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Abstract 

Commonsense reasoning, in particular qualitative spatial 
and temporal reasoning (QSTR), provides flexible and 
intuitive methods for reasoning about vague and uncertain 
information including temporal duration and ordering, and 
spatial orientation, topology and distance. Despite 
significant theoretical advances in QSTR, there is a distinct 
absence of applications that employ these methods.  The 
central problem is a lack of application-level standards and 
metrics that developers can use to measure the effectiveness 
of their QSTR applications.  To address this we present a 
fundamental metric called H-complexity that quantifies the 
expressiveness of QSTR systems according to the number 
of distinct scenario classes that can be encoded.  In this 
paper we show that H-complexity can be employed in a 
range of powerful and practical ways that support QSTR 
application development.  To illustrate this, we present two 
examples: calculating test coverage for validation, and 
quantifying the reduction in expressiveness due to 
constraints.  We thereby demonstrate that H-complexity is a 
useful tool for determining whether a QSTR system meets 
the needs of a specific application. 

Introduction
      

Commonsense reasoning aims to address the limitations of 
purely numerical systems, by providing coarser and more 
intuitive knowledge representation and reasoning 
techniques (Kuipers, 1994).  The subdiscipline of 
qualitative spatial and temporal reasoning (QSTR) aims to 
formalise our intuitive understanding of everyday physical 
relationships such as size, orientation, topology, and 
distance, and temporal relation-ships such as ordering, 
coincidence, and duration (Cohn and Renz, 2007).  A 
seminal example of QSTR is Allen’s interval calculus 
(Allen, 1983) which defines a set of thirteen atomic 
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relations between time intervals, and an algorithm for 
reasoning about networks of temporal relations, e.g. (where 
• is a composition operator) 
 t1 before t2 • t2 contains t3 = t1 before t3 
 t1 overlaps t2 • t2 during t3 = 
    t1 (overlaps, or during, or starts) t3 
 Despite significant theoretical advances, there is a 
distinct absence of applications that make use of these 
techniques (Dylla et al., 2006).  The central problem is the 
significant lack of support for adapting and integrating 
existing QSTR methods with other domain specific 
qualitative spatial and temporal models.  Specifically, there 
are no methods for assessing the quality of a QSTR system 
or comparing QSTR systems to determine which one is the 
most effective for solving a given problem. 
 Most of the existing research on QSTR analysis has 
focused on proving correctness of composition 
(Wölfl et al., 2007), characterising reasoning complexity 
(Vilain et al., 1989) and determining tractable subsets of 
well known formalisms (Nebel and Bürckert, 1995).  
While it is important to know when a problem is NP 
complete, reasoning complexity cannot be used by the 
developer to determine whether the particular QSTR 
system addresses the task at hand, how a change to the 
system will impact its effectiveness, or how QSTR 
application validation can be performed to ensure that the 
application is fit for purpose. 
 To address this we present a fundamental metric called 
H-complexity that quantifies the expressiveness of a given 
QSTR system, in terms of the number of distinct scenario 
classes that can be encoded by the system.  The developer 
can use expressiveness to guide application design in a 
range of powerful ways, for example: 
(i) comparing different QSTR systems to help determine 

whether one is more suitable than the other; 
(ii) calculating test coverage during the validation phase 

of development to quantify confidence in the 
application being fit for purpose; 



(iii) quantifying the reduction in expressiveness due to 
constraints to assist in developing a test plan. 

In this paper we derive a very simple equation for 
calculating H-complexity, and we consider two 
applications addressing points (ii) and (iii) above, where 
we derive very simple equations and a reference table for 
improved runtime efficiency.  We thereby demonstrate that 
our complexity metric is a flexible and effective tool for 
supporting the development of QSTR applications.   
 The remainder of the paper is structured as follows.  In 
the following section we review the basic theory of QSTR 
systems.  We then derive H-complexity in two steps.  
Firstly we define the concept of homogeneous sets as the 
fundamental folding of objects into equivalence classes 
permitted by the QSTR language.  We then use 
homogeneous sets to quantify QSTR expressiveness by 
identifying a one-to-one relationship between accessible, 
unique subsets and scenario classes.  In the succeeding 
section we derive methods for calculating homogeneous 
sets in relations of any arity.  We then present two methods 
for employing H-complexity: calculating test coverage for 
validation, and quantifying the reduction in expressiveness 
due to constraints.  In the final section we present the 
conclusions of this paper. 

Foundations of QSTR 

Informally, QSTR applications model, infer, and check the 
consistency of object relations in a scenario.  We will 
define QSTR applications in terms of model theory 
(Marker, 2002; Hodges, 1997) and then define the roles of 
QSTR application designs and users. 

We use the notation ↑ to represent the exponent 
operator, x↑y=x

y
.  In model theoretic terms, a language L 

(or vocabulary, or signature) is a finite set of relation 
symbols R and arities aR for each R∈R.  A model M of 
language L (or L-structure, or interpretation) consists of a 
universe U (or domain, or underlying set) and for each 
relation symbol R∈R there is a set RM ⊆ U ↑aR.  That is, M 
provides a concrete interpretation of the symbols in L 
based on the underlying set U.  Finally, a scenario (or 
configuration, or substructure) is a model V that can be 
embedded into M, that is, an injective homomorphism 
f:V→U exists such that, for each R∈R with arity a, 

∀ v1,…,va∈V
a
 ⋅ (v1,…,va)∈RV ↔↔↔↔ (f(v1),…,f(va))∈RM. 

A QSTR application has a language L that specifies the 
set of relation symbols that the designer has deemed 
relevant to the task at hand.  The model M of a QSTR 
application is the interpretation of the relations, 
implemented using constraints between the relations (what 
objects must, or must not, exist in different combinations 
of relations).  For each relation type R∈R with arity aR, 
and for each tuple of arity aR, the relation either holds, does 
not hold, or is not applicable for that tuple.  Thus, for each 
relation symbol R∈R in the language, a QSTR application 
model M requires three sets, RM

+
 (holds), RM

−
 (does not 

hold) and RM
~
 (not applicable), with the axiom 

Axiom 1. ∀ R∈R ⋅ U ↑aR = RM
+
 ∆ RM

−
 ∆ RM

~
,  

where ∆ is symmetric difference (the set theoretic 
equivalent of mutual exclusion).  For brevity we will omit 
the M and simply write R

+
. 

The application designer is responsible for selecting an 
appropriate set of relation symbols and encoding an 
appropriate set of constraints.  A QSTR application user 
can then construct scenarios by specifying a model V and 
reasoning is used to determine whether the scenario is 
valid with respect to the model M (by proving that V can 
be embedded in M).  Table 1 relates these roles to the 
formal semantics in model theory and QSTR applications. 
 Often parts of the user’s scenario are indefinite or 
unknown, and reasoning with the application constraints is 
used to help resolve this ambiguity.   For each relation 
R∈R, the user can place tuples (of objects from V) with 
arity aR in a fourth indefinite set, RM

?
 that is mutually 

exclusive with the three corresponding definite sets.  This 
is a shorthand for specifying a set of models V1,…, Vn  
each representing a possible scenario. 
 An example of a scenario is 

V={kitchen, lounge, study}  
adjacent

+
 ={(lounge, study), (lounge, kitchen)}  

adjacent
?
 ={(lounge, lounge), (study, lounge), …}  

adjacent
−
 ={}.  

The adjacent relation can be defined as symmetric using 
the constraint {(x,y) | (y,x) ∈ adjacent

+
} ⊂ adjacent

+
.  The 

LHS of the constraint as evaluated in the scenario is 
{(study,lounge), (kitchen,lounge)}.  The RHS as evaluated 
in the scenario does not contain these tuples as required by 
the proper subset relation, and so reasoning moves the 
offending tuples out of adjacent

?
 and into adjacent

+
 thus 

satisfying symmetry. 
 

Model 

Theory 

QSTR Application 

Domain 
Actor 

language L specification of useful 

qualitative relations 

model M  

based on L 

constraints that determine 

the interaction between the 

relations 

QSTR 

application 

designer 

model V  

based on L 

embedded in M 

Using a QSTR application to 

represent and reason about 

objects. 

QSTR 

application 

user 

Table 1. Comparing the domains of model theory, QSTR 

applications, and the roles of QSTR application designers and 

users. 

Homogeneous and Definable sets  

In model theory (Marker, 2002), a set X is definable in 
model M if there is some formula φ such that 
X={(v1,…,vn)∈U 

n 
| M φ(v1,…,vn)} (where entails  

means that the formula is true in M).  Alternatively, if no 
formula exists that can separate two objects, then the 
objects are considered equivalent, and we say that they are 
in the same homogeneous set.  Let H={h1, …, hn} be a set 



of homogeneous sets, where each hi ⊆ U.  By definition, 
h1, …, hn partition U, that is, they are mutually exclusive 
and jointly exhaustive.  A homogeneous set h is evaluated 
in scenario s, s(h) ⊆ V. 
 All possible queries are equivalent to some union of 
homogeneous sets.  We define a query q to be a set of 
homogeneous sets q={hx,…,hy}, and we say a query q is 
executed in scenario s, s(q)= s(hx)∪…∪s(hy). 

Constraints 

The model of a QSTR application is defined by constraints 
between the qualitative relations.  If a scenario does not 
satisfy a constraint then reasoning attempts to move the 
offending tuples out of indefinite sets (R

?
) and into one of 

the definite sets (R
+
, R

−
, or R

~
).  If offending tuples are not 

indefinite then reasoning has identified a contradiction and 
the scenario is inconsistent. 

Let constraint c = X δ Y, where δ∈{⊂,⊆,⊄,≠,=,…} is a 
set comparison and X, Y are set expressions that are 
evaluated in scenarios.  Set expressions are either sets, or 
the result of set operations. 
 We now define the complete set of possible comparisons 
from which δ can be selected.  Two sets LHS, RHS either 
share some objects, or they do not.  The degree of overlap 
can be used to define all possible set relationships.  Let 
LHS = hw∪…∪hx and RHS = hy∪…∪hz, let 
qLHS={hx,…,hy} and qRHS={hx,…,hy} (queries for LHS and 
RHS respectively).  Let 

qL= qLHS / qRHS   (H sets exclusively in LHS) 
qR= qRHS / qLHS   (H sets exclusively in RHS) 
qLR= qLHS ∩ qRHS  (H sets in both LHS and RHS) 

For any pair of sets LHS and RHS, the queries qL, qR, and 
qLR will evaluate to be either empty or non-empty, giving 
2

3
=8 different basic set comparisons, as illustrated in 

Table 2.  In each table entry, the outer circle represents the 
set of all scenarios, and three inner circles each represent a 
subset of scenarios where a condition holds.  The top left 
circle specifies those scenarios where H sets in the query 
qL are empty, s(qL)=∅ and so on.  For example, the 
constraint X = Y is satisfied in exactly those scenarios 
where both qL (elements exclusively in X) and qR (elements 
exclusively in Y) evaluate to empty and qLR (elements 
shared by both X and Y) is not empty.  The comparison δ 
can consist of any disjunction of these basic set 
comparisons (e.g. ⊆ is = ∨ ⊂), thus there are 2

8−1 = 255 
possible comparisons. 

Basic Combinatorics 

Finally, we provide some basic equations from 
combinatorics that will be used in the paper.  The size of 
the powerset of set X is 2

|X|
.  The number of subsets that 

contain elements from either set X or set Y is 2
|X ∪ Y|

, the 
number of subsets that contain all elements from X and not 
Y is 2

|X / Y|
, and the number of subsets that contain all 

elements from X and neither Y nor Z is 2
|X / (Y ∪ Z)|

.   

 

δ scenarios 

(shaded=valid 

scenarios) 

 δ scenarios 

(shaded=valid 

scenarios) 

= 

 

 ∩ 

 

⊂ 

 

 =∅ 

 

⊃ 

 

 ⊂∅ 

 
+∩≠

 

 

 ⊃∅ 

 

Table 2. Eight basic relationships between sets derived from the 

overlap between H sets.  Outer circles represent the set of all 

scenarios, and three inner circles each represent a subset of 

scenarios where a condition holds.  Shaded regions represent 

scenarios that satisfy the set relationship. 

 
 Equivalently, we use bit-string encodings, where the 
number of unique combinations that can be represented by 
a bit-string of length n is 2

n
.  The number of combinations 

of two bit-strings of length n1 and n2 is 2
n1+n2

.  If m bits are 
fixed in a bit-string of length n then the number of unique 
combinations that contain the m fixed bits is 2

n −m
.   

 Table 3 gives some equations for calculating the 
number of scenarios that satisfy conditions required by 
constraints.  For example, in each table entry the top left 
circle specifies those scenarios where H sets in the query 
qL are empty, s(qL)=∅, and the number of such scenarios is 
2

|H / qL|
 = 2

|H|− |qL|
.  To understand this, consider a bit-string 

of length n=|H|, where m=|qL| bits are fixed to ‘0’ 
(representing that s(qL)=∅); the number of unique 
combinations that this bit-string allows is 2

n − m
 = 2

|H|− |qL|
.  

Scenarios where H sets in both qL and qR are empty, 
s(qL)=∅ ∧ s(qR)=∅ is 2

|H / (qL ∪ qR)| 
= 2

|H|−|qL|−|qR|
 (recall that, 

by definition, qL and qR are mutually exclusive).  A 
bit-string of length n=|H|, where m=|qL ∪ qR|=|qL|−|qR|, bits 
are fixed to ‘0’ admits 2

n − m
 = 2

|H|−|qL|−|qR|
 unique 

combinations.   

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 



 

formula scenarios 

(shaded=valid scenarios) 

2
|H|−|qL| 

 

symmetric with 

2
|H|−|qR| 

 

2
|H|−|qLR| 

 

2
|H|−|qL ∪ qR| 

 

symmetric with 

2
|H|−|qL ∪ qLR| 

 

2
|H|−|qLR ∪ qR|

 
 

2
|H|−|qL ∪ qR ∪ qLR|

 

 

Table 3. Combinatorial formulae for calculating the number of 

scenario classes that satisfy particular conditions. 

 

H-Complexity 

In this section we present the central theory of 
H-complexity.  H-complexity is a measure of the number 
of different scenario classes that can be encoded by a given 
QSTR language.  It identifies the most extreme partitioning 
of objects that the language allows, so that all other 
practical partitioning schemes will consist of some subset 
of the distinctions made in H-complexity. 

Homogeneous Sets 

If no possible set theoretic query exists that can separate 

two objects, then the objects are considered equivalent.  

This inherent limitation fundamentally folds objects into 

homogeneous sets, or H sets, providing the foundation for 

a measure of expressiveness or complexity.  H sets 

represent the maximum refinement permitted by the QSTR 

language, i.e. the point where no further distinctions are 

possible.  Thus, H-complexity = |H|. 

Assume for simplicity that all relations have an arity of 1 
(i.e. they represent qualitative properties such as round or 
large).  If there are n relations, and each relation is 
represented by four sets, then there are 4

n
 different 

combinations of these relations, i.e. 
 
 
 
 

1.  R1
+
 ∩ R2

+
 ∩ ... ∩ Rn

+
, 

2.  R1
−
 ∩ R2

+
 ∩ ... ∩ Rn

+
,
 

... 

4
n
. R1

~
 ∩ R2

~
 ∩ ... ∩ Rn

~
. 

In general, 
|H|=∏R∈R |HR| (1) 

where |HR|=|AR| for unary relations, AR is the selection of 

relation sets used by R (e.g. + and −), and ∏ is the 

sequence product operator.  We calculate H sets for 

relations with higher arities in a later section.   

For H sets to truly represent the maximum refinement 

possible, they must be jointly exhaustive and pairwise 

disjoint (JEPD) so that every object in a scenario will 

appear in exactly one H set.  This property is critical; if it 

did not hold then further refinements could be achieved by 

taking H set intersections and differences.  The H sets from 

Equation 1 are pairwise disjoint because, for any relation 

Ri, the relation’s four sets are mutually exclusive, and any 

two H sets always differ by at least one Ri set.  They are 

also jointly exhaustive because, for any relation Ri, each of 

its four jointly exhaustive sets is covered by some H set.   

Query Complexity 

A query is used to access a subset of objects in a scenario.  

Query complexity is the maximum number of unique 

non-empty subsets that can be accessed by some query.  

We will now show that all accessible, unique subsets of 

objects in a scenario can be represented as the union of 

some combination of H sets. 

H sets are indivisible and mutually exclusive, and so the 

query that returns the smallest non-empty subset of objects 

contained in an H set is the set expression of the H set 

itself, e.g. R1
+
 ∩ R2

+
 ∩ ... ∩ Rn

+
.  The smallest subset 

containing objects from two different H sets h1, h2 is the 

union of those two H set expressions h1∪h2.  It follows that 

any accessible subset of objects must be the union of some 

combination of H sets.  Thus query complexity is the 

number of different combinations of H sets, 2
|H|

. 

Scenario Complexity 

If two objects in a scenario can not be separated by a 

query, then the objects are considered equivalent and 

indistinguishable, that is, the objects are in the same H set.  

If the only difference between two scenarios is the number 

of indistinguishable objects in each non-empty H set, then 

the scenarios are considered equivalent.  This follows the 

intutive understanding that qualitative models, unlike 

metric systems, do not deal with numerical quantities.  

Thus, a scenario equivalence class is defined by the 

combination of H sets that are empty and non-empty, 2
|H|

. 

 There is an interesting parallel between query and 
scenario complexity.  The number of unique, accessible, 
non-empty subsets of a QSTR application is equal to the 
number of distinct scenario classes that can be expressed.  

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 



An alternative interpretation is that a scenario is defined by 
the combination of queries that return non-empty results, 
i.e. if query q1 returns ∅ in scenario s1 and some 
non-empty result in s2, then the scenarios are logically 
distinct. 

Calculating Homogeneous Sets 

In this section we derive the equation for |HR| admitted by a 

relation R of arity aR, and then derive |H| for a QSTR 

system.  Once relations have an arity greater than 1 there 

are an infinite number of potential H sets, because a binary 

relation constitutes a total order.  Thus, Equation 1 cannot 

be used to compare QSTR systems with binary or higher 

relations.  We proceed in our analysis by representing a 

scenario of binary relation Ri as a graph, where objects 

represent vertices and directed edges represent tuples as 

illustrated in Figure 1. 

R1={ (a,b), 

        (c,b)} 
 

R2={(a,a), (a,b), (a,c), 

       (d,d), (d,e), (e,c)} 
 

Figure 1. Two graphs representing binary relations R1 and R2. 

A set theoretic query describes the structure of a graph and 

specifies the vertex to be selected with v bound variables, 

∃x1...∃xv ⋅ x1 ≠ x2 ∧ ... ∧ x1 ≠ xv ∧ ... ∧ xv-1 ≠ xv. 

For brevity, we will omit explicitly stating these 
quantifications and conditions for all further queries, and 
for simplicity we do not allow the universal quantifier ∀.  
For example, the query {x2| (x1,x2)∈r1 ∧ (x3,x2)∈R1} will 
access b from the graph of R1 in Figure 1. 

Calculating |HR| with Arbitrary Arity 

While there are an infinite number of potential graphs and 

unique accessible subsets, homogeneous sets still exist that 

contain indistinguishable objects.  For example, regarding 

the graph of R1, no query exists that can separate objects a 

and c (without directly referring to those objects), 

   {a,c} ={x1| (x1,x2)∈R1 ∧ (x3,x2)∈R1} 

={x3| (x1,x2)∈R1 ∧ (x3,x2)∈R1}, 

and the graph of R2 has three H sets, accessed by the query 

{xi | (x1,x1)∈R2 ∧ (x1,x2)∈R2 ∧ (x2,x3)∈R2  ∧ 

(x4,x4)∈R2 ∧ (x4,x5)∈R2 ∧ (x5,x3)∈R2  }, 

namely {a,d} when i=1 or 4, {b,e} when i=2 or 5 and {c} 

when i=3.  Thus, homogeneous sets correspond to graph 

symmetries or automorphisms.  Given a graph of a 

scenario, the number of H sets is the number of vertices 

minus the number of automorphisms. 

In order to make |Hr| a function of QSTR systems rather 

than scenarios (particular graphs), the query language must 

be restricted.  If the restricted language only recognises a 

finite number of graphs, it will admit a finite number of H 

sets.  It is then possible to quantify the complexity of a 

relation independent of a particular scenario, and measure 

the relative difference in expressiveness between two 

QSTR systems.  Two basic restrictions are to limit the 

number of variables (vertices) and the number of tuples 

(edges).  We will consider the former case.  Previously, 

queries have referred to variables xi where i can be any 

positive integer.  The strongest restriction on the number of 

variables is i≤1, affording only one query, {x1| (x1,x1)∈Ri}.  

If i≤2 then the allowable tuples are (x1,x1), (x1,x2), (x2,x1), 

and (x2,x2).  If v is the number of variables allowed in a 

query, and aR is the arity of relation R (i.e. the size of the 

tuples) then for each query, 

number of tuples = v↑aR 

All binary tuples of n objects in relation Ri appear in 
exactly one of the Ri sets (holds etc.), and thus we focus on 
those queries that contain all v↑aR tuples permitted by the 
language.  We refer to these as atomic queries.  The 
difference between two atomic queries is the combination 
of Ri sets in which the tuples must appear.  For example, 
Table 4 gives an extract of the atomic queries where v=2 
and aR=2.  Some graphs are automorphic, e.g. in row 1, and 
some graphs are isomorphic, e.g. rows 2 and 3.  Initially 
there are 16 graphs × 2 variables = 32 different executable 
atomic queries.  4 graphs (8 queries) have pairs of 
automorphic variables making 8/2 queries redundant, and 
the remaining 12 graphs (24 queries) can be put into 
symmetric pairs, making an additional 24/2 queries 
redundant, leaving 32 − 4 − 12 = 16 unique atomic queries.  
An easy way to arrive at the number of unique atomic 
queries is to allow every graph, but restrict the selection to 
the first variable x1 (this can be viewed as fixing the 
variable and rotating the edges of the graph to cover 
symmetries).  Thus, 

number of unique atomic queries = |ΑR|
number of tuples

 

where number of tuples = v↑aR.  Finally, to calculate |HR| 

we must determine the smallest JEPD queries that contain 

the atomic queries.  Atomic queries are not JEPD when 

their corresponding graphs are overlapping induced 

subgraphs of the full scenario graph.  For example, 

consider the scenario graph in Figure 2. 

 

Figure 2. Graph consisting of three disconnected subgraphs.  

Subgraphs {a,b} and {c,d} correspond to atomic queries, where 

{e,f,g} contains both atomic queries as induced subgraphs. 

 

If v=2 then two atomic queries are: 

{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R−}={a,e},  

{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R+}={c,e}. 

a b 

c d 

e 

f 

g 

c 
e d 

b a 

a 

c 
b 



The atomic queries are not JEPD, as vertex e appears in 

both results.  However, if we take all combinations of 

atomic queries by intersection and difference, we can 

produce a JEPD collection of H sets, hence  

|HR|=2
number of unique atomic queries

 – 1  

where the number of graphs = |ΑR|
number of tuples

.  To 

summarise,  

|HR|=(2↑|AR|↑v↑aR) – 1. (2) 

Calculating |H| with Arbitrary Arity 

The problem is now calculating |H|, the total number of H 

sets across all relations when those relations can take any 

arity.  Previously, we only referred to one relation within a 

query.  Given v bound variables, queries will now take the 

form, 

{x1 |   query R1, query R2, …,  query Rn} 

where query Ri is one of the unique atomic queries for 

relation Ri.  The number of queries permitted in this form is  

|atomic R1 queries| × … × |atomic Rn queries|. 

We have shown that the number of atomic queries for Ri is 

|Ari|↑v↑ari, thus 

|H| = 2↑( |atomic R1 queries| 

×…× 

|atomic Rn queries|) 

= 2↑( (|AR1|↑v↑aR1) ×…× (|AR n|↑v↑aR n) ) 

= 2↑ ∏R∈R (|AR|↑v↑aR). (3) 

Using this formulation we can identify some basic 

properties of expressiveness.  In general, H-complexity is a 

function of the number of atomic queries that the QSTR 

language allows.  Restricting the number of variables in a 

query to v makes complexity a function of the number of 

relation states, |AR|, the number of variables v, and the 

relation arity.  Moreover, Equation 3 specifies the relative 

influence that each component has on complexity; relation 

arity has the most influence, followed by the number of 

variables having exponentially less influence, and finally 

arity having exponentially less influence again.  These 

properties help to inform the developer about how changes 

to each component affects expressiveness, and the relative 

difference in expressiveness between two QSTR systems. 

Applying H-Complexity 

In this section we present two ways that H-complexity can 
be employed to assist QSTR application development. 

Test coverage 

Application test space is defined according to system 
inputs and outputs, and the system structure such as 
decisions and control paths. Covering the entire, often 

infinite test space is clearly impractical and thus software 
engineers employ methods that isolate key subsets such as 
boundary checking, equivalence class partitioning, and 
cause-effect graphs (Burnstein, 2003).  Test coverage is a 
standard metric in software engineering used to guide 
testing.  H-complexity can be used to quantify a QSTR 
application’s potential test space for calculating test 
coverage, as it specifies the degree of refinement permitted 
by the language.  Consider the following application-
specific constraint for determining apparent room colour 
temperature (Schultz et al., 2009): 

“If a room has at least one warm light, and does not have 
lights of any other temperature, then the room has a warm 
colour temperature” 

This constraint may then be integrated into an existing 
QSTR system that reasons about spatial arrangements of 
light sources and surfaces.  One formal encoding of this 
constraint might be 

{x | (∃y. light
+
(y) ∧ in

+
(y,x) ∧ warm

+
(y))   (3) 

   ∧¬(∃y’. light
+
(y’) ∧ in

+
(y’,x) ∧ warm

−
(y’))} ⊆ warm

+
. 

Based on the structure of the constraint, the developer may 
decide to test the class of scenarios where the LHS is not 
empty ∃x ⋅ ∃y∧¬∃y’, and where the LHS is empty 
∀x ⋅ ∃y∧∃y’.  Based on the relations in the constraint, the 
developer may decide to test all combinations of conditions 
for both y and y’; noting that not all conditions are 
independent (e.g. if there exists y such that y∈warm

+
 then 

there must also exist y’ such that y’∈warm
+
), this provides 

a test set size of 2
8
.  The issue is that the developer needs to 

know how many tests must be executed before achieving 
some level of confidence that the application is fit for 
purpose.     Three test coverage metrics are 

1. proportion of H sets tested, |HT| / |H| 
2. proportion of relevant H sets tested, |HT∩H∆| / |H∆| 
3. degree of tested combinations for particular clusters of H 

sets (e.g. some subset H’⊂H tested up to all triples) 

where the HT is the set of tested homogeneous sets, and 
relevant homogeneous sets H∆ are defined according to the 
application (e.g. using probability distributions over inputs, 
and weighting critical inputs that must be handled 
correctly).  If HT is not precisely known, then it can be 
roughly approximated if the tradeoff between the number 
of tested H sets and the degree of combination testing is 
known

2
: 

a) exhaustive combination testing, log2(|T|)≈|HT|, 
b) k combinations, (k!⋅|T|)

1/k
 + k/2 ≈|HT|, and 

c) up to k combinations, (k!⋅|T|)
1/k ≈|HT|. 

Continuing with the case study, given A={+,−}, v=2 and 
a=2, the in relation yields |Hin|=2

16−1, and together light 
and warm yield |Hwarm|⋅|Hlight|=2

2
.  Thus, the potential test 

space is intractable, i.e. applying Equation 2 gives 

                                                 
2
 Formulae are derived by rearranging the standard combination formula, 

nCk=n! / (k!(n−k)!) where n=|T| and identifying the dominate terms. 



2↑(2
18−2

2
) containing ~2.6·10

5
 types of distinction.  

However, this space includes an exhaustive enumeration of 
tests that violate basic properties.  We can therefore focus 
the potential test space, with respect to the rule at hand, by 
incorporating the following restrictions: 

• in is neither reflexive nor symmetric 
• no object is ever in a light  

Rather than exhaustively testing these basic constraints in 
every rule, the developer may exercise those properties in 
isolation (e.g. testing when in

+
 erroneously contains a pair 

of symmetric tuples) and then assume they hold when 
testing other rules.  The first constraint allows three 
queries, 

q1={x | (x,y)∈in
+ ∧ (y,x)∈in

−
}, 

q2={x | (x,y)∈in
− ∧ (y,x)∈in

+
}, and 

q3={x | (x,y)∈in
− ∧ (y,x)∈in

−
}, 

giving |Hin|=2
3
-1.  The second constraint states that for all 

scenarios, q2 ∩ light
+
=∅, hence H sets that contain this 

query can be removed.  2
3-1

 sets in Hin intersect with q2 
giving |Hin with q2|⋅|Hlight+|⋅|Hwarm| = 2

2⋅1⋅2 = 8.  Therefore, the 
relevant number of homogeneous sets is |H∆| = 
|Hin|⋅|Hlight|⋅|Hwarm| − 8 = (2

3
-1)⋅2⋅2 – 8 = 20.  Recall that in 

our example above, the developer has chosen exhaustive 
combination testing of selected relevant components 
|T|=2

8
, giving |HT|≈log2(|T|)=8.  Test coverage results are 

1. |HT|/|H| = 8/(2.6·10
5
) ≈ 0% 

2. |HT∩H∆| / |H∆|= 8/20 = 40% 
3. all combinations k=1…|HT| of the cluster HT are tested, 

and no other clusters are tested at all. 

Firstly note that a few key restrictions (particularly the 
number of tuples in a query) rapidly focus the test space.  
Secondly it is clear that the majority of the relevant test 
space is completely untested.  The developer can now 
identify the untested distinctions and decide whether 
further tests are required. 

Constraints and Expressiveness 

As we observed in the previous section, a designer can 
isolate scenario classes by encoding constraints.  This is an 
effective method for improving testing efficiency by 
isolating and independently testing particular model 
fragments (to avoid combinatorial explosion).  
H-complexity can be used to measure the number of 
scenario classes that satisfy a collection of constraints, thus 
allowing a designer to quantify the reduction in the test 
suite. 

Consider a simple system with two unary relations, R1 
and R2, A={+,−}, and a constraint R1

+⊆R2
+
.  From 

Equation 1 we have |H|=4 giving 2
4
 unique scenario 

classes, but not all of them will satisfy the constraint.  To 
determine the set of valid scenario classes, the constraint is 
translated into a union of H sets. 
Let h1=(R1

+∩ R2
+), h2=(R1

+∩ R2
−), h3=(R1

−∩ R2
+), h4=(R1

−∩ R2
−); 

R1
+
= h1 ∪ h2 

R2
+
= h1 ∪ h3 

Therefore, 
 R1

+⊆R2
+
 ≡ h1 ∪ h2 ⊆ h1 ∪ h3 

     ≡ h2 ⊆ h3  …remove h1 from both sides 

So a scenario is only valid if h2 ⊆ h3, but by definition 
homogeneous sets are mutually exclusive, h2 ∩ h3 = ∅.  It 
follows that the only valid scenarios are those where 
h2 = ∅.  Given n constraints of the form LHSi  ⊆ RHSi, 
where LHSi = hiw∪…∪hix and RHSi = hiy∪…∪hiz, and let 
qLi={hiw,…,hix} / {hiy,…,hiz} (H sets exclusively in LHS).  
The only valid scenarios are those where every LHSi is 
empty, s(qi)=∅, thus (refer to the previous section “Basic 
Combinatorics”) 

|valid scenarios| = 2↑(|H|  − |qL1 ∪…∪ qLn|). 
% of valid scenarios 

= |valid scenarios| / |all scenarios| 
= 2↑(|H|  − |qL1 ∪…∪ qLn|) / 2↑|H| 
= 2↑(− |qL1 ∪…∪ qLn|). 

We will derive a function θθθθT for calculating valid 
scenarios for any type of constraint.  Let reference Table 4 
accept a constraint and return the appropriate formula for 
calculating valid scenarios.  Note that each table entry 
takes the form 

a02
−e0

 + … + an2
−en

 

where each term j=0…n has a sign aj∈{1,−1} and an 
integer exponent ej.  Let term map θT be a map that collects 
the sign and size of the exponent from each term in this 
series.  That is, θT takes a constraint ci and returns a list 
{(a0, e0), …, (an, en)} such that for each tuple (aj, ej) there 
exists some term …+ aj2

ej
 +… in the Table 4 entry for ci. 

We can now recursively define the function θθθθT that 
accurately calculates the term information from n 
constraints, for i=2…n, 

θθθθT(c1)  = {(a, f(X))  |  (a, X) ∈ θT(c1)} 
θθθθT(ci)  = θθθθT(ci−1) × θT(ci) 

(3.1) 
(3.2) 

such that, given (ax, X) ∈ θθθθT(ci−1) and (ay, Y) ∈ θT(ci), 
(ax, X) × (ay, Y)=(axay, g(X, f(Y) )).  The function f(X) 
determines the information about the exponent that is used, 
and g(X, Y) determines how the exponent information of 
different terms should be combined.  We evaluate the 
terms using the formula (where f

−1
 is the inverse of f) 

% valid scenarios = ∑ aj 2↑− |f
−1

(ej)|. 
 
For example, let two constraints be 
c1= h1 ∪ h2 ∪ h3 = h3 ∪ h4 ∪ h5 
c2= h6 ∪ h7 ⊆ h1 ∪ h7 ∪ h8. 
 
q1L = {h1, h2},  q1R = {h4, h5}, q1LR = {h3} 
q2L = {h6},   q2R = {h1, h8}, q2LR = {h7} 
 

θT(c1) = {  ( 1, {h1, h2, h4,  h5}), 

     (− 1, {h1, h2, h3, h4,  h5}) } 
 



θT(c2) = {  ( 1, {h6}), 

     (− 1, {h1, h6, h8}) 

     (− 1, {h6, h7}) 

     ( 1, {h1, h6, h7, h8}),  …for ⊂   

 

     ( 1, {h1, h6, h8}), 

     (− 1, {h1, h6, h7, h8})  …for =   

} 

 
 
Let f(X)=X and g(X, Y)=X ∪ Y (see Table 5). 

θθθθT(c1) = θT(c1) 
θθθθT(c2) = θθθθT(c2) × θT(c1) 
   ={(1, {h6}) × (  1, {h1, h2, h4,  h5}), 
    (1, {h6}) × ( − 1, {h1, h2, h3, h4,  h5}), 
    …, 

(− 1, {h1, h6, h7, h8}) × 
(− 1, {h1, h2, h3, h4,  h5}), 

   ={( 1, {h1, h2, h4,  h5, h6}), 
    (− 1, {h1, h2, h3, h4,  h5, h6}), 
    …, 
    ( 1, {h1, h2, h3, h4, h5, h6, h7, h8}) }. 
 

set 

comparison  

scenarios 

(shaded=valid scenarios) 
formula 

⊂  
 
symmetric 

with 

⊃ 

∩ 
 

   2
−|qL|

  

− 2
−|qL ∪ qR|

 

− 2
−|qL ∪ qLR|

 

+ 2
−|qL ∪ qR ∪ qLR|

 

= 

 
symmetric 

with 

⊃∅  

⊂∅ 
 

   2
−|qL ∪ qR|

 

− 2
−|qL ∪ qR ∪ qLR|

 

=∅  

 

2
−|qL ∪ qR ∪ qLR| 

 

+∩≠
   

 

   1 

− 2
−|qL|

 

− 2
−|qR| 

− 2
−|qLR|  

+ 2
−|qL ∪ qR|  

+ 2
−|qL ∪ qLR|  

+ 2
−|qR ∪ qLR|

 

− 2
−|qL ∪ qR ∪ qLR|

 

Table 4. Formulae for calculating the number of scenario classes 

that satisfy particular set comparisons used in constraints. 

 

To avoid actually identifying and testing H sets (which is 
an extremely resource intensive process due to their 
enormous quantity) we can calculate bounds by assuming 
maximum and minimum overlap between the constraint 
queries.  Lower and upper bounds are calculated by 
changing the definition of the function f, summarised in 
Table 5.   
 

result f(X) = g(X, Y) = error 

tolerance (ε) 

exact X X ∪ Y |g(X, Y)| ≤ α 

lower bound X + Y 

upper bound 
|X| 

max(X, Y) 
g(X, Y) ≤ α 

Table 5. Alternative functions used in equations 3.1 and 3.2 for 

calculating exact, lower and upper bounds of the number of 

scenario classes that satisfy a set of constraints. 

 
The lower bound of % valid scenarios occurs when no 
constraints share any H sets, and is calculated by summing 
exponents g(X, Y) = X + Y.  The upper bound occurs when 
every query is an improper subset of some query, and is 
calculated by taking the maximum exponent, g(X, Y) = 
max(X, Y).    

Finally, we can vastly improve performance by pruning 
a term once its exponent has exceeded some threshold, α.  
As the exponents grow, the size of the term quickly 
becomes negligible, i.e. lime→∞ 2

−e
 = 0.  The threshold α is 

a function of the required error tolerance ε and the number 
of terms m = ∑i=0…n |θT(ci)|, 

α = log2 (m / ε), 

derived as follows.  The sum of all removed terms (where 
the magnitude of the exponent exceeds some threshold α) 
must be less than or equal to the given error tolerance, 
           ε ≥ m 2

−α
 

     ε / m ≥ 2
−α

 
 ε.2

α
 / m ≥ 1 

         2
α 
≥ m / ε 

           α ≥ log2 (m / ε) 
 
For example, an application has 50 constraints and we 
want the error to be within 0.01%.  The number of terms m 
depends on the constraint relations, but for this example on 
average let each constraint have 6 terms, giving 
m =50 × 6 = 300 terms.  Therefore, 
       α = log2 (300 / 0.01) 
   = log2 (30000) 
       α = 15 

Conclusions 

In this paper we presented the H-complexity metric for 
analysing QSTR systems, with the aim of supporting the 
design and evaluation of QSTR applications.  
H-complexity measures the expressiveness of a QSTR 
system according to the number of distinct scenario classes 
that can be encoded by the system. Specifically, we 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 

si(qL)=∅ si(qR)=∅ 

si(qLR)=∅ 



derived H-complexity by firstly defining the concept of 
homogeneous sets as the fundamental folding of objects 
into equivalence classes permitted by the QSTR language.  
We then used homogeneous sets to quantify complexity by 
identifying a one-to-one relationship between accessible, 
unique subsets and scenario classes. We have shown that 
H-complexity of a relation can be quantified independently 
of a particular scenario by applying restrictions to the 
query language. This enables a developer to measure the 
relative difference in expressiveness between two QSTR 
systems that contain relations that admit an infinite number 
of potential homogeneous sets. Furthermore, we have 
shown that relation arity and the number of query variables 
significantly dominate expressiveness. This is useful in 
determining the relative difference in expressiveness 
between two QSTR systems, which can be used by a 
developer to guide QSTR application design. Finally, we 
presented two examples which illustrate how H-complexity 
can be employed to support QSTR application 
development,  firstly, to calculate the potential test space 
for determining test coverage, and secondly to quantify the 
reduction in expressiveness due to constraints. These 
examples demonstrate that our complexity metric is a 
versatile and effective tool for supporting the development 
of QSTR applications. 
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