that isolate key subsets such as boundary
checking, equivalence class partitioning, and cause-effect
graphs [12]. However, by the very design of a QSTR
application, only salient inputs, outputs, and constraints are
modelled. That is, qualitative concepts already represent
behavioural classes and their delimiting values, and so
traditional approaches are not useful for reducing the
QSTR application test space. The following sections
analyse the characteristics of QSTR applications to derive
methodologies for validation.

Unit Testing

In QSTR applications, the units for testing are the
constraints. In the following analysis we identify two
critical boundary classes for constraint testing.
 Firstly, we note that the sets in constraints can be
defined using set builder notation, for example R1∩R2/R3
becomes {x | x∈R1 ∧ x∈R2 ∧ x∉R3}. The conditions in set-
builder notation can be divided into two categories,
(a) conditions that must hold (e.g. x∈R1) and (b) conditions
that must not hold (e.g. x∉R3). Thus, each quality in a
constraint’s domain either
� triggers the constraint (the constraint will not apply if

these conditions are not satisfied)
� overrides the constraint (even if the constraint has been

triggered, if these conditions hold then they will stop
the constraint from applying) or,

� is independent (i.e. has no effect e.g. before
+

participates in a constraint which means before is in
the constraint’s domain, but before

−
 may not be

involved).
For a constraint to apply, it must have one or more triggers
and no overrides. We can use this insight as a basis for
defining test classes for unit testing. To illustrate this,
consider the room colour temperature constraint (1) on
page 2. For a given room y, the relevant cases for different
objects are expressed in the constraint matrix in Table 1.

TABLE 1: Constraint matrix of colour temperature constraint (1)

holds not holds

holds trigger independent

not holds override independent

We will now derive two critical boundary concepts based
on equivalence assumptions for QSTR logic testing.
 An infinite number of cases exist for each combination
of cells in the constraint matrix. For example, one cool
light in a room will activate the same cell as one hundred
cool lights in a room. The first equivalence assumption is
that cases resulting in the same combination of cells are
equivalent and thus only one case for each cell
combination needs to be tested. This yields a finite critical
test set size of

Σi=1…n C
n

i ,
where n is the number of cells 2

|D|
 (where D is the domain)

and C
n
k is the number of k-sized combinations out of n.

 We reduce the critical test set further by only testing the
interaction of different condition classes. Thus, the second
equivalence assumption is that, if a set of cases each result
in a single cell of the same condition class (such as trigger)
then any case that results in some combination of these
cells is equivalent to the set of individual cases. For
example after testing all trigger cells individually we can
ignore pairwise (and higher) comparisons of trigger cells.
The critical test set size is now

(t+o+i) + (t⋅i + t⋅o + o⋅i) + (t⋅o⋅i)

I(q;v) = p(q
α
,v

β
) log2 ∑

β∈N

∑

α∈N

p(q
α
,v

β
)

pa(q
α
) ⋅ pb(v

β
)

x∈iny

x∈cool

where t, i, o are the number of trigger, independent and
override cells respectively.
 This defines complete boundary case unit testing for a
constraint and thus provides an ideal target for logic
validation. Furthermore, the development cost is relatively
low as these test cases can be easily generated
automatically.

Test Coverage

Integration and system testing is used to ensure that
components interact as the designer has intended. As with
unit testing, there are often an infinite number of possible
cases in which components interact, and so we require
approaches that isolate relevant subsets of the test space.
For this we use test coverage analysis to guide integration
testing by identifying component interactions that have not
been adequately assessed.
 In standard software engineering, test coverage is a
measure of the proportion of components exercised during
testing, and typically refers to the control flow graph
(CFG) where vertices represent program statements and
directed edges represent control flow. In order to adapt
coverage measures to QSTR, we define the qualitative
constraint graph (QCG) as an analog to the CFG, with
vertices representing qualitative constraints and undirected
edges representing a shared quality that occurs in the
domains of two constraints. The edges in the QCG
indicate (necessarily mutual) constraint dependencies; if
the constraint c1 modifies a relation that appears in
constraint c2 then c2 must be revisited (although it may not
require any further scenario modifications). For example,
the QCG of the lighting rules given in the Introduction
section is illustrated in Figure 1.

Figure 1. Qualitative constraint graph (QCG) of a selection of domain

constraints for architectural lighting [6], where vertices represent

constraints and edges represent related qualities.

Analogous to statement execution and branch execution in
a CFG, a vertex is executed in qualitative scenario s if the
reasoning algorithm has modified s in order to satisfy the
vertex’s constraint. An edge between vertices v1 and v2
with relation type r is executed if v1 is executed with the
modification of some relation of type r, causing v2 to
execute (at some future time). Using these definitions we
now adapt standard coverage measures for the QCG:
� vertex (statement) coverage is the percentage of vertices

executed i n at least one test
� edge (branch) coverage is the percentage of edges

executed in at least one test

� k-path (path) coverage is the percentage of paths of
length k executed in at least one test (for k>2)

� condition (decision) coverage (applied to either vertices,
edges, or paths) is the percentage of modification
combinations resulting in execution, exercised in at
least one test

Condition coverage refers to the observation that when a
constraint involves a number of relations there are multiple
ways in which the vertex could be executed. Similarly,
when a constraint involves multiple relations of the same
type there exist multiple ways for its edges to execute.
 Figure 2 illustrates the partial ordering of the coverage
measures in terms of strength. While stronger coverage
may increase the chance of detecting logical defects, it
requires more test cases and resources to be achieved.

Figure 2. Partial ordering of coverage criteria from weakest to strongest

(if full coverage is achieved).

Modelling Ambiguity

Reasoning is the process of using definite premise
information to infer values for indefinite or ambiguous
components. Thus the application designer must
necessarily specify how their constraints should behave in
scenarios where domain qualities are ambiguous. In this
section we present a methodology that defines ambiguity in
a constraint, allowing the designer to easily consider
alternative modelling options.
 Each constraint has a number of different versions
depending on how ambiguity is handled. For example,
Table 2 is the constraint matrix for the colour temperature
rule (1) with additional cells for ambiguity; the designer
has decided that if a light is not in the room then it is
disregarded for this rule.

TABLE 2: Constraint matrix for the neutral form of (1)

holds ? not holds

holds trigger independent

? independent

not holds override independent

 Table 2 is the neutral (or definite) form of the constraint
where ambiguity is left unspecified. During reasoning the
neutral form will default to Table 3 where unspecified
ambiguous cells become independent conditions.
 The designer can modify the behaviour of the constraint
by classing the unspecified cells in different ways. We
define categories of constraint versions by adapting the
concepts of aggressive and conservative used in the

vertex

edge

k-path

vertex condition

edge condition

k-path condition

perimeter
emphasis

1 2

3

occupancy
illumination

perimeter
uniformity

4 ambient
illumination

colour
temperature

x∈iny

x∈cool

TABLE 3: Default semantics for the neutral form of (1)

holds ? not holds

holds trigger independent independent

? independent independent independent

not holds override independent independent

ConQuer database system [14]. The conservative form
requires that all possible scenarios satisfy the constraint.
Ambiguity is resolved towards overriding the constraint as
shown in Table 4.

TABLE 4: Maximally conservative form of (1)

holds ? not holds

holds trigger independent independent

? override override independent

not holds override override independent

 The aggressive form requires that at least one possible
scenario satisfies the constraint. Ambiguity is resolved
towards triggering the constraint as shown in Table 5.

TABLE 5: Maximally aggressive form of (1)

holds ? not holds

holds trigger trigger independent

? trigger trigger independent

not holds override independent independent

 Thus each constraint has a lattice of different versions
between these two extremes, based on the following partial
ordering: rule θx is more conservative than rule θy if

(tx+1) / (ox+1) < (ty+1) / (oy+1)
where ti, oi are the number of trigger and override cells in
rule θi respectively. This methodology makes the versions
of a constraint readily accessible to the application
designer. Once the designer has specified their
conservative and aggressive constraint versions, a number
of variations on reasoning can be executed. For example, a
conservative query will reason using conservative forms of
constraints that infer triggers and aggressive forms for
constraints that infer overrides.

Conclusions

In this paper we have presented several novel
methodologies that support the application of QSTR
systems. These methodologies support application
designers in developing suitable qualitative models and
conducting application-level QSTR logic validation. We
have outlined a theory of application that provides a broad,
general representation for QSTR systems. This allows
validation methodologies and metrics to be developed that
uniformly assess QSTR applications, regardless of the
component QSTR systems or semantics. We presented

three application level metrics of cohesion, coupling and
entropy for analysing the behaviour of qualities in the
context of the required task. Furthermore, we presented
methodologies for validation that identify criteria for
determining logical equivalence as a target for unit testing,
and adapt test coverage criteria to assist in integration and
system level testing. Finally, we presented a design pattern
for modelling ambiguity that assists the application
designer by structuring the available modelling options.
Specifically, we classified variants of a constraint
according to the way the constraint behaves under
ambiguity by adapting the concepts of conservative and
aggressive queries. Thus, by adopting a novel application
design perspective of QSTR systems, we have developed a
set of methodologies to aid application designers in
producing real-world QSTR applications.

References

[1] F. Dylla, L. Frommberger, J.O. Wallgrün, D. Wolter (2006).

SparQ: A Toolbox for Qualitative Spatial Representation

and Reasoning. In Proceedings of the Workshop on

Qualitative Constraint Calculi: Application and Integration.

[2] C. Freksa (1991) Qualitative Spatial Reasoning. In D.M.

Mark & A.U. Frank (eds.), Cognitive and Linguistic Aspects

of Geographic Space, 361-372, Kluwer Academic

Publishers.

[3] Y. Iwasaki (1997) Real-World Applications of Qualitative

Reasoning. IEEE Expert 12(3), 16-21.

[4] J. Fernyhough, A.G. Cohn, D.C. Hogg (2000) Constructing

qualitative event models automatically from video input.

Image and Vision Computing 18 (2000) 81–103. Elsevier.

[5] A.G. Cohn, B. Bennett, J. Gooday, N.M. Gotts (1997)

Qualitative spatial representation and reasoning with the

region connection calculus. GeoInformatica 1 (3) 275-316.

Springer, Berlin.

[6] J.E. Flynn (1977) A study of subjective responses to low

energy and nonuniform lighting systems. Lighting Design &

Application 7 (2) 6–15.

[7] C. Cuttle (2003) Lighting by Design, Elsevier, Amsterdam.

[8] G. Ligozat, D. Mitra, J. Condotta (2004) Spatial and

temporal reasoning: beyond Allen’s calculus. AI

Communications 17 (4) 223–233.

[9] Z.U. Qayyum, A.G. Cohn (2007) Image retrieval through

qualitative representations over semantic features.

Proceedings of the 18th British Machine Vision Conference

(BMVC2007), 610-619.

[10] J. Vogel, B. Schiele (2007) Semantic Scene Modeling and

Retrieval for Content-Based Image Retrieval. International

Journal of Computer Vision 72 (2) 133-157.

[11] C.E. Shannon (1948) A Mathematical Theory of

Communication. Bell System Technical Journal, 27, 379-

423.

[12] I. Burnstein (2003) Practical software testing : a process-

oriented approach. Springer, New York.

[13] A. Fuxman, E. Fazli, R. J. Miller (2005) ConQuer: efficient

management of inconsistent databases. Proceedings of the

2005 ACM SIGMOD, International Conference on

Management of Data, Baltimore, Maryland. 155-166.

x∈iny

x∈cool

x∈iny

x∈cool

x∈iny

x∈cool

