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Conventional design support software tools cannot effectively manage the complex, heterogeneous infor-
mation used in engineering and architecture (EA) tasks. Crucially, despite uncertainty being an inherent
quality of EA information particularly in the early stages of a design project, current tools solely rely on
numerical approaches which do not support such incomplete and vague information. In this paper, we
establish a complete framework for developing qualitative support tools that directly address these
shortcomings. Our framework is application oriented and addresses the broader issues surrounding
the actual use of qualitative methods. It provides design principles and strategies that allow a software
engineer to develop custom qualitative software tools according to their specific EA task specifications.
Our framework also provides the engineer with practical theory and guidelines for implementing their
custom qualitative model and validating their system using context specific test data. We demonstrate
the validity of our framework by presenting a case study in architectural lighting in which a prototype
qualitative reasoning engine successfully automates qualitative logic about the subjective impressions
of a lighting installation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The disciplines of engineering and architecture (EA) involve
more than simply meeting well-defined technical specifications.
The information that EA practitioners must deal with is extremely
complicated, not only in terms of volume, but in terms of the het-
erogeneity of the information, and the range of abstraction levels
involved. The design process itself naturally involves incomplete
information and an engineer or architect may only have general
and vague guidelines from which to develop initial ideas and de-
signs. For example, as an architect is designing a building, the exact
materials may not be specified, certain dimensions may not be
available, the client may still be deciding on whether or not to have
an open-plan living space, and so on. Furthermore, the design pro-
cess involves information that is inherently uncertain and subjec-
tive, such as a client requiring the impression or atmosphere of
an environment to be dramatic and sophisticated. This information
is not only ambiguous, but relies heavily on an individual’s aes-
thetic disposition. Moreover, while official performance-based
codes now offer the architect more freedom in the design process,
verifying that goal-oriented specifications have been met is more
difficult compared to prescriptive codes [1].
ll rights reserved.
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Despite this enormous variety of information present within EA,
software tools are often very limited in the type of information that
they can process, and, crucially, do not support engineers and
architects when reasoning about vague and incomplete informa-
tion. The central issue is that software tools rely solely on numer-
ical approaches for modeling and reasoning about spatial and
temporal phenomena, and cannot directly implement and process
more qualitative information. For example, the focus of many tools
has been on providing computationally expensive simulations such
as ray tracing to render or visualise an environment or to calculate
luminance distributions across a space, e.g. [2]. Three significant
problems arise from using numerical approaches in this context.

First, numerical methods cannot effectively deal with incom-
plete information. Even if information about the uncertainty of
attribute values is available, such as range restrictions or probabil-
ity distributions, the complex interaction of many numerical for-
mulae can make the resulting value estimates unpredictably
sensitive to small changes in the initial parameters. For example,
ray tracing simulation results can be irrelevant if the architect is
uncertain about the building materials or physical dimensions of
the room; they may decide to only slightly extend the length of a
wall, causing it to occlude light from entering a large portion of
the room and thus completely change the luminance distribution.

Second, numerical methods often employ an inappropriate level
of precision. Many simulators use a high level of precision and
ign support for engineering and architecture, Adv. Eng. Informat.
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complexity, resulting in very computationally expensive processing
that may take minutes or even hours to complete, thus preventing
the architect from simply experimenting with lots of different subtle
design variations. Especially for the early stages of a design, the
architect may spend a considerable amount of time executing very
precise simulations, whereas only rough, approximate and general
information supplied by a simpler processing method is required.
Alternatively, despite the significant resources taken to execute a
simulation, the level of modelling precision can obviously never be
sufficient to guarantee complete real-world accuracy. Engineers
and architects are therefore interested in the relative differences be-
tween the performance of various design options, rather than abso-
lute simulation results. A more efficient design support approach is
required that directly reasons about relative information.

Lastly, numerical methods have even more fundamental limita-
tions in their ability to model vague and subjective information.
The problem is that many concepts within architecture that
involve vagueness and ambiguity cannot be immediately ex-
pressed in numerical units. For instance, a numerical description
of dramatic or tense impressions of a space would be meaningless
as the notion of drama cannot be captured by relationships
between numerical units.

In response to these limitations, computer scientists have
developed alternative reasoning methods used to represent and
reason about vague and incomplete information. Rather than the
numerical bottom-up approach to modelling, where fundamental
numerical units are composed to realise higher-level concepts,
these methods use models built from qualitative values that take
a top-down approach, by incrementally introducing more refined
qualitative concepts into the model until the exact distinctions
necessary to accomplish the task within the domain have been
made [3]. For example, rather than defining distance as a quantity
of unit regions such as metres, the architect considers the impact
that different distances have on the task. If the task requires a sig-
nificantly different result when two objects are considered near as
opposed to far, then the architect will incorporate exactly this dis-
tinction in the model. Moreover, qualitative methods offer a more
computationally efficient and human-intuitive approach to work-
ing with information, as they explicitly represent causality, the
nature of interaction and everyday terms that automatically cap-
ture imprecision and vagueness [4] such as very bright and fairly
dim compared to ‘‘356 lux”.

In this paper, we establish a framework that supports a soft-
ware engineer in developing qualitative design support tools for
EA applications. Such software tools can assist engineers and archi-
tects during the design process by supporting higher-level con-
cepts and reasoning about information that is not immediately
expressed in units. Our framework addresses the broader issues
of design, implementation and validation that surround the actual
development and use of qualitative EA software tools.

This paper is organised as follows. Section 2 presents an over-
view of the qualitative spatial and temporal reasoning field. Sec-
tion 3 presents our framework for developing qualitative design
support tools, covering design, implementation and validation.
Section 4 presents a prototype architectural lighting software tool
that we have developed that demonstrates the effectiveness of our
framework. Section 5 presents the conclusions of this paper.

2. Qualitative spatial and temporal reasoning

People reason very effectively with qualitative information to
accomplish a wide variety of tasks. This has led to the development
of a field in artificial intelligence called qualitative reasoning [4,5]
that provides methods for reasoning with coarse and uncertain
information about physical phenomena. The intention of qualita-
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
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tive information is to only describe the key aspects that are rele-
vant to the task at hand. This paper focuses on two important
subfields called qualitative spatial and qualitative temporal rea-
soning (QSTR), as architectural design tasks naturally involve spa-
tial and temporal considerations, such as the physical layout of an
environment, functional support and psychological effects based
on a spatial configuration, change within an environment, and
perceived flow as a person moves through a space.

Methods for qualitative temporal reasoning have been devel-
oped over the past three decades [6] that allow software applica-
tions to manage coarse-grained causality, action and change (e.g.
[7]). A notable and highly influential example is Allen’s interval cal-
culus [8], which defines a set of thirteen atomic relations between
time intervals; Fig. 1 (left) illustrates a subset of these. Allen pro-
vides an algorithm for reasoning about networks of relations. The
algorithm is based on a composition table containing the possible
temporal relations that can exist between the intervals t1 and t3
given relations for (t1, t2) and relations for (t2, t3). Two examples
follow, where is the composition operator:

t1 before t2 � t2 contains t3 = t1 before t3.
t1 overlaps t2 � t2 during t3 = t1 (overlaps, or during, or starts) t3.

Allen’s interval calculus has motivated a number of methods for
reasoning about spatial objects and relationships in the area of
qualitative spatial reasoning [10]. Guesgen [9] introduces a cogni-
tively motivated one-dimensional spatial logic directly based on
Allen’s original temporal logic. The central idea is to represent rel-
ative spatial relationships between objects rather than using abso-
lute object positions. Fig. 1 illustrates an extract of the basic atomic
relationships that are defined. Guesgen provides a composition
table and constraint satisfaction algorithm for constructing locally
consistent networks of spatial relationships. Guesgen then extends
this method to reason about higher spatial dimensions by using an
n-tuple of spatial relationships between each pair of objects, where
each component of the tuple represents a different dimension of
the modelled scene. For example, the three dimensional scene
illustrated in Fig. 2 can be described with the spatial relations
below, if each component of the tuple represents the x, y and z
axes, respectively:

O1 < inside, attached to, inside > O2.
O2 < left of, inside, overlapping > O3.

The reasoning method then infers the possible relationships that
can hold between objects O1 and O3 by applying the composition
table to the relation components.

A significant amount of research has focused on analysing the
computational properties of the algorithms used to reason about
qualitative information. It has been shown that the (complete)
deductive closure algorithms inspired by Allen’s temporal calculus
are NP complete [11] and thus in the worst case intractable. How-
ever, the exact restrictions which can be applied to Allen’s ap-
proach have been identified in order to remain in the tractable
portion of the problem domain, requiring algorithms with only
polynomial complexity [12].

Other research focuses on combining and generalising these
approaches to provide a unified and systematic qualitative treat-
ment of spatial and temporal information [13–16], although no
single QSTR method has proven to be fundamental and generally
applicable to a wide variety of tasks. The QSTR research commu-
nity has now developed an off-the-shelf software package called
the SparQ toolbox [13]. It provides a library of ready-to-use QSTR
systems allowing a software developer to easily integrate these
qualitative methods into their own software applications.
ign support for engineering and architecture, Adv. Eng. Informat.
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Fig. 1. An extract of Allen’s [8] qualitative relations between temporal intervals (left) and an extract of Guesgen’s [9] one-dimensional qualitative spatial relations between
two objects.

Fig. 2. The relative orientations of the blocks in this three-dimensional scene can be expressed in Guesgen’s spatial reasoning method by assessing each dimension
independently, and then combining the results (reproduced from [9]).
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Fig. 3. Outline of our framework for supporting the development of QSTR-based
architecture tools. Solid boxes within the dotted box represent key framework
processes, and italicised labels with arrows represent external components that
function as framework input and output.
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However, there are fundamental restrictions on QSTR applicability
when a developer is limited to using pre-made methods. Foremost
is that, in many cases, an existing QSTR method will not directly
meet the needs of a task due to two properties of qualitative
models:

(1) highly context specific: Qualitative terms are vague, and rely
on context for disambiguation and meaning e.g. near can
be a function of financial cost, time travelled or distance cov-
ered, and can vary depending on the user being a pedestrian,
a car owner or a city planner.

(2) highly task specific: Qualitative models apply the exact
degree of concept refinement necessary, where it is neces-
sary, in order to address the task. It is therefore difficult to
gauge the usefulness of a particular qualitative model com-
ponent apriori without knowing the requirements of the
task.

Thus, qualitative formalisms often need to be extended and
modified by adding and removing qualitative relations, changing
some part of an inference rule or creating entirely new custom
QSTR systems. Unfortunately, when a developer modifies one of
the established and well-understood formalisms, such as Allen’s
temporal calculus, they cannot easily identify the impact that this
change will have on the computational properties of the method
[15]. We are therefore taking a broader approach to QSTR applica-
tion by providing a framework that supports engineers in develop-
ing completely custom QSTR methods and then integrating these
methods into software tools.

3. Framework for developing qualitative engineering and
architecture tools

Our framework supports an engineer in designing, implement-
ing and validating general QSTR systems that are customised for
specific EA task requirements. Fig. 3 illustrates an overview. It must
be noted that our framework is not software based (i.e. it does not
consist of code fragments) but is instead a methodology of devel-
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
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oping QSTR systems from specific task information. In particular
it details the necessary processes involved in the development life-
cycle of a QSTR-based software tool and analyses effective prac-
tices that engineers can use in each lifecycle phase.

The design process supports engineers in formulating a custo-
mised QSTR engine according to task information and specifica-
tions. The implementation process supports the engineer in
producing software versions of their QSTR design along with prin-
ciples and strategies for modifying the design to accommodate
memory and execution time constraints. The validation process
supports the evaluation of QSTR methods in relation to the in-
tended application environment by applying context specific test
data. The framework makes no assumptions about the ordering
of the processes or the engineer’s software lifecycle model em-
ployed. Each process in the framework consists of principles that
are used to drive practical strategies for applying QSTR. The follow-
ing sections present the framework’s design principles and prac-
tices, implementation principles and a validation system.
ign support for engineering and architecture, Adv. Eng. Informat.
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3.1. Design principles

The framework provides design principles and strategies in
order to equip an engineer with the necessary information to
design a QSTR-based software application that addresses their task
requirements. The following sections describe our four fundamen-
tal principles of designing qualitative models that provide a
foundation for developing custom qualitative modelling systems.

3.1.1. Qualitative modelling
The first principle relates to modelling using qualitative infor-

mation. Qualitative approaches require the definition of ‘‘qualities”
used to describe objects and their relationships. We identify the
way in which a quality describes the world by considering the
term’s use in everyday language: a ‘‘quality” is an inherent or dis-
tinguishing property [17]. From this we determine that, first, qual-
itative models consist of objects and qualities (i.e. qualitative
relations), and secondly that the primary function of a quality is
to provide a distinction between the objects that are being
modelled.

We now consider how a quality can provide a distinction be-
tween objects. To identify the essential characteristics of qualita-
tive modelling we restrict ourselves to the simplest possible type
of distinction that a quality can provide, i.e. a single point of differ-
ence where the quality either (a) holds for an object in the model,
or (b) does not hold.

We can also introduce qualities into our model that are not
applicable for all modelled objects due to preconditions e.g. a light
source is occluded from a surface if an obstacle interferes with the
light beam; however if the light source is not directed at the sur-
face, then the quality of occluded can be neither true nor false,
but simply not applicable.

From this we derive a basic principle of qualitative modelling:

Modelling principle. ‘Qualities” are distinctions between objects
based on whether the quality holds for the object, does not hold, or
is not applicable.

This concept naturally maps to mathematical structures thus
providing a formal definition for analysis. Each quality can be for-
malised as a predicate in first-order logic (FOL), where predicate
arguments represent objects being modelled. Predicates evaluate
to true (holds), false (not holds) or null (not applicable) depend-
ing on the argument variables given. The underlying definition of
a qualitative model is classical set theory, where each quality is
represented by three mutually exclusive crisp sets representing
that a quality holds, does not hold or is not applicable respec-
tively, and all objects in a model must appear in exactly one of
these sets.

3.1.2. Qualitative reasoning
In most design situations there will be parts of the scenario that

the architect is modelling that are indefinite or unknown, i.e. some
part of the architect’s model will be incomplete. This represents
the information that the software application will calculate or
a
b

c

time

Fig. 4. a, b, and c are time intervals. (left) Schedule illustrates that a is before c, given that
set duringb, and a is in the sets beforeb and beforec (satisfying the inference rule).
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derive through reasoning in order to support the architectural task
at hand.

In general, reasoning applies domain constraints to the avail-
able information to infer plausible values for the incomplete frag-
ments of the model. In the context of qualitative modelling,
domain constraints specify relationships between qualities, so that,
given a certain combination of quality values (holding and not
holding) for an object, the constraint specifies which further
qualities must hold or must not hold for that object. Reasoning
then exploits these constraints when given premise information,
thus inferring whether or not other qualities hold.

Following is an example of a domain constraint between time
intervals a, b and c:

‘‘if a happened before b, and c happened during b,
then a must also have happened before c”

Fig. 4(left) illustrates a schedule for which this rule holds. This
qualitative inference rule can be expressed using FOL, where pred-
icates represent qualitative relations, and I is the set of time
intervals:

8x; y; z 2 I � beforeðx; yÞ ^ duringðz; yÞ ! beforeðx; zÞ:

The underlying set theoretic implementation of the inference rule is
expressed as follows, where beforey, duringy and beforez are sets of
time intervals:

8y 2 I � beforey � \z2during ybeforez:

To make the above expression evaluate to true, the set beforey must
be a subset of each beforez set, for all z in the set duringy. Fig. 4(right)
illustrates the underlying set theoretic implementation of the
qualitative schedule. The above inference rule is satisfied, as the
sets beforeb and beforec only contain a, and are thus equal (where
c is the only time interval that is in the duringb set).

Inference rules can also refer to qualities at different levels of
abstraction, for example:

‘‘if a room has warm, bright ambient illumination then it will
evoke a relaxing impression”

Again, this inference rule can be expressed using FOL, where R is a
set of room objects:

8r 2 R �warm ambient illuminationðrÞ
^ bright ambient illuminationðrÞ ! relaxingðrÞ:

The corresponding set theoretic implementation of the rule is
expressed as follows, where each term (e.g. warm_ambient_illumi-
nation) is a set of room objects:

warm ambient illumination \ bright ambient illumination

� relaxing:

Fig. 5 illustrates a set theoretic implementation of a qualitative
model of the scene where r is a room object. Note that, because
the subset constraint is applied rather than equality, the above
expression does not restrict the addition of further rules containing
a c
beforeb duringb

z  ∈ during b

beforez = beforec

⊂

a is before b, and c is during b. (right) Set theoretic implementation where c is in the

ign support for engineering and architecture, Adv. Eng. Informat.
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Fig. 5. Venn diagram illustrating the qualitative model of a scene with room object
r, implemented in set theory where bright_ambient_illumination, warm_ambi-
ent_illumination, and relaxing are sets of rooms. The inference rule stating that all
warm, bright rooms are also relaxing rooms is satisfied.
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different, even contradictory criteria for rooms to be considered
relaxing.

Reasoning principle. The basis of pure QSTR reasoning is the do-
main constraints between qualities specifying that certain qualities
must hold, and must not hold, for the same object at the same time.

3.1.3. Purely qualitative tasks
Given the above principles for qualitative modelling and rea-

soning we can determine the type of tasks QSTR methods perform.
For this we make two observations. First, applying a quality to a set
of objects forms object classes or categories based on whether the
quality holds, does not hold, or is not applicable. Secondly, apply-
ing a combination of qualities to a set of objects also forms classes.
For example a qualitative constraint provided by a client states
that ‘‘rooms near the kitchen that overlook the lake are idyllic”;
this defines the class of idyllicrooms based on the combination of
qualities near the kitchen, and overlooking the lake.

The engineer can only introduce qualities or combine qualities
in the qualitative model, thus:

Task principle. All pure QSTR tasks are a process of object
classification.

That is, QSTR methods are used to solve tasks by determining the
class of certain objects in the model. This provides the extent to
which QSTR can be used to address a problem. For example, reason-
ing to infer information about an incomplete model is the process of
specifying the classes that the indefinite objects belong to. Querying,
i.e. isolating some relevant parts of the model, requires the user to
provide a class description (in the form of qualities holding and
not holding) and returns objects that meet the given class criteria.

It must be noted that qualitative and numerical systems do not
need to be completely disconnected. Indeed a very common task in
the QSTR field is to determine consistent numerical instantiations
of a given qualitative model. Numerical interpretations of qualities
can be defined, for example, associating the numerical range ‘‘100
l� to 300 l�” to bright ambient illumination. The instantiation task
is to then find suitable numerical values for each variable that are
consistent with the qualitative model. This helps to bridge the gap
between numerical and qualitative values within a design task,
thus relieving the architect from tedious numerical interpretation
and allowing the focus to remain on the design objectives. In our
framework this can be understood more generally as finding a con-
sistent interpretation of a given qualitative model in some other
knowledge representation system (which may be, for example, a
numerical system, a fuzzy system or even another qualitative sys-
tem). A significant benefit of this hybrid design support is that the
high level logic can remain unchanged while the numerical map-
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
(2008), doi:10.1016/j.aei.2008.07.003
pings are adjusted according to user preferences or variations in
the environment. A further advantage is that the qualitative rea-
soning can be verified in terms of the numerical definitions. How-
ever, this is not a pure QSTR task as it involves other information
representation systems outside of the qualitative model, and must
be managed using different mechanisms (e.g. constraint satisfac-
tion techniques [18]; for specific examples refer to [19] Section
3.1).

3.1.4. Modelling application behaviour
The final principle places QSTR systems in the context of soft-

ware applications. In general, the architect uses models to repre-
sent salient aspects of a problem, and by reasoning about the
model the architect can acquire a useful problem solution. QSTR
performs tasks by applying qualitative models and qualitative
reasoning.

Fig. 6 illustrates a process flow diagram describing the behav-
iour of QSTR during the execution of a software application (we
have defined this formally as an automaton in [20]). The process
of reasoning may develop or refine the model e.g. by inferring
new information based on the given premises (model develop-
ment). Alternatively reasoning may provide a model querying
mechanism, where interesting parts of the model are isolated
based on query criteria (model querying).

For example, an architecture tool may allow the client to
describe certain qualitative parameters of a museum exhibition
during the early stages of design and get qualitative feedback on
the likely subjective impressions of the participants. The client de-
scribes the lighting configuration (‘‘dim lighting at the entrance”,
‘‘a bright band of light along the walkway floor with dim lighting
along the perimeter”) and the spatial configuration of exhibition
pieces (‘‘place a large sculpture in the centre of the foyer”). The
architect then installs specific qualitative domain constraints
according to scientific studies along with client preferences and
information based on museum participant surveys from previous
exhibitions. The software application processes the qualitative
ign support for engineering and architecture, Adv. Eng. Informat.
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model, applies qualitative reasoning and presents the findings, e.g.
‘‘the foyer will appear dramatic and tense”, ‘‘participants will be
drawn through the foyer into station 100’. The software application
then closes. In the process flow diagram (Fig. 6) the client and
architect initialise the qualitative model, causing the application
to transition from the startup state to model development. The
QSTR component applies the domain constraints during reasoning
to refine the qualitative model by inferring the subjective impres-
sions, repeatedly looping back to the model development state.
Once reasoning has finished the system transitions to the
shutdown state.

Application behaviour principle. Properties of the software
application’s behaviour that impact the design of the QSTR system
can be defined based on the process flow diagram in Fig. 6.

That is, by using this process flow diagram the software engi-
neer can begin to characterise their QSTR system by explicitly
incorporating task requirements into the behaviour of the software
application.

3.2. Design practice

The design practice component of our framework applies the
previous principles to motivate strategies for designing a QSTR sys-
tem based on specific EA task requirements. This section gives an
outline of how the design principles can be used to drive design.

3.2.1. QSTR applicability
First, the software engineer must decide whether QSTR is appli-

cable to the architecture problem at hand. The task principle (Sec-
tion 3.1.3) identifies the limit of a qualitative approach, i.e. if the
required task cannot be accomplished by a form of object classifi-
cation then a qualitative modelling system will not be of any assis-
tance to the architect. Thus the engineer must decide whether the
problem can be solved by classifying objects. The three most com-
mon tasks are:

� Reasoning: Inferring information about incomplete models.
� Consistency checking: Ensuring that the model is consistent with

domain constraints.
� Querying: Isolating interesting fragments of a model.

3.2.2. Characterising application behaviour
The engineer must then characterise the behaviour of their soft-

ware application by using the process flow diagram described in
Section 3.1.4, as system behaviour greatly influences the design
of the QSTR model. For example, if the QSTR system must allow
substantial querying flexibility then the engineer must include
independent qualities (i.e. qualities that are not related by con-
straints). This is because independent qualities, while being inef-
fective for reasoning about incomplete models, can be combined
in many interesting ways thus providing a richer query language.

Two further examples of task properties that can influence the
QSTR system design are as follows:

� Model lifetime state: Once initialised the model may never
change, or it may change either monotonically or non-monoton-
ically. This can affect the way the engineer designs the interac-
tion between model components e.g. they should loosely
couple dynamic and static components to avoid the application
having to update the entire model when a change occurs.

� Model stability: An unstable model changes frequently, whereas
a stable model does not. This can affect the way the engineer
organises the model components. For example, the application
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
(2008), doi:10.1016/j.aei.2008.07.003
should invest additional time and effort organising stable model
components during initialisation (e.g. sorting, clustering and so
on) to improve runtime efficiency, i.e. incur an initial overhead
cost to improve all future queries. However, unstable compo-
nents may change too frequently to justify the additionally time
used for organisation.

3.2.3. Qualitative model construction
The engineer must then decide on the objects and qualities that

will be modelled in the architecture software tool. Following from
the qualitative modelling principle (Section 3.1.1) the engineer
should only include a quality if the distinction the quality provides
is relevant for the architecture task at hand. As a guide, the engi-
neer should review the task specifications for the expected typical
use of their software tool, particularly the likely premise informa-
tion (or application input) and the desired reasoning output.

While the core of a qualitative concept is well-defined, the
boundary between neighbouring concepts may be vague or incom-
plete [21–23]. If the design task only requires coarse models to
approximate a scenario then the engineer can simply introduce
further qualitative distinctions closer to the boundary e.g. moder-
ately bright. In other cases the engineer may need to directly model
this vagueness by referring to the membership that an object has in
a quality. Membership represents the nature in which a quality
holds, and can be applied using a plethora of sophisticated tech-
niques such as fuzzy logic and rough sets. In these cases the engi-
neer must modify the reasoning operators to work with the
membership information. These extensions, however, require
more input information such as membership functions and proba-
bility distributions, and have more complex processing algorithms.

Note that the fundamental problem of constructing a QSTR
model is to define appropriate distinguishing qualities, and to con-
strain these so that reasoning accurately performs a useful qualita-
tive task. In particular, the engineer’s aim is not to model concepts
accurately in general, but to construct a model that performs a use-
ful qualitative task as described in Section 3.2.1. For example,
rather than constructing a definitive model of nearness based on
first principles, the engineer only considers qualities and con-
straints that accommodate the relevant effect of nearness. From
this viewpoint, when an engineer analyses the effectiveness of
their QSTR model in terms of how useful it is (e.g. as a guide during
design) the semantics of the model components are arbitrary and
thus irrelevant (QSTR model validation is discussed in Section
3.4). This is analogous to the semantics of messages being irrele-
vant to the problem of transmitting a message accurately in Shan-
non’s theory of communication [24]. To bridge this gap, the
engineer can map the QSTR model to a suitable ontology. Darling-
ton and Culley [25] provide a framework for supporting engineers
in developing suitable ontologies to capture concept semantics
involved in a given task. Constructing a QSTR model is one possible
implementation of such an ontology.

3.2.4. Qualitative reasoning support
Finally, the engineer must specify the domain constraints that

will be used during reasoning. Domain constraints link the input
of the model to the output, and may require further intermediate
qualities. The engineer should review suitable sources of domain
information such as scientific studies, industry consensus, expert
knowledge and client preferences (i.e. the intended users of the
application being developed).

A great advantage of qualitative reasoning is that, given only
vague or incomplete qualitative information at any of the
represented levels of abstraction, a qualitative approach will infer
as much as possible according to distinctions within the model.
In contrast, a numerical approach requires information to be
ign support for engineering and architecture, Adv. Eng. Informat.
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expressed as unit values, and processing capability is limited if the
quantities are not available.

3.3. Implementation

Once the engineer has produced a suitable QSTR system design,
they must then implement the application in software. The soft-
ware must represent objects, qualities and scenarios, where a sce-
nario requires representing that each quality either holds, does not
hold, is not applicable, or is indefinite for each object (refer to the
modelling principle in Section3.1.1). The engineer may also need to
implement a reasoning algorithm that can process an incomplete
scenario or provide a querying mechanism. This section describes
issues relating to the software implementation of qualitative
design support tools.

3.3.1. Platforms
Different implementation platforms provide a tradeoff be-

tween ease of implementation and control. For example, the
FOL specification of qualities and reasoning constraints (as de-
scribed in the Section 3.1.1) can be implemented using general
purpose declarative languages such as Prolog [26]. These lan-
guages provide an inbuilt query engine that the engineer can
use for their application’s qualitative reasoning. Alternatively,
the underlying set theoretical basis for qualitative systems
(described in Section 3.1.1) leads to a natural implementation
in languages that also have a set theoretic definition such as
relational databases [27]. The engineer can use these languages
by implementing qualities as relations (or tables) and quality
values for objects as relation tuples (or table entries). This
requires expertise in areas such as database query optimisation
and data storage.

3.3.2. Resource constraints
The qualitative model may need to be modified to accommo-

date resource constraints, such as limitations on the available
memory for data storage or the requirement that reasoning exe-
cutes within a specified amount of time. To accomplish this, the
engineer must reduce the amount of information used by the qual-
itative model when describing a scene. Note that a single datum of
information in a qualitative model expresses the state of a single
quality for a single object, e.g. expressing that ‘‘the kitchen is near
the bathroom” in software requires one datum.

The key to reducing the amount of data used in the model is to
implicitly maintain certain quality states in cases when they can be
inferred by other explicitly represented quality states, i.e. the engi-
neer must avoid expressing redundant information in the model by
forming and relating clusters. For example, the quality directed at
specifies whether a light source is pointing towards a surface and
occluded specifies whether a light beam is blocked from a surface.
The engineer can use these qualities in combination for determin-
ing how bright a surface will appear. However, if the light source
and the surface are in different rooms then, in the vast majority
of scenarios, the value of occluded will not be applicable and direc-
ted at will be irrelevant and never used for reasoning. Thus, with-
out interfering with the QSTR logic that performs the architect’s
task, the engineer can introduce the quality in same room; if a light
source and a surface are not together in a room then the value of
occluded and directed at will not be explicitly represented in the
model. This vastly reduces the amount of data needed to model
the scenario, potentially by orders of magnitude.

In general, clustering introduces layers of intermediate qualita-
tive information by grouping objects that share the value of qual-
ities. The result is that quality values for each object in the
cluster do not need to be explicitly enumerated. In terms of imple-
mentation, this clustering approach is a form of query pre-process-
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
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ing, where the common aspects of query results are stored and
retrieved rather than recomputed.

Note that, from a design perspective, clustering is identical to
classing objects using qualities. The difference is that the engi-
neer’s motivation for introducing a quality in the initial model
design is to satisfy the functional requirements of the task (e.g.
modelling the appropriate input and output information described
in Section 3.2.3) whereas their motivation for clustering is to
satisfy resource constraints.

3.3.3. Implementing pure qualitative reasoning
As discussed previously, the engineer may decide to implement

their own customised reasoning engine rather than using inbuilt
querying mechanisms in languages such as Prolog. We now outline
a deeper principle about pure qualitative reasoning to provide a
method for implementation.

All pure QSTR tasks are a sequence of queries and model up-
dates. In particular, qualitative inference (i.e. used for incomplete
models) is an extension of a querying task, where the query result
is fed back into the model. For example, four database operations
are required to satisfy the following rule about temporal intervals
(refer to Section 3.1.2):

beforey � \z2during y beforez
1. Query: Gather all elements in beforey.
2. Query: Gather all elements in during .
y

3. Query: Gather all before sets associated with each element from
result (2).

4. Update: Add elements from (1) to each set from (3).

This is significant because, first, all pure QSTR tasks can be imple-
mented as a sequence of queries and updates, and secondly, that
query optimisation can greatly influence performance as querying
underlies every pure QSTR task performed by a qualitative design
support tool.

The aim of query optimisation, given a set of rules, is to deter-
mine the optimal rule execution sequence that minimises the
number of executed rules in the worst case. Because the execution
of a rule can modify the database, previously executed rules may
need to be recomputed, i.e. reasoning is often non-linear. For fur-
ther information the engineer can refer to the related problem of
variable and value ordering in constraint satisfaction [28] (chapter
5). The next step is to perform a finer level of optimisation by inter-
leaving inference rule execution to minimise the number of actual
database queries required. For this, the engineer can refer to re-
search in database optimisation [27].

The main issues the engineer must consider when implement-
ing their reasoning engine are verifying that the rule base is consis-
tent, or that any inconsistencies are appropriately managed
(otherwise reasoning may never terminate), ensuring that
interleaving the rules will not interfere with the intended logic,
and finally, determining whether reasoning using the given rule
base will be suitable in terms of computational complexity and
at least identifying cases where the task is intractable.

3.4. Validation

The engineer will need confirm that their qualitative model
design meets the needs of the EA task at hand. In this section we
outline our framework’s validation system.

The aim of program validation in general software engineering
is to determine if the developed system is fit for purpose [29],
explicitly evaluating the program in terms of its application
context. QSTR model validation aims to provide a level of
confidence that the system logic, specifically the qualities and
ign support for engineering and architecture, Adv. Eng. Informat.
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constraints, provides the intended function, e.g. by ensuring that
the important highly used or critical components have been ade-
quately tested. Note that theorem proving for validation is not
practical in general because, firstly, it requires axioms for the logic
which in many cases will not be available and secondly, even ex-
pert logicians in the QSTR research field find the task non-trivial
(e.g. refer to page 292 and Section 6.2 of [30]).

Fig. 7 illustrates the framework’s validation system. The qualita-
tive model and the test set are passed to the black-box and white-
box testing methods which are described in the following sections.
If the black-box pass rate or the white-box information content
results do not meet target thresholds, then appropriate changes
to the qualitative model must be made. If the white-box coverage
results are not sufficient then the test set must be appropriately
modified. The engineer’s model is validated for the test set if all
three results are satisfactory.

Test cases can be generated from the task specification for tool
inputs and outputs, analysis of the qualitative model structure,
field study data, and other qualitative research in the intended
application domain (e.g. [31]).

3.4.1. Assessing model pass rate
The black-box approach to validation focuses on system inputs

and outputs without considering its internal structure [29]. The
engineer can use black-box testing to determine if the qualitative
model is providing the intended function, and to assist in identi-
fying any defective or missing functionality. This is accomplished
by feeding the test case’s premise information into a new sce-
nario, executing the reasoning algorithm and comparing the
resulting scenario to the test case’s expected output. The qualita-
tive model passes a test case if, after applying the reasoning algo-
rithm, the final scenario meets the expected quality states. After
executing a set of test cases, a report is compiled indicating which
tests passed and which tests failed. As shown in Fig. 7, if the
black-box pass rate is below a target threshold then the engineer
must modify the qualitative model until the pass rate is
acceptable.

The engineer can apply clustering methods [32] for identifying
patterns in the group of failed tests to isolate faulty model compo-
nents. Classes of failed tests are identified by clustering the tests
according to either the similarity of failed test case inputs, similar-
ity of test case expected outputs, or the similarity of the discrep-
ancy between the qualitative model’s actual output and expected
black-box
testing

white-box
testing

in

modify tests

p

modify model

modify model

qualitative
model

test set 

Fig. 7. Validation system assessing the logic of the qualitative model according to context
system input and output, arrows represent information flow and diamonds represent d
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output. Dense clusters indicate a specific faulty component in the
model. Sparse clusters may result from ambient test noise.

3.4.2. Assessing test set quality
In standard software engineering, test coverage is a measure of

the proportion of components exercised during testing [29]. The
engineer can use coverage analysis to evaluate the suitability of
the test set by determining how much of the qualitative model is
actually assessed, and to guide test generation by identifying com-
ponents that have not been adequately exercised. We have devel-
oped test coverage methods that are motivated by standard
software engineering approaches used in program control flow
graphs [29]. This is a white-box testing approach because the
engineer takes the internal structure of the qualitative model into
account during validation.

To determine test coverage the engineer must use a structure
called the qualitative constraint graph (QCG) where vertices repre-
sent domain constraints and undirected edges represent a shared
quality type between two constraints. The edges in the QCG
indicate constraint dependencies; if the constraint c1 modifies a
quality that appears in constraint c2 then c2 must be revisited.

For example, a selection of qualitative constraints for the subjec-
tive impressions from lighting in a room (based on [31]; Section 4 of
this paper discusses Flynn’s research in more detail) are as follows:

(1) If the room has cool light, bright even work-surface illumi-
nation and some perimeter emphasis then the room evokes
clarity.

(2) If the room has uniform perimeter emphasis and bright even
work-surface illumination then the room is spacious.

(3) If the room has bright, warm ambient illumination, and non-
uniform perimeter emphasis then the room is relaxing.

(4) if the room has low ambient lighting in the occupancy area
and a bright perimeter then the room is intimate.

The QCG for these constraints is illustrated in Fig. 8.
A vertex is executed in a qualitative scenario if the reasoning

algorithm has modified the scenario in order to satisfy the ver-
tex’s constraint. An edge between vertices v1 and v2 with quality
type q is executed if v1 is executed with the modification of a
quality of type q, causing v2 to execute (at some future time).
Using these definitions we now adapt standard coverage mea-
sures for the QCG:
target

target

target

fo. content

coverage

ass rate
done

done

done

No

Yes

No

No

Yes

Yes

specific test data. Solid boxes represent system components, dotted boxes represent
ecisions.
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Fig. 8. Qualitative constraint graph (QCG) of a selection of domain constraints for
architectural lighting [31], where vertices represent constraints and edges repre-
sent related qualities.
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� Vertex coverage is the percentage of vertices executed in at least
one test.

� Edge coverage is the percentage of edges executed in at least one
test.

� k-Path coverage is the percentage of paths of length k executed
in at least one test (for k > 2).

For example 100% vertex coverage means that reasoning used
every domain constraint at least once to modify a scenario in some
test.

3.4.3. Model fine-tuning
While coverage can be used to determine whether the test set is

sufficient, alternatively the engineer may have a test set that statis-
tically reflects the pattern of usage and criticality in the intended
environment, i.e. the software application’s operational profile. In
this case, the engineer can use white-box testing to refine the qual-
itative model by removing redundant components. For example, in
the test set for a town planning software tool the landfill is never
near the central city region. Thus, reasoning about this quality is
redundant and the engineer can remove it from the qualitative
model.

Reasoning provides the end-user with data at every inferential
step and, according to information theory [24], the amount of
information gain is inversely proportional to prior knowledge
about the inferred data. If the engineer is very confident about
what data will be provided before the inference step has been
taken (because the same result appeared in all test cases), then
the inference step provides little or no information. Thus, the engi-
neer can improve reasoning efficiency if they make this data an
assumption (e.g. by setting it as a default rather than making the
reasoning engine infer it) or remove the entire quality from the
model.

Information content for a quality, based on entropy, can be cal-
culated as follows. Given a quality q, for any object q either holds
ðvþq Þ does not hold ðv�q Þ, is not applicable ðv�q Þ, or remains unknown
ðv?

qÞ. Given n preconditions vq1. . .qn the probability of the event va
q in

test t is

Ptðva
q ; vq1; . . . ; vqnÞ ¼

jtðqaÞ \ tðq1Þ \ . . . \ tðqnÞj
jtðq1Þ \ . . . \ tðqnÞj;

where a is one of {+, -,�,?}, the cardinality operator jYj returns the
number of elements in set Y, \ is the standard set intersection oper-
Table 1
The lighting conditions (rows) required to elicit the desired subjective impression (colum

Clarity Spaciousness

Ambient illumination
Room colour temperature (cool)
Perimeter emphasis (some) (uniform)
Work surface illumination (bright, uniform) (bright, uniform, centra

a Based on research by Flynn [31], and adapted from [41] (pp. 61–72), and [42] (pp. 1
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ator and the function t(qn) returns the quality qn in the test case t.
Following from equations in [24] the information content Iq of
knowing the object’s state for quality q is

Iqðvþq ; v�q ; v�q ; v?
qÞ ¼ �

X

a2fþ;�;�;?g
PðvaÞlog2PðvaÞ;

and is generalised by accepting the preconditions vq1. . .qn and using
the probability function Pt above. As shown in Fig. 7, if the informa-
tion content of a relation is below a target threshold then the engi-
neer must modify the qualitative model by either fixing the relation
state as a modelling assumption, or removing it from the model.

4. Architectural lighting case study

We have developed a qualitative design support tool for archi-
tectural lighting that validates the principles described in Section
3.1 by demonstrating that qualitative logic taken from scientific lit-
erature can be accurately automated in a software system. This
prototype software tool assists an architect during the early stages
of a project by analysing an electrical lighting installation and pro-
viding fast qualitative feedback on the subjective impressions that
will be evoked. The tool accepts qualitative input describing build-
ing components and the lighting configuration, but can also accept
numerical input (e.g. dimensions from a preliminary CAD design).

Lighting has both a functional component concerned with the
ease and accuracy of visual perception and a subjective component
[33]. In the lighting research community it is generally recognised
[34–38] that important factors in lighting an environment include
luminance, luminance distribution, uniformity and spectral power
distribution, however a definition of lighting quality is still being de-
bated [38]. It is now also clear that the lighting designer can achieve
a broad range of subjective impressions, such as relaxation, excite-
ment, intimacy, and spaciousness by varying aspects of the lighting
installation while remaining within the practical health and safety
guidelines established according to the task requirements [39].

Flynn has performed studies on the relationships between lumi-
nances, luminous patterns and subjective response [31,40]. Flynn
aimed to establish basic guidelines on how to influence a range
of non-visual effects with a lighting scheme, and identified the
following five key impressions

(i) Visual clarity (clear to hazy): A person’s subjective impression
of how clearly or distinctly interior details, objects, and other
peoples’ features appear.

(ii) Spaciousness (spacious to cramped): Apparent volume of a
space.

(iii) Pleasantness (like to dislike): Subjective evaluation of the
lighting environment.

(iv) Relaxation (relaxed to tense): Apparent work intensity.
(v) Intimacy (private to public): Feeling of privacy in a space.

The above subjective responses are elicited by a number of
intermediate qualitative lighting conditions as shown in Table 1.
For example, to create a sense of relaxation the lighting designer
could selectively place indirect luminaires around the periphery
(e.g. wall sconces or accent lighting on wall art decorations) com-
ns)a

Relaxation Intimacy Pleasantness

(bright) (low in occupancy area)
(warm) (warm)
(nonuniform) (high brightness)

l)

18–119).
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Fig. 9. Approximating the beam of a directed light source as a line shape, to
qualitatively determine whether the source is directed at or away from a surface. If
the line intersects the surface (left) the directed value is at, otherwise (right) the
directed value is away regardless of beam width.
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plemented with direct low intensity incandescent lamps placed
over the area of occupancy [41].

Cuttle [39] proposes six central factors that influence a person’s
subjective impression of a lighting environment with the aim of
supporting architectural design objectives in the creation of a
lighting scheme:

(i) Ambient illumination in a space (bright to dim).
(ii) Illumination hierarchy (emphatic to none) that structures a

space with varying degrees of emphasis, taking into account
the subjective illuminance differences.

(iii) Flow of light through a space (dramatic to very weak) which
strongly impacts on the object modelling quality.

(iv) Sharpness of light affecting surface highlights and
shadowing.

(v) Visible presence of luminous elements, involving glare or
sparkle.

(vi) Provision for visual performance, defined as the adequate
discrimination of colour and detail.

We primarily base our work on research from Cuttle and Flynn.

4.1. Qualitative model design

This section formalises the qualitative rationale proposed by
Cuttle [39] and Flynn [31] in a suitable manner for software auto-
mation. The task is to provide an analysis of the subjective reaction
that a person will have to a given lighting installation. The inter-
pretation of qualitative lighting concepts such as ‘‘bright uniform
light across centrally located work surfaces, with some perimeter
emphasis” requires the explanation of each qualitative component.

Table 2 presents a summary of the different qualitative mea-
sures. We selected and derived measures 1, 2, 3, 4, 5 and 11 based
on the task specifications, and applied measures 6, 7, 8, 9 and 10
based on relevant architectural lighting research. Each measure is
a quality representing either an object property or a relationship
between a pair of objects.

Standard spatial relations for orientation, distance and topology
are used to infer the state of more abstract relations such as uni-
form perimeter emphasis (Table 1). The key to defining these qual-
itative spatial relations is domain knowledge (as argued in Section
3.2.3); at an early stage of design, the basic initial decision to apply
accent lighting to a particular art piece is far more important than
details such as precisely orienting a light source to minimise spill-
age. The type of light that the architect has chosen (e.g. spot light
versus diffuse light) is a qualitatively significant indicator of the
architect’s intended use of the light. Thus, the type of light provides
a basis for approximating the light beam: the beam shape of a
directed light source (such as a spot light or a small aimable light)
is represented as a line, so that the source is only directed at sur-
faces to which it is purposefully aimed, regardless of beam width.
Table 2
Summary of the intermediate qualitative measures used by Cuttle [39] and Flynn [31] to

Measure Type Applicability

1. Source direction Relation Between source an
2. Beam intersection geometry Relation Between source an
3. Source coverage Relation Between source an
4. Occlusion Relation Between source an
5. Layout Property Of sources and su
6. Perceived illuminance difference Relation Between two illum
7. Colour temperature Property Of sources and roo
8. Approx. surface illuminance Property Of a surface
9. Illuminance pattern Property Of surfaces and ro
10. Ambient illumination Property Of a room
11. Perimeter emphasis Property Of a room
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Alternatively, if a light source is diffuse then it is directed at every
surface in the room (see Fig. 9).

We now describe the modelled qualities in more detail. Source
direction indicates whether a light source is directed towards or
away from a surface according to the geometry and other basic
properties of the scenario. Beam intersection shape approximates
the shape of the projected beam on a surface ignoring any occlu-
sion that may occur. Source coverage indicates whether the
projected beam area is significantly smaller than the area of the
surface according to the qualitative source direction and beam
intersection shape. Occlusion indicates whether a beam of light is
obstructed from striking a surface, where the value possibly
occluded means that more information is required and not applica-
ble means that the source is not directed towards the surface.
Layout indicates the region of the room in which an object is
located by making a qualitative distinction between centrally
located and perimeter objects based on a volume partition.

We now present qualities and domain constraints introduced
into our model based on specific, pertinent research. We have also
applied numerical mappings available in the literature. It must be
noted that the system does not require numerical input and
primarily accepts qualitative input directly. However, this task
specification also requires that the architect can supply a
combination of qualitative and detailed numerical input describing
a lighting configuration (e.g. generated using computer aided
design software).

Cuttle [39] defines mean room surface exitance Mrs as an
approximation of the average eye illuminance in a room by assum-
ing that the lumens are uniformly distributed. In cases where room
illuminance irregularity is an issue, Cuttle divides the room into
sections and applies Mrs to each individual volume, while also sug-
gesting a qualitative approach for scenarios where this is obviously
a concern [39]. Mrs is calculated using the first-bounce lumens,
called the first reflected flux (FRF), and the capacity of the surfaces
in a room to absorb light, called the room absorption Aa,

Mrs ¼ FRF=Aa:
infer higher level subjective impressions

Values

d surface at, away
d surface a 3D shape
d surface none, partial, full
d surface none, partial, full, n/a

rfaces central, perimeter
inances none, noticeable,distinct,strong,emphatic
ms cool, intermediate, warm

a positive real
oms uniform, non-uniform

none, very dim, dim, acceptably bright, bright, distinctly bright
none, some, lots
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Table 4
Correlated colour temperatures required to achieve the qualitative, thermally
described impression [39]

Colour appearance CCT

Cool (bluish white) P5000 K
Intermediate (white) <5000 K; P3300 K
Warm (yellowish white) <3300 K

Table 5
Threshold eye illuminance values for qualitative ambient illumination appearance
[39]

Ambient illumination Eye illuminance

Lowest level for reasonable colour discrimination 10 l�
Dim appearance 30 l�
Lowest level for ‘acceptably bright’ appearance 100 l�
Bright appearance 300 l�
Distinctly bright appearance 1000 l�

static structure  
 surfaces 
 light sources 

reasoning 
engine 

data base 
 relations 
 properties 

building model  

qualitative 
information  

report  
 subjective impressions 
 rationale 

building spec.  
 e.g IFC 

Fig. 10. Diagram indicating the flow of information (arrows) between the compo-
nents (solid and dotted boxes) required to apply qualitative spatial reasoning to
architectural lighting.
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For a room with n surfaces, FRF and room absorption are calculated
[39] using

FRF ¼
X

s¼1 to n

EsðdÞAsqs;

Aa ¼
X

s¼1 to n

Asð1� qsÞ;

where Es(d) is the direct surface illuminance, As is the area of s and qs

is the surface reflectance factor which takes a value between 0 and
1. The indirect illuminance of surface s is approximate using [39]

Es ¼ EsðdÞ þMrs:

Perceived illuminance difference indicates significant subjective
variations in illuminance across a space. Cuttle [39] informally sug-
gests illuminance ratios required to achieve qualitatively signifi-
cant categories of perceived illuminance difference based on
exercises conducted with students as shown in Table 3. The values
are based on statistical observations and therefore represent aver-
age values rather than a precise numerical mapping to qualitative
values.

Colour temperature indicates the apparent subjective tempera-
ture evoked by the colour of a room’s ambient light. Many litera-
ture sources [34,37,39,43] agree on the qualitative impression of
the correlated colour temperature values given in Table 4.

Illuminance pattern distinguishes between uniform and non-
uniform illuminance across a surface and a room e.g. a bright local-
ised region on a surface can cause non-uniform illuminance. An
engineer can approximate uniformity by comparing the ratio be-
tween the minimum and average illuminances to a uniformity
threshold. For example CIBSE Code (L05 (3). Lighting Legislation
II) [35] gives a uniformity threshold of 1:1.25.

Ambient illumination indicates the perceived brightness of a
space based on research in [44] that identifies threshold illumi-
nance values correlating with the subjective assessment that peo-
ple gave for the appearance of a room [39] as shown in Table 5.

Perimeter emphasis indicates whether the perimeter has en-
hanced lighting that provides visual clarity or draws attention to
the edges of a room, such as wall wash lighting, accent lighting
on art decorations, ornate wall mounted sconces, or well lit side
tables.

4.2. Framework for applying qualitative spatial reasoning

Fig. 10 illustrates the flow of information in the developed qual-
itative design support tool. The architect firstly specifies a qualita-
tive description of a building and lighting configuration (our
prototype tool accepts a formatted script in Java code, however a
practical application would use a graphical user interface). Addi-
tionally, the software tool can take numerical values directly from
a building specification file in a format such as the Industry Foun-
dation Classes (IFC) [45] model specification and derive salient
qualitative characteristics using the methods described previously.
It then stores the building and lighting installation model inter-
nally as surfaces and light sources with various qualitative (and
some possibly numerical) properties such as dimensions, position
and reflectance for surfaces, and beam intensity and beam angle
Table 3
Illuminance ratios required to achieve the qualitative perceived difference, informally
presented in [39] and based on exercises conducted with students

Perceived difference Illuminance ratio

Noticeable 1.5:1
Distinct 3:1
Strong 10:1
Emphatic 40:1
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for sources. The qualitative reasoning engine then applies the
domain constraints described previously to derive as many
qualitative relations and properties as possible, using the low level
qualitative measures to determine the high level subjective
impressions of the lighting scheme such as clarity or intimacy. It
then produces a summary report of the analysis, specifying the
inferred subjective responses along with the rationale behind the
reasoning process.

4.3. Experiments and results

The aim of the software tool is to accurately implement the
qualitative logic prescribed by Flynn. Thus, we use the results of
experiments conducted by Flynn [31,40] to validate the reasoning
engine’s applicability to lighting design. Note that we are not
addressing the question of whether the logic actually captures
the concepts of subjective impressions, as this can only be
addressed by field psychologists, domain experts, researchers and
so on. Instead, our thesis is that, given qualitative logic, an engineer
can implement it accurately in a software system.

Flynn presents six different lighting conditions for a meeting
room and a summary of the qualitative impressions reported by
participants of the study. The study uses four different light
sources in various combinations, which are overhead direct
ign support for engineering and architecture, Adv. Eng. Informat.



Table 6
Six lighting conditions used in experiments by Flynn [31], the qualitative assessments that people gave during the study, and the qualitative assessment given by the prototype
qualitative spatial reasoning (QSR) engine

Cond o/h direct o/h indirect p. indirect (fluor.) p. indirect (incand.) Study results QSR engine analysis

1 (low) Generally hazy, quiet; Strong confinement hazy, cramped
2 (low) (low) Neutral clarity; Spacious clear, spacious
3 (low) Strongly hazy, quiet; Neutral spaciousness; Tense hazy, cramped tense
4 (low) (low) Neutral clarity; Mostly neutral spaciousness; Relaxed hazy, cramped, relaxed
5 (high) Strong clarity; Somewhat spacious clear, spacious
6 (mod) (mod) (mod) (mod) Strong clarity; Strong spaciousness clear, spacious
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(incandescent), overhead indirect (fluorescent), and peripheral
indirect (fluorescent on one wall and incandescent on another).
Table 6 presents these conditions along with the derived subjective
impressions from our qualitative reasoning engine. This is a black-
box approach to validation as described in Section 3.4.1.

The reasoning engine correctly determines subjective impres-
sions when strong responses are reported, that is (i) the clarity rat-
ing for conditions three, five, and six, (ii) the spaciousness rating
for conditions one, two, and six, and (iii) the relaxation rating for
conditions three and four. When the response is only moderate
the engine still determines the correct qualitative value (e.g. clarity
in condition one is generally hazy, which is qualitatively classed as
simply hazy). When the response is neutral the engine does not re-
spond in a consistent manner between different impressions (e.g.
in condition two the neutral clarity rating is assessed as clear,
whereas in condition three the neutral spaciousness rating is as-
sessed as cramped). The engine requires a further neutral qualita-
tive value to capture this intermediate case or a fuzzy logic
approach where membership functions are provided to determine
the degree to which a scene is considered clear or hazy. It must be
noted that the results are completely deterministic, that is, identi-
cal scenarios will always result in an identical qualitative assess-
ment by the qualitative spatial reasoning engine.

These preliminary prototype results are very promising as they
demonstrate that the qualitative logic by Flynn can be automated
in software and that qualitative design support is applicable to
architectural tasks.
5. Conclusions

We have established a framework for developing qualitative
design support tools for engineering and architecture (EA) applica-
tions. Unlike standard numerical systems, qualitative models
maintain and reason about both incomplete and vague information
very efficiently and thus can be used to drive powerful design
tools. Our framework supports a software engineer in the custom
design, implementation and validation of a qualitative spatial
and temporal reasoning system by explicitly incorporating context
specific task requirements. The framework provides design princi-
ples and strategies for qualitative modelling and reasoning, per-
forming purely qualitative tasks and characterising the engineer’s
QSTR system by incorporating task requirements according to
our process flow diagram. The framework provides support for
implementing the qualitative system design in software with
methods for modifying the qualitative model to accommodate task
specific resource constraints and selecting the implementation
platform. The framework also provides support for validating the
engineer’s qualitative model according to context specific test data
with methods for assessing the model’s black-box testing pass rate,
assessing the test set’s quality based on test coverage metrics and
fine-tuning the model by measuring the information content of the
model components. We have validated the framework’s processes
and principles by developing a qualitative design support tool for
architectural lighting that demonstrates how an engineer can
Please cite this article in press as: C.P.L. Schultz et al., Qualitative des
(2008), doi:10.1016/j.aei.2008.07.003
develop a software system that accurately automates scientifically
based qualitative logic.
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