
Development Framework for

Qualitative Spatial and Temporal Reasoning Systems

Carl Schultz, Robert Amor
Department of Computer Science, The University of Auckland

Private Bag 92019, Auckland, New Zealand

 csch050@ec.auckland.ac.nz, trebor@cs.auckland.ac.nz

Hans Guesgen
Institute of Information Sciences and Technology, Massey University

Private Bag 11222, Palmerston North, New Zealand

h.w.guesgen@massey.ac.nz

Abstract

A significant number of qualitative methods for
representing and reasoning about spatial and temporal
information have now been developed that address
limitations of purely numerical approaches. Despite this,
qualitative spatial and temporal reasoning (QSTR) is yet to
be fully utilised by researchers and software developers
outside the QSTR community. In our view, the problem is
that in many cases none of the existing pre-made QSTR
methods directly meet the needs of a task and instead
require modifications. In other cases a completely new and
unique QSTR approach may be required. To address this
we are developing a framework that supports the application
of QSTR by providing a methodology of developing custom
QSTR systems from specific task information. In this paper
we give an overview of our framework. As an example we
also present the design component, one of the key
framework processes, in more detail.

Introduction

Purely numerical methods for modelling and reasoning
about spatial and temporal information have limitations.
Firstly, if critical pieces of numerical information about a
model (or scenario) are not available then either the
equations simply can not be evaluated and reasoning
algorithms break down, or the results are meaningless.
Secondly, because numerical models lack explicit
causality, the output of large and complex models can be
unpredictably sensitive to the initial conditions, i.e. a small
change in the input can result in an unexpectedly large
change in the output due to many complex, obscured
interactions. Finally, numerical methods have inherent
restrictions on the type of information that can be
expressed, as they fundamentally rely on the definition of a

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

homogenous unit to represent a concept, which is often
unavailable or impossible.
 Qualitative spatial and temporal reasoning (QSTR)
methods address these issues. Firstly, a QSTR method will
always apply any available premise information rather than
halting on a particular missing piece of information, i.e.
reasoning gracefully fails rather than completely breaking
down. Secondly, by the design of QSTR systems causality
is made explicit. Moreover, only necessary distinctions are
modelled so that any change in the initial conditions of a
scenario is necessarily significant, thus avoiding the issue
of unpredictable sensitivity. Finally, QSTR modelling
does not require fundamental homogeneous units to
describe concepts. Instead, it is a top-down process where
concepts are incrementally refined by the inclusion of
increasingly finer qualitative relations.
 An array of QSTR techniques have now been developed
that focus on fundamental aspects of our daily experience
of space and time (Cohn and Hazarika 2001). Despite this
extensive body of QSTR research few software
applications exist that make significant use of QSTR
approaches (excluding prototype systems developed by the
QSTR community). QSTR researchers have been
addressing this by unifying the numerous QSTR methods
(Ligozat and Renz 2004) and developing QSTR software
libraries and toolboxes such as SparQ (Wallgrün et
al. 2007) that provide implementations of existing QSTR
methods in a standard framework with a uniform interface.
 However, there are fundamental restrictions on QSTR
applicability when a developer is limited to using pre-made
methods. Foremost is that, in many cases, an existing
QSTR formalism will not directly meet the needs of a task.
This is because, firstly, qualitative terms are vague, and
rely on context for disambiguation and meaning, e.g.
“near” can be a function of financial cost, time traveled, or
distance covered, and can vary depending on the user being
a pedestrian, a car owner, or a city planner. Secondly, the
qualitative concepts being modelled must be relevant for
the task; it is therefore difficult to gauge the usefulness of a

particular qualitative relation within a QSTR method
a-priori without knowing the requirements of the task.
Thus, qualitative formalisms often need to be extended and
modified by adding and removing qualitative relations,
changing some part of an inference rule, or creating
entirely new custom QSTR systems.
 We are developing a broader framework for supporting
the design and application of QSTR methods based on
specific task requirements. The framework is application
oriented and considers the theory and practice of applying
QSTR in the context of problem solving and software
development. It must be noted that the framework is not
software based (i.e. it does not consist of code fragments)
but is instead a methodology of developing QSTR systems
from specific task information. In particular it expounds
necessary processes involved in the development lifecycle
and analyses effective practices that developers can use in
each lifecycle phase.
 The remainder of this paper is as follows. In the
following section we present an overview of our
framework. We then present the theoretical and practical
components of the design process in the framework as an
example. We then present our future work and the
conclusions of this paper.

Framework Overview

The framework that we are developing supports the design,
implementation and validation of general QSTR systems
that are customised for specific task requirements. Fig 1
illustrates an overview of our framework.
 The design process supports the developer in
formulating a customised QSTR engine according to task
information and specifications. The implementation
process supports the developer in producing software
versions of their QSTR design along with principles and
strategies for modifying the design to accommodate
memory and execution time constraints. The validation
process supports the developer in evaluating QSTR
methods with respect to the intended application
environment by incorporating context specific test data. It
must be noted that the framework makes no assumptions
about the ordering of the processes or the software
lifecycle model employed.
 Each process in the framework consists of a theoretical
element used to derive principles, and a practical element
used to derive strategies for applying QSTR. In the
following sections we will focus on the design process of
the framework covering both the theoretical and practical
elements.

Fig 1. Overview of our framework for supporting the

development of QSTR systems. Solid boxes within the dotted

box represent key framework processes, and italicised labels with

arrows represent external components that function as framework

input and output.

QSTR Design Theory

The purpose of detailing the design process in our
framework is to equip a developer with the necessary
theoretical foundation and practical strategies to design a
QSTR based software application that addresses their task
requirements. The developer must understand

• the process phases that an actual QSTR system follows
when being used to address a problem,

• what a QSTR model is and what it consists of,

• what QSTR reasoning is and what it consists of and

• the type of tasks that can be performed by QSTR
according to the modelling and reasoning theory.

The following sections present our design theory for each
of these four aspects of applied QSTR.

Problem Solving Process

In general, models are used to represent salient aspects of a
problem, and by reasoning about the model we intend to
acquire a useful problem solution. QSTR is the problem
solving approach that uses qualitative models and
qualitative reasoning.
 We define an automaton to describe the QSTR problem
solving process as illustrated in Fig 2. The process of
reasoning may develop or refine the model e.g. by
inferring new information based on the given premises
(model development). Alternatively reasoning may
provide a model querying mechanism, where interesting
parts of the model are isolated based on query criteria

design

implement

validate

task spec.

resource
constraints

test data

QSTR engine

(model querying). A formal definition of this automaton is
provided in (Schultz, Amor and Guesgen 2007).

Fig 2. Nondeterministic finite state automaton used to describe

the problem solving process. Circles represent states, arrows

represent possible state transitions, and the arrow annotations

describe the effect of the transition on the QSTR system.

Using this automaton the software developer can begin to
characterise their QSTR system by explicitly incorporating
task requirements into the problem solving process.
Strategies for using this automaton are part of design
practice section of our overall framework. Examples of
task properties that can influence the QSTR system design
are as follows:

• model lifetime state: once initialised the model may
never change, or it may change either monotonically or
non-monotonically

• model stability: an unstable model changes frequently,
whereas a stable model does not

• model dependency: a problem may only have initial
dependency where all the information required for
reasoning is initially available; other problems may have
ongoing model dependency where some required
information is not initially available

Qualitative Modelling

In order to determine what a qualitative model is, we
consider a standard definition of the term “quality” as used
in everyday language: a quality is an inherent or
distinguishing property (Soanes and Stevenson 2006).
From this we determine two things: firstly, qualitative

models consist of objects and qualities (i.e. qualitative
relations), and secondly that the primary function of a
quality is to provide a distinction between the objects in
our model.
 We now consider how a quality can provide a distinction
between objects. To identify the essential characteristics
of qualitative modelling we restrict ourselves to the
simplest possible type of distinction that a quality can
provide, i.e. a single point of difference: either the quality
holds for an object in the model, or it does not hold. From
this we derive a basic principle of qualitative modelling:

modelling principle. “qualities” are distinctions between
objects based on whether the quality holds for the object,
or it does not hold.

Qualitative Reasoning

In most cases some part of the model we are using is
incomplete. This represents the information that must be
calculated or derived through reasoning in order to solve
the problem at hand.
 In general, reasoning applies domain constraints to the
available information to infer plausible values for the
incomplete fragments of the model. In our interpretation
of a qualitative model, domain constraints specify
relationships between qualities; given a certain
combination of quality values (holding and not holding) for
an object, the constraint specifies which further qualities
must hold or must not hold for that object. For example
the qualitative constraint “if a room appears warm and
bright, then it evokes a relaxing impression” states that if a
room object is “warm” and “bright” then it must also be
“relaxing”.

reasoning principle. the basis of reasoning is the domain
constraints between qualities specifying that certain
qualities must hold, and must not hold, for the same object
at the same time.

Tasks Performed by Pure QSTR

We now consider the tasks that can be performed by QSTR
according to our previous definitions of qualitative
modelling and reasoning. The process of applying
qualities to a set of objects forms object classes or
categories based on which qualities hold and do not hold.
For example the qualitative constraint “roads far from the
city that overlook the lake are idyllic” defines the class of
“idyllic roads” as including road objects that are both “far
from” the city and “overlooking” the lake.

task principle. all pure QSTR tasks are a process of object
classification

 This provides the extent to which QSTR can be used to
address a problem. For example, reasoning to infer
information about an incomplete model is the process of
specifying the classes that the indefinite objects belong to.

model

development

model

querying

execute reasoning,

send result to user

update

model

go

online

execute reasoning,

refine model with result

startup

shutdown

initialise

model

terminate

terminate

Querying, i.e. isolating some relevant parts of the model,
requires the user to provide a class description (in the form
of qualities holding and not holding) and returns objects
that meet the given class criteria.
 It must be noted that a further common task in the QSTR
field is to determine consistent numerical instantiations of
a given qualitative model. In our framework this can be
understood more generally as finding a consistent
interpretation of a given qualitative model in some other
knowledge representation system (which may be, for
example, a numerical system, a fuzzy system, or even
another qualitative system). This task is beyond the scope
of pure QSTR and will not be addressed in this paper.

QSTR Design Practice

Design practice uses the previous theoretical principles to
provide strategies for designing a QSTR system based on
specific task requirements. This section gives a brief
outline of how each of the design principles can be used to
drive design.
 Firstly the developer must decide whether QSTR is
applicable to the problem at hand. Considering the task
principle (refer to the section “Tasks Performed by Pure
QSTR”), they must decide whether the problem can be
solved by classifying objects. The two most common tasks
are:

• reasoning: used to infer information about incomplete
models

• querying: used to isolate interesting fragments of models

 The developer must then characterise the behaviour of
their system by using the problem solving automaton (refer
to the section “Problem Solving Process”), as this greatly
influences the design of the QSTR model. For example, if
the QSTR system must allow substantial querying
flexibility then the design theory recommends the inclusion
of qualities that are not related by constraints. This is
because independent qualities, while being ineffective for
reasoning about incomplete models, can be combined in
many interesting ways providing a richer query language.
 The developer must then decide on the objects and
qualities that will be modelled in the system. A quality
should only be included if the distinction it provides is
relevant for the task. As a guide, the developer should
review the expected typical use of their application,
particularly the likely premise information or input and
desired reasoning output.
 Finally, the developer must specify the domain
constraints that will be used for reasoning. This can be
viewed as linking the input of the model to the output, and
may require the inclusion of further intermediate qualities.
The developer must review suitable sources of domain
information such as scientific studies, industry consensus,
expert knowledge and client preferences (i.e. the intended
users of the application being developed).

 Further support for refining the design is provided in the
framework’s implementation and validation processes.

Future Work

We are currently investigating methods for empirically
assessing the effectiveness of our framework in supporting
the application of QSTR. For example, we anticipate
conducting studies involving software developers with no
previous experience of QSTR. The participants will be
asked to use our framework to develop a number of QSTR
based software tools that each address a given domain
specific problem, and then report on the results.

Conclusions

We are developing a framework for supporting the design,
implementation and validation of QSTR systems based on
specific task requirements. The framework is application
oriented and considers the theory and practice of applying
QSTR in the context of problem solving and software
development. Thus, rather than providing a developer with
software libraries of pre-made QSTR methods alone, we
are taking a broader approach that equips a developer with
the necessary theoretical foundation and practical strategies
to develop a customised QSTR based software application
for addressing their specific task requirements.
 We have presented the theory and practice of the design
process component of our framework. Our design theory
investigates four aspects of applied QSTR: the problem
solving process, modelling, reasoning and task
applicability. Design practice then uses design theory
principles to provide strategies for designing a QSTR
system based on specific task requirements.
 We are exploring methods for empirically determining
how effective our framework is in supporting QSTR
system development, for example, conducting studies in
which software developers apply our framework to a
selection of problems.

Acknowledgements

This work has been funded by the Bright Future Top
Achiever Doctoral Scholarship (Tertiary Education
Commission, New Zealand).

References

Cohn, A. G. and Hazarika, S. M. 2001. Qualitative Spatial

Representation and Reasoning: An Overview. Fundamenta

Informaticae 46(1-2): 1-29.

Ligozat, G. and Renz, J. 2004. What Is a Qualitative Calculus? A

General Framework. In Proceedings of the Eighth Pacific Rim

International Conference on Artificial Intelligence: Trends in

Artificial Intelligence, Auckland, New Zealand, August 9-13,

53-64. Lecture Notes in Computer Science 3157: Springer.

Schultz, C.P.L., Amor, R., and Guesgen, H.W. 2007. A

Framework for Supporting the Application of Qualitative

Spatiotemporal Reasoning. In Proceedings of the Workshop on

Spatial and Temporal Reasoning at the Twenty-Second

Conference of the Association for the Advancement of Artificial

Intelligence (AAAI), Guesgen, H.W., Ligozat, G., Renz, J., and

Rodriguez, R.V. program co-chairs, Technical Report WS-07-12,

34-39. Menlo Park, California: AAAI Press.

Soanes, C.S. and Stevenson A. eds. 2006. Concise Oxford

English Dictionary. 11th ed. Oxford: Oxford University Press.

Wallgrün, J. O., Frommberger, L., Wolter, D., Dylla, F. and

Freksa, C. 2007. Qualitative Spatial Representation and

Reasoning in the SparQ-Toolbox. In Barkowsky, T., Knauff, M.,

Ligozat, G., Montello, D. eds. Spatial Cognition V: Reasoning,

Action, Interaction: International Conference Spatial Cognition

2006, Bremen, Germany, September 24-28, 39-58. Lecture Notes

in Computer Science 4387: Springer.

