
H-Complexity Metric for

Qualitative Spatial and Temporal Reasoning Applications

Carl Schultz, Robert Amor
Department of Computer Science, The University of Auckland

Private Bag 92019, Auckland, New Zealand

 csch050@aucklanduni.ac.nz, trebor@cs.auckland.ac.nz

Hans Guesgen
School of Engineering and Advanced Technology, Massey University

Private Bag 11222, Palmerston North, New Zealand

h.w.guesgen@massey.ac.nz

Abstract

Commonsense reasoning, in particular qualitative spatial
and temporal reasoning (QSTR), provides flexible and
intuitive methods for reasoning about vague and uncertain
information including temporal duration and ordering, and
spatial orientation, topology and distance. Despite
significant theoretical advances in QSTR, there is a distinct
absence of applications that employ these methods. The
central problem is a lack of application-level standards and
metrics that developers can use to measure the effectiveness
of their QSTR applications. To address this we present a
fundamental metric called H-complexity that quantifies the
expressiveness of QSTR systems according to the number
of distinct scenario classes that can be encoded. In this
paper we show that H-complexity can be employed in a
range of powerful and practical ways that support QSTR
application development. To illustrate this, we present two
examples: calculating test coverage for validation, and
quantifying the reduction in expressiveness due to
constraints. We thereby demonstrate that H-complexity is a
useful tool for determining whether a QSTR system meets
the needs of a specific application.

Introduction

Commonsense reasoning aims to address the limitations of
purely numerical systems, by providing coarser and more
intuitive knowledge representation and reasoning
techniques (Kuipers, 1994). The subdiscipline of
qualitative spatial and temporal reasoning (QSTR) aims to
formalise our intuitive understanding of everyday physical
relationships such as size, orientation, topology, and
distance, and temporal relation-ships such as ordering,
coincidence, and duration (Cohn and Renz, 2007). A
seminal example of QSTR is Allen’s interval calculus
(Allen, 1983) which defines a set of thirteen atomic

Copyright © 2009, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

relations between time intervals, and an algorithm for
reasoning about networks of temporal relations, e.g. (where
• is a composition operator)
 t1 before t2 • t2 contains t3 = t1 before t3
 t1 overlaps t2 • t2 during t3 =
 t1 (overlaps, or during, or starts) t3
 Despite significant theoretical advances, there is a
distinct absence of applications that make use of these
techniques (Dylla et al., 2006). The central problem is the
significant lack of support for adapting and integrating
existing QSTR methods with other domain specific
qualitative spatial and temporal models. Specifically, there
are no methods for assessing the quality of a QSTR system
or comparing QSTR systems to determine which one is the
most effective for solving a given problem.
 Most of the existing research on QSTR analysis has
focused on proving correctness of composition
(Wölfl et al., 2007), characterising reasoning complexity
(Vilain et al., 1989) and determining tractable subsets of
well known formalisms (Nebel and Bürckert, 1995).
While it is important to know when a problem is NP
complete, reasoning complexity cannot be used by the
developer to determine whether the particular QSTR
system addresses the task at hand, how a change to the
system will impact its effectiveness, or how QSTR
application validation can be performed to ensure that the
application is fit for purpose.
 To address this we present a fundamental metric called
H-complexity that quantifies the expressiveness of a given
QSTR system, in terms of the number of distinct scenario
classes that can be encoded by the system. The developer
can use expressiveness to guide application design in a
range of powerful ways, for example:
(i) comparing different QSTR systems to help determine

whether one is more suitable than the other;
(ii) calculating test coverage during the validation phase

of development to quantify confidence in the
application being fit for purpose;

(iii) quantifying the reduction in expressiveness due to
constraints to assist in developing a test plan.

In this paper we derive a very simple equation for
calculating H-complexity, and we consider two
applications addressing points (ii) and (iii) above, where
we derive very simple equations and a reference table for
improved runtime efficiency. We thereby demonstrate that
our complexity metric is a flexible and effective tool for
supporting the development of QSTR applications.
 The remainder of the paper is structured as follows. In
the following section we review the basic theory of QSTR
systems. We then derive H-complexity in two steps.
Firstly we define the concept of homogeneous sets as the
fundamental folding of objects into equivalence classes
permitted by the QSTR language. We then use
homogeneous sets to quantify QSTR expressiveness by
identifying a one-to-one relationship between accessible,
unique subsets and scenario classes. In the succeeding
section we derive methods for calculating homogeneous
sets in relations of any arity. We then present two methods
for employing H-complexity: calculating test coverage for
validation, and quantifying the reduction in expressiveness
due to constraints. In the final section we present the
conclusions of this paper.

Foundations of QSTR

Informally, QSTR applications model, infer, and check the
consistency of object relations in a scenario. We will
define QSTR applications in terms of model theory
(Marker, 2002; Hodges, 1997) and then define the roles of
QSTR application designs and users.

We use the notation ↑ to represent the exponent
operator, x↑y=x

y
. In model theoretic terms, a language L

(or vocabulary, or signature) is a finite set of relation
symbols R and arities aR for each R∈R. A model M of
language L (or L-structure, or interpretation) consists of a
universe U (or domain, or underlying set) and for each
relation symbol R∈R there is a set RM ⊆ U ↑aR. That is, M
provides a concrete interpretation of the symbols in L
based on the underlying set U. Finally, a scenario (or
configuration, or substructure) is a model V that can be
embedded into M, that is, an injective homomorphism
f:V→U exists such that, for each R∈R with arity a,

∀ v1,…,va∈V
a
 ⋅ (v1,…,va)∈RV ↔↔↔↔ (f(v1),…,f(va))∈RM.

A QSTR application has a language L that specifies the
set of relation symbols that the designer has deemed
relevant to the task at hand. The model M of a QSTR
application is the interpretation of the relations,
implemented using constraints between the relations (what
objects must, or must not, exist in different combinations
of relations). For each relation type R∈R with arity aR,
and for each tuple of arity aR, the relation either holds, does
not hold, or is not applicable for that tuple. Thus, for each
relation symbol R∈R in the language, a QSTR application
model M requires three sets, RM

+
 (holds), RM

−
 (does not

hold) and RM
~
 (not applicable), with the axiom

Axiom 1. ∀ R∈R ⋅ U ↑aR = RM
+
 ∆ RM

−
 ∆ RM

~
,

where ∆ is symmetric difference (the set theoretic
equivalent of mutual exclusion). For brevity we will omit
the M and simply write R

+
.

The application designer is responsible for selecting an
appropriate set of relation symbols and encoding an
appropriate set of constraints. A QSTR application user
can then construct scenarios by specifying a model V and
reasoning is used to determine whether the scenario is
valid with respect to the model M (by proving that V can
be embedded in M). Table 1 relates these roles to the
formal semantics in model theory and QSTR applications.
 Often parts of the user’s scenario are indefinite or
unknown, and reasoning with the application constraints is
used to help resolve this ambiguity. For each relation
R∈R, the user can place tuples (of objects from V) with
arity aR in a fourth indefinite set, RM

?
 that is mutually

exclusive with the three corresponding definite sets. This
is a shorthand for specifying a set of models V1,…, Vn
each representing a possible scenario.
 An example of a scenario is

V={kitchen, lounge, study}
adjacent

+
 ={(lounge, study), (lounge, kitchen)}

adjacent
?
 ={(lounge, lounge), (study, lounge), …}

adjacent
−
 ={}.

The adjacent relation can be defined as symmetric using
the constraint {(x,y) | (y,x) ∈ adjacent

+
} ⊂ adjacent

+
. The

LHS of the constraint as evaluated in the scenario is
{(study,lounge), (kitchen,lounge)}. The RHS as evaluated
in the scenario does not contain these tuples as required by
the proper subset relation, and so reasoning moves the
offending tuples out of adjacent

?
 and into adjacent

+
 thus

satisfying symmetry.

Model

Theory

QSTR Application

Domain
Actor

language L specification of useful

qualitative relations

model M

based on L

constraints that determine

the interaction between the

relations

QSTR

application

designer

model V

based on L

embedded in M

Using a QSTR application to

represent and reason about

objects.

QSTR

application

user

Table 1. Comparing the domains of model theory, QSTR

applications, and the roles of QSTR application designers and

users.

Homogeneous and Definable sets

In model theory (Marker, 2002), a set X is definable in
model M if there is some formula φ such that
X={(v1,…,vn)∈U

n
| M φ(v1,…,vn)} (where entails

means that the formula is true in M). Alternatively, if no
formula exists that can separate two objects, then the
objects are considered equivalent, and we say that they are
in the same homogeneous set. Let H={h1, …, hn} be a set

of homogeneous sets, where each hi ⊆ U. By definition,
h1, …, hn partition U, that is, they are mutually exclusive
and jointly exhaustive. A homogeneous set h is evaluated
in scenario s, s(h) ⊆ V.
 All possible queries are equivalent to some union of
homogeneous sets. We define a query q to be a set of
homogeneous sets q={hx,…,hy}, and we say a query q is
executed in scenario s, s(q)= s(hx)∪…∪s(hy).

Constraints

The model of a QSTR application is defined by constraints
between the qualitative relations. If a scenario does not
satisfy a constraint then reasoning attempts to move the
offending tuples out of indefinite sets (R

?
) and into one of

the definite sets (R
+
, R

−
, or R

~
). If offending tuples are not

indefinite then reasoning has identified a contradiction and
the scenario is inconsistent.

Let constraint c = X δ Y, where δ∈{⊂,⊆,⊄,≠,=,…} is a
set comparison and X, Y are set expressions that are
evaluated in scenarios. Set expressions are either sets, or
the result of set operations.
 We now define the complete set of possible comparisons
from which δ can be selected. Two sets LHS, RHS either
share some objects, or they do not. The degree of overlap
can be used to define all possible set relationships. Let
LHS = hw∪…∪hx and RHS = hy∪…∪hz, let
qLHS={hx,…,hy} and qRHS={hx,…,hy} (queries for LHS and
RHS respectively). Let

qL= qLHS / qRHS (H sets exclusively in LHS)
qR= qRHS / qLHS (H sets exclusively in RHS)
qLR= qLHS ∩ qRHS (H sets in both LHS and RHS)

For any pair of sets LHS and RHS, the queries qL, qR, and
qLR will evaluate to be either empty or non-empty, giving
2

3
=8 different basic set comparisons, as illustrated in

Table 2. In each table entry, the outer circle represents the
set of all scenarios, and three inner circles each represent a
subset of scenarios where a condition holds. The top left
circle specifies those scenarios where H sets in the query
qL are empty, s(qL)=∅ and so on. For example, the
constraint X = Y is satisfied in exactly those scenarios
where both qL (elements exclusively in X) and qR (elements
exclusively in Y) evaluate to empty and qLR (elements
shared by both X and Y) is not empty. The comparison δ
can consist of any disjunction of these basic set
comparisons (e.g. ⊆ is = ∨ ⊂), thus there are 2

8−1 = 255
possible comparisons.

Basic Combinatorics

Finally, we provide some basic equations from
combinatorics that will be used in the paper. The size of
the powerset of set X is 2

|X|
. The number of subsets that

contain elements from either set X or set Y is 2
|X ∪ Y|

, the
number of subsets that contain all elements from X and not
Y is 2

|X / Y|
, and the number of subsets that contain all

elements from X and neither Y nor Z is 2
|X / (Y ∪ Z)|

.

δ scenarios

(shaded=valid

scenarios)

 δ scenarios

(shaded=valid

scenarios)

=

 ∩

⊂

 =∅

⊃

 ⊂∅

+∩≠

 ⊃∅

Table 2. Eight basic relationships between sets derived from the

overlap between H sets. Outer circles represent the set of all

scenarios, and three inner circles each represent a subset of

scenarios where a condition holds. Shaded regions represent

scenarios that satisfy the set relationship.

 Equivalently, we use bit-string encodings, where the
number of unique combinations that can be represented by
a bit-string of length n is 2

n
. The number of combinations

of two bit-strings of length n1 and n2 is 2
n1+n2

. If m bits are
fixed in a bit-string of length n then the number of unique
combinations that contain the m fixed bits is 2

n −m
.

 Table 3 gives some equations for calculating the
number of scenarios that satisfy conditions required by
constraints. For example, in each table entry the top left
circle specifies those scenarios where H sets in the query
qL are empty, s(qL)=∅, and the number of such scenarios is
2

|H / qL|
 = 2

|H|− |qL|
. To understand this, consider a bit-string

of length n=|H|, where m=|qL| bits are fixed to ‘0’
(representing that s(qL)=∅); the number of unique
combinations that this bit-string allows is 2

n − m
 = 2

|H|− |qL|
.

Scenarios where H sets in both qL and qR are empty,
s(qL)=∅ ∧ s(qR)=∅ is 2

|H / (qL ∪ qR)|
= 2

|H|−|qL|−|qR|
 (recall that,

by definition, qL and qR are mutually exclusive). A
bit-string of length n=|H|, where m=|qL ∪ qR|=|qL|−|qR|, bits
are fixed to ‘0’ admits 2

n − m
 = 2

|H|−|qL|−|qR|
 unique

combinations.

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

formula scenarios

(shaded=valid scenarios)

2
|H|−|qL|

symmetric with

2
|H|−|qR|

2
|H|−|qLR|

2
|H|−|qL ∪ qR|

symmetric with

2
|H|−|qL ∪ qLR|

2
|H|−|qLR ∪ qR|

2
|H|−|qL ∪ qR ∪ qLR|

Table 3. Combinatorial formulae for calculating the number of

scenario classes that satisfy particular conditions.

H-Complexity

In this section we present the central theory of
H-complexity. H-complexity is a measure of the number
of different scenario classes that can be encoded by a given
QSTR language. It identifies the most extreme partitioning
of objects that the language allows, so that all other
practical partitioning schemes will consist of some subset
of the distinctions made in H-complexity.

Homogeneous Sets

If no possible set theoretic query exists that can separate

two objects, then the objects are considered equivalent.

This inherent limitation fundamentally folds objects into

homogeneous sets, or H sets, providing the foundation for

a measure of expressiveness or complexity. H sets

represent the maximum refinement permitted by the QSTR

language, i.e. the point where no further distinctions are

possible. Thus, H-complexity = |H|.

Assume for simplicity that all relations have an arity of 1
(i.e. they represent qualitative properties such as round or
large). If there are n relations, and each relation is
represented by four sets, then there are 4

n
 different

combinations of these relations, i.e.

1. R1
+
 ∩ R2

+
 ∩ ... ∩ Rn

+
,

2. R1
−
 ∩ R2

+
 ∩ ... ∩ Rn

+
,

...

4
n
. R1

~
 ∩ R2

~
 ∩ ... ∩ Rn

~
.

In general,
|H|=∏R∈R |HR| (1)

where |HR|=|AR| for unary relations, AR is the selection of

relation sets used by R (e.g. + and −), and ∏ is the

sequence product operator. We calculate H sets for

relations with higher arities in a later section.

For H sets to truly represent the maximum refinement

possible, they must be jointly exhaustive and pairwise

disjoint (JEPD) so that every object in a scenario will

appear in exactly one H set. This property is critical; if it

did not hold then further refinements could be achieved by

taking H set intersections and differences. The H sets from

Equation 1 are pairwise disjoint because, for any relation

Ri, the relation’s four sets are mutually exclusive, and any

two H sets always differ by at least one Ri set. They are

also jointly exhaustive because, for any relation Ri, each of

its four jointly exhaustive sets is covered by some H set.

Query Complexity

A query is used to access a subset of objects in a scenario.

Query complexity is the maximum number of unique

non-empty subsets that can be accessed by some query.

We will now show that all accessible, unique subsets of

objects in a scenario can be represented as the union of

some combination of H sets.

H sets are indivisible and mutually exclusive, and so the

query that returns the smallest non-empty subset of objects

contained in an H set is the set expression of the H set

itself, e.g. R1
+
 ∩ R2

+
 ∩ ... ∩ Rn

+
. The smallest subset

containing objects from two different H sets h1, h2 is the

union of those two H set expressions h1∪h2. It follows that

any accessible subset of objects must be the union of some

combination of H sets. Thus query complexity is the

number of different combinations of H sets, 2
|H|

.

Scenario Complexity

If two objects in a scenario can not be separated by a

query, then the objects are considered equivalent and

indistinguishable, that is, the objects are in the same H set.

If the only difference between two scenarios is the number

of indistinguishable objects in each non-empty H set, then

the scenarios are considered equivalent. This follows the

intutive understanding that qualitative models, unlike

metric systems, do not deal with numerical quantities.

Thus, a scenario equivalence class is defined by the

combination of H sets that are empty and non-empty, 2
|H|

.

 There is an interesting parallel between query and
scenario complexity. The number of unique, accessible,
non-empty subsets of a QSTR application is equal to the
number of distinct scenario classes that can be expressed.

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

An alternative interpretation is that a scenario is defined by
the combination of queries that return non-empty results,
i.e. if query q1 returns ∅ in scenario s1 and some
non-empty result in s2, then the scenarios are logically
distinct.

Calculating Homogeneous Sets

In this section we derive the equation for |HR| admitted by a

relation R of arity aR, and then derive |H| for a QSTR

system. Once relations have an arity greater than 1 there

are an infinite number of potential H sets, because a binary

relation constitutes a total order. Thus, Equation 1 cannot

be used to compare QSTR systems with binary or higher

relations. We proceed in our analysis by representing a

scenario of binary relation Ri as a graph, where objects

represent vertices and directed edges represent tuples as

illustrated in Figure 1.

R1={ (a,b),

 (c,b)}

R2={(a,a), (a,b), (a,c),

 (d,d), (d,e), (e,c)}

Figure 1. Two graphs representing binary relations R1 and R2.

A set theoretic query describes the structure of a graph and

specifies the vertex to be selected with v bound variables,

∃x1...∃xv ⋅ x1 ≠ x2 ∧ ... ∧ x1 ≠ xv ∧ ... ∧ xv-1 ≠ xv.

For brevity, we will omit explicitly stating these
quantifications and conditions for all further queries, and
for simplicity we do not allow the universal quantifier ∀.
For example, the query {x2| (x1,x2)∈r1 ∧ (x3,x2)∈R1} will
access b from the graph of R1 in Figure 1.

Calculating |HR| with Arbitrary Arity

While there are an infinite number of potential graphs and

unique accessible subsets, homogeneous sets still exist that

contain indistinguishable objects. For example, regarding

the graph of R1, no query exists that can separate objects a

and c (without directly referring to those objects),

 {a,c} ={x1| (x1,x2)∈R1 ∧ (x3,x2)∈R1}

={x3| (x1,x2)∈R1 ∧ (x3,x2)∈R1},

and the graph of R2 has three H sets, accessed by the query

{xi | (x1,x1)∈R2 ∧ (x1,x2)∈R2 ∧ (x2,x3)∈R2 ∧

(x4,x4)∈R2 ∧ (x4,x5)∈R2 ∧ (x5,x3)∈R2 },

namely {a,d} when i=1 or 4, {b,e} when i=2 or 5 and {c}

when i=3. Thus, homogeneous sets correspond to graph

symmetries or automorphisms. Given a graph of a

scenario, the number of H sets is the number of vertices

minus the number of automorphisms.

In order to make |Hr| a function of QSTR systems rather

than scenarios (particular graphs), the query language must

be restricted. If the restricted language only recognises a

finite number of graphs, it will admit a finite number of H

sets. It is then possible to quantify the complexity of a

relation independent of a particular scenario, and measure

the relative difference in expressiveness between two

QSTR systems. Two basic restrictions are to limit the

number of variables (vertices) and the number of tuples

(edges). We will consider the former case. Previously,

queries have referred to variables xi where i can be any

positive integer. The strongest restriction on the number of

variables is i≤1, affording only one query, {x1| (x1,x1)∈Ri}.

If i≤2 then the allowable tuples are (x1,x1), (x1,x2), (x2,x1),

and (x2,x2). If v is the number of variables allowed in a

query, and aR is the arity of relation R (i.e. the size of the

tuples) then for each query,

number of tuples = v↑aR

All binary tuples of n objects in relation Ri appear in
exactly one of the Ri sets (holds etc.), and thus we focus on
those queries that contain all v↑aR tuples permitted by the
language. We refer to these as atomic queries. The
difference between two atomic queries is the combination
of Ri sets in which the tuples must appear. For example,
Table 4 gives an extract of the atomic queries where v=2
and aR=2. Some graphs are automorphic, e.g. in row 1, and
some graphs are isomorphic, e.g. rows 2 and 3. Initially
there are 16 graphs × 2 variables = 32 different executable
atomic queries. 4 graphs (8 queries) have pairs of
automorphic variables making 8/2 queries redundant, and
the remaining 12 graphs (24 queries) can be put into
symmetric pairs, making an additional 24/2 queries
redundant, leaving 32 − 4 − 12 = 16 unique atomic queries.
An easy way to arrive at the number of unique atomic
queries is to allow every graph, but restrict the selection to
the first variable x1 (this can be viewed as fixing the
variable and rotating the edges of the graph to cover
symmetries). Thus,

number of unique atomic queries = |ΑR|
number of tuples

where number of tuples = v↑aR. Finally, to calculate |HR|

we must determine the smallest JEPD queries that contain

the atomic queries. Atomic queries are not JEPD when

their corresponding graphs are overlapping induced

subgraphs of the full scenario graph. For example,

consider the scenario graph in Figure 2.

Figure 2. Graph consisting of three disconnected subgraphs.

Subgraphs {a,b} and {c,d} correspond to atomic queries, where

{e,f,g} contains both atomic queries as induced subgraphs.

If v=2 then two atomic queries are:

{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R−}={a,e},

{x1 | (x1,x1)∈R− ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ (x2,x2)∈R+}={c,e}.

a b

c d

e

f

g

c
e d

b a

a

c
b

The atomic queries are not JEPD, as vertex e appears in

both results. However, if we take all combinations of

atomic queries by intersection and difference, we can

produce a JEPD collection of H sets, hence

|HR|=2
number of unique atomic queries

 – 1

where the number of graphs = |ΑR|
number of tuples

. To

summarise,

|HR|=(2↑|AR|↑v↑aR) – 1. (2)

Calculating |H| with Arbitrary Arity

The problem is now calculating |H|, the total number of H

sets across all relations when those relations can take any

arity. Previously, we only referred to one relation within a

query. Given v bound variables, queries will now take the

form,

{x1 | query R1, query R2, …, query Rn}

where query Ri is one of the unique atomic queries for

relation Ri. The number of queries permitted in this form is

|atomic R1 queries| × … × |atomic Rn queries|.

We have shown that the number of atomic queries for Ri is

|Ari|↑v↑ari, thus

|H| = 2↑(|atomic R1 queries|

×…×

|atomic Rn queries|)

= 2↑((|AR1|↑v↑aR1) ×…× (|AR n|↑v↑aR n))

= 2↑ ∏R∈R (|AR|↑v↑aR). (3)

Using this formulation we can identify some basic

properties of expressiveness. In general, H-complexity is a

function of the number of atomic queries that the QSTR

language allows. Restricting the number of variables in a

query to v makes complexity a function of the number of

relation states, |AR|, the number of variables v, and the

relation arity. Moreover, Equation 3 specifies the relative

influence that each component has on complexity; relation

arity has the most influence, followed by the number of

variables having exponentially less influence, and finally

arity having exponentially less influence again. These

properties help to inform the developer about how changes

to each component affects expressiveness, and the relative

difference in expressiveness between two QSTR systems.

Applying H-Complexity

In this section we present two ways that H-complexity can
be employed to assist QSTR application development.

Test coverage

Application test space is defined according to system
inputs and outputs, and the system structure such as
decisions and control paths. Covering the entire, often

infinite test space is clearly impractical and thus software
engineers employ methods that isolate key subsets such as
boundary checking, equivalence class partitioning, and
cause-effect graphs (Burnstein, 2003). Test coverage is a
standard metric in software engineering used to guide
testing. H-complexity can be used to quantify a QSTR
application’s potential test space for calculating test
coverage, as it specifies the degree of refinement permitted
by the language. Consider the following application-
specific constraint for determining apparent room colour
temperature (Schultz et al., 2009):

“If a room has at least one warm light, and does not have
lights of any other temperature, then the room has a warm
colour temperature”

This constraint may then be integrated into an existing
QSTR system that reasons about spatial arrangements of
light sources and surfaces. One formal encoding of this
constraint might be

{x | (∃y. light
+
(y) ∧ in

+
(y,x) ∧ warm

+
(y)) (3)

 ∧¬(∃y’. light
+
(y’) ∧ in

+
(y’,x) ∧ warm

−
(y’))} ⊆ warm

+
.

Based on the structure of the constraint, the developer may
decide to test the class of scenarios where the LHS is not
empty ∃x ⋅ ∃y∧¬∃y’, and where the LHS is empty
∀x ⋅ ∃y∧∃y’. Based on the relations in the constraint, the
developer may decide to test all combinations of conditions
for both y and y’; noting that not all conditions are
independent (e.g. if there exists y such that y∈warm

+
 then

there must also exist y’ such that y’∈warm
+
), this provides

a test set size of 2
8
. The issue is that the developer needs to

know how many tests must be executed before achieving
some level of confidence that the application is fit for
purpose. Three test coverage metrics are

1. proportion of H sets tested, |HT| / |H|
2. proportion of relevant H sets tested, |HT∩H∆| / |H∆|
3. degree of tested combinations for particular clusters of H

sets (e.g. some subset H’⊂H tested up to all triples)

where the HT is the set of tested homogeneous sets, and
relevant homogeneous sets H∆ are defined according to the
application (e.g. using probability distributions over inputs,
and weighting critical inputs that must be handled
correctly). If HT is not precisely known, then it can be
roughly approximated if the tradeoff between the number
of tested H sets and the degree of combination testing is
known

2
:

a) exhaustive combination testing, log2(|T|)≈|HT|,
b) k combinations, (k!⋅|T|)

1/k
 + k/2 ≈|HT|, and

c) up to k combinations, (k!⋅|T|)
1/k ≈|HT|.

Continuing with the case study, given A={+,−}, v=2 and
a=2, the in relation yields |Hin|=2

16−1, and together light
and warm yield |Hwarm|⋅|Hlight|=2

2
. Thus, the potential test

space is intractable, i.e. applying Equation 2 gives

2
 Formulae are derived by rearranging the standard combination formula,

nCk=n! / (k!(n−k)!) where n=|T| and identifying the dominate terms.

2↑(2
18−2

2
) containing ~2.6·10

5
 types of distinction.

However, this space includes an exhaustive enumeration of
tests that violate basic properties. We can therefore focus
the potential test space, with respect to the rule at hand, by
incorporating the following restrictions:

• in is neither reflexive nor symmetric
• no object is ever in a light

Rather than exhaustively testing these basic constraints in
every rule, the developer may exercise those properties in
isolation (e.g. testing when in

+
 erroneously contains a pair

of symmetric tuples) and then assume they hold when
testing other rules. The first constraint allows three
queries,

q1={x | (x,y)∈in
+ ∧ (y,x)∈in

−
},

q2={x | (x,y)∈in
− ∧ (y,x)∈in

+
}, and

q3={x | (x,y)∈in
− ∧ (y,x)∈in

−
},

giving |Hin|=2
3
-1. The second constraint states that for all

scenarios, q2 ∩ light
+
=∅, hence H sets that contain this

query can be removed. 2
3-1

 sets in Hin intersect with q2
giving |Hin with q2|⋅|Hlight+|⋅|Hwarm| = 2

2⋅1⋅2 = 8. Therefore, the
relevant number of homogeneous sets is |H∆| =
|Hin|⋅|Hlight|⋅|Hwarm| − 8 = (2

3
-1)⋅2⋅2 – 8 = 20. Recall that in

our example above, the developer has chosen exhaustive
combination testing of selected relevant components
|T|=2

8
, giving |HT|≈log2(|T|)=8. Test coverage results are

1. |HT|/|H| = 8/(2.6·10
5
) ≈ 0%

2. |HT∩H∆| / |H∆|= 8/20 = 40%
3. all combinations k=1…|HT| of the cluster HT are tested,

and no other clusters are tested at all.

Firstly note that a few key restrictions (particularly the
number of tuples in a query) rapidly focus the test space.
Secondly it is clear that the majority of the relevant test
space is completely untested. The developer can now
identify the untested distinctions and decide whether
further tests are required.

Constraints and Expressiveness

As we observed in the previous section, a designer can
isolate scenario classes by encoding constraints. This is an
effective method for improving testing efficiency by
isolating and independently testing particular model
fragments (to avoid combinatorial explosion).
H-complexity can be used to measure the number of
scenario classes that satisfy a collection of constraints, thus
allowing a designer to quantify the reduction in the test
suite.

Consider a simple system with two unary relations, R1
and R2, A={+,−}, and a constraint R1

+⊆R2
+
. From

Equation 1 we have |H|=4 giving 2
4
 unique scenario

classes, but not all of them will satisfy the constraint. To
determine the set of valid scenario classes, the constraint is
translated into a union of H sets.
Let h1=(R1

+∩ R2
+), h2=(R1

+∩ R2
−), h3=(R1

−∩ R2
+), h4=(R1

−∩ R2
−);

R1
+
= h1 ∪ h2

R2
+
= h1 ∪ h3

Therefore,
 R1

+⊆R2
+
 ≡ h1 ∪ h2 ⊆ h1 ∪ h3

 ≡ h2 ⊆ h3 …remove h1 from both sides

So a scenario is only valid if h2 ⊆ h3, but by definition
homogeneous sets are mutually exclusive, h2 ∩ h3 = ∅. It
follows that the only valid scenarios are those where
h2 = ∅. Given n constraints of the form LHSi ⊆ RHSi,
where LHSi = hiw∪…∪hix and RHSi = hiy∪…∪hiz, and let
qLi={hiw,…,hix} / {hiy,…,hiz} (H sets exclusively in LHS).
The only valid scenarios are those where every LHSi is
empty, s(qi)=∅, thus (refer to the previous section “Basic
Combinatorics”)

|valid scenarios| = 2↑(|H| − |qL1 ∪…∪ qLn|).
% of valid scenarios

= |valid scenarios| / |all scenarios|
= 2↑(|H| − |qL1 ∪…∪ qLn|) / 2↑|H|
= 2↑(− |qL1 ∪…∪ qLn|).

We will derive a function θθθθT for calculating valid
scenarios for any type of constraint. Let reference Table 4
accept a constraint and return the appropriate formula for
calculating valid scenarios. Note that each table entry
takes the form

a02
−e0

 + … + an2
−en

where each term j=0…n has a sign aj∈{1,−1} and an
integer exponent ej. Let term map θT be a map that collects
the sign and size of the exponent from each term in this
series. That is, θT takes a constraint ci and returns a list
{(a0, e0), …, (an, en)} such that for each tuple (aj, ej) there
exists some term …+ aj2

ej
 +… in the Table 4 entry for ci.

We can now recursively define the function θθθθT that
accurately calculates the term information from n
constraints, for i=2…n,

θθθθT(c1) = {(a, f(X)) | (a, X) ∈ θT(c1)}
θθθθT(ci) = θθθθT(ci−1) × θT(ci)

(3.1)
(3.2)

such that, given (ax, X) ∈ θθθθT(ci−1) and (ay, Y) ∈ θT(ci),
(ax, X) × (ay, Y)=(axay, g(X, f(Y))). The function f(X)
determines the information about the exponent that is used,
and g(X, Y) determines how the exponent information of
different terms should be combined. We evaluate the
terms using the formula (where f

−1
 is the inverse of f)

% valid scenarios = ∑ aj 2↑− |f
−1

(ej)|.

For example, let two constraints be
c1= h1 ∪ h2 ∪ h3 = h3 ∪ h4 ∪ h5
c2= h6 ∪ h7 ⊆ h1 ∪ h7 ∪ h8.

q1L = {h1, h2}, q1R = {h4, h5}, q1LR = {h3}
q2L = {h6}, q2R = {h1, h8}, q2LR = {h7}

θT(c1) = { (1, {h1, h2, h4, h5}),

 (− 1, {h1, h2, h3, h4, h5}) }

θT(c2) = { (1, {h6}),

 (− 1, {h1, h6, h8})

 (− 1, {h6, h7})

 (1, {h1, h6, h7, h8}), …for ⊂

 (1, {h1, h6, h8}),

 (− 1, {h1, h6, h7, h8}) …for =

}

Let f(X)=X and g(X, Y)=X ∪ Y (see Table 5).

θθθθT(c1) = θT(c1)
θθθθT(c2) = θθθθT(c2) × θT(c1)
 ={(1, {h6}) × (1, {h1, h2, h4, h5}),
 (1, {h6}) × (− 1, {h1, h2, h3, h4, h5}),
 …,

(− 1, {h1, h6, h7, h8}) ×
(− 1, {h1, h2, h3, h4, h5}),

 ={(1, {h1, h2, h4, h5, h6}),
 (− 1, {h1, h2, h3, h4, h5, h6}),
 …,
 (1, {h1, h2, h3, h4, h5, h6, h7, h8}) }.

set

comparison

scenarios

(shaded=valid scenarios)
formula

⊂

symmetric

with

⊃

∩

 2
−|qL|

− 2
−|qL ∪ qR|

− 2
−|qL ∪ qLR|

+ 2
−|qL ∪ qR ∪ qLR|

=

symmetric

with

⊃∅

⊂∅

 2
−|qL ∪ qR|

− 2
−|qL ∪ qR ∪ qLR|

=∅

2
−|qL ∪ qR ∪ qLR|

+∩≠

 1

− 2
−|qL|

− 2
−|qR|

− 2
−|qLR|

+ 2
−|qL ∪ qR|

+ 2
−|qL ∪ qLR|

+ 2
−|qR ∪ qLR|

− 2
−|qL ∪ qR ∪ qLR|

Table 4. Formulae for calculating the number of scenario classes

that satisfy particular set comparisons used in constraints.

To avoid actually identifying and testing H sets (which is
an extremely resource intensive process due to their
enormous quantity) we can calculate bounds by assuming
maximum and minimum overlap between the constraint
queries. Lower and upper bounds are calculated by
changing the definition of the function f, summarised in
Table 5.

result f(X) = g(X, Y) = error

tolerance (ε)

exact X X ∪ Y |g(X, Y)| ≤ α

lower bound X + Y

upper bound
|X|

max(X, Y)
g(X, Y) ≤ α

Table 5. Alternative functions used in equations 3.1 and 3.2 for

calculating exact, lower and upper bounds of the number of

scenario classes that satisfy a set of constraints.

The lower bound of % valid scenarios occurs when no
constraints share any H sets, and is calculated by summing
exponents g(X, Y) = X + Y. The upper bound occurs when
every query is an improper subset of some query, and is
calculated by taking the maximum exponent, g(X, Y) =
max(X, Y).

Finally, we can vastly improve performance by pruning
a term once its exponent has exceeded some threshold, α.
As the exponents grow, the size of the term quickly
becomes negligible, i.e. lime→∞ 2

−e
 = 0. The threshold α is

a function of the required error tolerance ε and the number
of terms m = ∑i=0…n |θT(ci)|,

α = log2 (m / ε),

derived as follows. The sum of all removed terms (where
the magnitude of the exponent exceeds some threshold α)
must be less than or equal to the given error tolerance,
 ε ≥ m 2

−α

 ε / m ≥ 2
−α

 ε.2

α
 / m ≥ 1

 2
α
≥ m / ε

 α ≥ log2 (m / ε)

For example, an application has 50 constraints and we
want the error to be within 0.01%. The number of terms m
depends on the constraint relations, but for this example on
average let each constraint have 6 terms, giving
m =50 × 6 = 300 terms. Therefore,
 α = log2 (300 / 0.01)
 = log2 (30000)
 α = 15

Conclusions

In this paper we presented the H-complexity metric for
analysing QSTR systems, with the aim of supporting the
design and evaluation of QSTR applications.
H-complexity measures the expressiveness of a QSTR
system according to the number of distinct scenario classes
that can be encoded by the system. Specifically, we

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

si(qL)=∅ si(qR)=∅

si(qLR)=∅

derived H-complexity by firstly defining the concept of
homogeneous sets as the fundamental folding of objects
into equivalence classes permitted by the QSTR language.
We then used homogeneous sets to quantify complexity by
identifying a one-to-one relationship between accessible,
unique subsets and scenario classes. We have shown that
H-complexity of a relation can be quantified independently
of a particular scenario by applying restrictions to the
query language. This enables a developer to measure the
relative difference in expressiveness between two QSTR
systems that contain relations that admit an infinite number
of potential homogeneous sets. Furthermore, we have
shown that relation arity and the number of query variables
significantly dominate expressiveness. This is useful in
determining the relative difference in expressiveness
between two QSTR systems, which can be used by a
developer to guide QSTR application design. Finally, we
presented two examples which illustrate how H-complexity
can be employed to support QSTR application
development, firstly, to calculate the potential test space
for determining test coverage, and secondly to quantify the
reduction in expressiveness due to constraints. These
examples demonstrate that our complexity metric is a
versatile and effective tool for supporting the development
of QSTR applications.

Acknowledgements

This work has been funded by the Bright Future Top
Achiever Doctoral Scholarship (Tertiary Education
Commission, New Zealand).

References

Allen, J. F. Maintaining knowledge about temporal
intervals. Communications of the ACM: 26, 11,
pp. 832-843: ACM Press, 1983.

Burnstein I. Practical software testing: a process oriented
approach. Springer, New York, 2003.

Cohn, A. G., and Renz, J. Qualitative spatial reasoning. In
van Harmelen F, Lifschitz V, Porter B (eds): Handbook of
Knowledge Representation: Elsevier Science, 2007.

Dylla, F., Frommberger, L., Wallgrün, J. O., and Wolter,
D. SparQ: A Toolbox for Qualitative Spatial
Representation and Reasoning. In Proc. Workshop on
Qualitative Constraint Calculi: Application and Integration,
2006.

Hodges, W. A Shorter Model Theory. Cambridge
University Press, 1997.

Kuipers, B. Qualitative reasoning. MIT Press, 1994.

Ligozat, G., Mitra, D., and Condotta, J. Spatial and
temporal reasoning: beyond Allen’s calculus. AI
Communications 17, 4, pp. 223–233, 2004.

Marker, D. Model Theory: An Introduction.
Springer-Verlag New York, 2002.

Nebel, B., Bürckert, H.J. Reasoning about temporal
relations: a maximal tractable subclass of Allen’s Interval
Algebra, Journal of the ACM, 42, 1, pp.43–66, 1995.

Schultz, C., Amor, R., Lobb, B., Guesgen, H., Qualitative
design support for engineering and architecture. Advanced
Engineering Informatics, Elsevier, 23, 1, pp. 68-80, 2009.

Vilain, M., Kautz, H., van Beek, P. Constraint
propagation algorithms for temporal reasoning: a revised
report, Readings in Qualitative Reasoning about Physical
Systems, Morgan Kaufmann, San Francisco, CA, USA,
1989.

Wölfl, S., Mossakowski, T., and Schröder, L. Qualitative
constraint calculi: Heterogeneous verification of
composition tables. In Proc. FLAIRS-07, pp. 665-670.
AAAI Press, 2007.

