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Abstract 

A significant number of qualitative methods for 
representing and reasoning about spatial and temporal 
information have now been developed that address 
limitations of purely numerical approaches.  Despite this, 
qualitative spatial and temporal reasoning (QSTR) is yet to 
be fully utilised by researchers and software developers 
outside the QSTR community.  In our view, the problem is 
that in many cases none of the existing pre-made QSTR 
methods directly meet the needs of a task and instead 
require modifications.  In other cases a completely new and 
unique QSTR approach may be required.  To address this 
we are developing a framework that supports the application 
of QSTR by providing a methodology of developing custom 
QSTR systems from specific task information.  In this paper 
we give an overview of our framework.  As an example we 
also present the design component, one of the key 
framework processes, in more detail. 

Introduction   

Purely numerical methods for modelling and reasoning 
about spatial and temporal information have limitations.  
Firstly, if critical pieces of numerical information about a 
model (or scenario) are not available then either the 
equations simply can not be evaluated and reasoning 
algorithms break down, or the results are meaningless.  
Secondly, because numerical models lack explicit 
causality, the output of large and complex models can be 
unpredictably sensitive to the initial conditions, i.e. a small 
change in the input can result in an unexpectedly large 
change in the output due to many complex, obscured 
interactions.  Finally, numerical methods have inherent 
restrictions on the type of information that can be 
expressed, as they fundamentally rely on the definition of a 
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homogenous unit to represent a concept, which is often 
unavailable or impossible. 
 Qualitative spatial and temporal reasoning (QSTR) 
methods address these issues.  Firstly, a QSTR method will 
always apply any available premise information rather than 
halting on a particular missing piece of information, i.e. 
reasoning gracefully fails rather than completely breaking 
down.  Secondly, by the design of QSTR systems causality 
is made explicit.  Moreover, only necessary distinctions are 
modelled so that any change in the initial conditions of a 
scenario is necessarily significant, thus avoiding the issue 
of unpredictable sensitivity.  Finally, QSTR modelling 
does not require fundamental homogeneous units to 
describe concepts.  Instead, it is a top-down process where 
concepts are incrementally refined by the inclusion of 
increasingly finer qualitative relations. 
 An array of QSTR techniques have now been developed 
that focus on fundamental aspects of our daily experience 
of space and time (Cohn and Hazarika 2001).  Despite this 
extensive body of QSTR research few software 
applications exist that make significant use of QSTR 
approaches (excluding prototype systems developed by the 
QSTR community).  QSTR researchers have been 
addressing this by unifying the numerous QSTR methods 
(Ligozat and Renz 2004) and developing QSTR software 
libraries and toolboxes such as SparQ (Wallgrün et 
al. 2007) that provide implementations of existing QSTR 
methods in a standard framework with a uniform interface. 
 However, there are fundamental restrictions on QSTR 
applicability when a developer is limited to using pre-made 
methods.  Foremost is that, in many cases, an existing 
QSTR formalism will not directly meet the needs of a task. 
This is because, firstly, qualitative terms are vague, and 
rely on context for disambiguation and meaning, e.g. 
“near” can be a function of financial cost, time traveled, or 
distance covered, and can vary depending on the user being 
a pedestrian, a car owner, or a city planner. Secondly, the 
qualitative concepts being modelled must be relevant for 
the task; it is therefore difficult to gauge the usefulness of a 



particular qualitative relation within a QSTR method 
a-priori without knowing the requirements of the task.  
Thus, qualitative formalisms often need to be extended and 
modified by adding and removing qualitative relations, 
changing some part of an inference rule, or creating 
entirely new custom QSTR systems. 
 We are developing a broader framework for supporting 
the design and application of QSTR methods based on 
specific task requirements.  The framework is application 
oriented and considers the theory and practice of applying 
QSTR in the context of problem solving and software 
development.  It must be noted that the framework is not 
software based (i.e. it does not consist of code fragments) 
but is instead a methodology of developing QSTR systems 
from specific task information.  In particular it expounds 
necessary processes involved in the development lifecycle 
and analyses effective practices that developers can use in 
each lifecycle phase. 
 The remainder of this paper is as follows.  In the 
following section we present an overview of our 
framework.  We then present the theoretical and practical 
components of the design process in the framework as an 
example.  We then present our future work and the 
conclusions of this paper. 

Framework Overview 

The framework that we are developing supports the design, 
implementation and validation of general QSTR systems 
that are customised for specific task requirements.  Fig 1 
illustrates an overview of our framework. 
 The design process supports the developer in 
formulating a customised QSTR engine according to task 
information and specifications.  The implementation 
process supports the developer in producing software 
versions of their QSTR design along with principles and 
strategies for modifying the design to accommodate 
memory and execution time constraints.  The validation 
process supports the developer in evaluating QSTR 
methods with respect to the intended application 
environment by incorporating context specific test data.  It 
must be noted that the framework makes no assumptions 
about the ordering of the processes or the software 
lifecycle model employed. 
 Each process in the framework consists of a theoretical 
element used to derive principles, and a practical element 
used to derive strategies for applying QSTR.  In the 
following sections we will focus on the design process of 
the framework covering both the theoretical and practical 
elements. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1. Overview of our framework for supporting the 

development of QSTR systems.  Solid boxes within the dotted 

box represent key framework processes, and italicised labels with 

arrows represent external components that function as framework 

input and output. 

 

QSTR Design Theory 

The purpose of detailing the design process in our 
framework is to equip a developer with the necessary 
theoretical foundation and practical strategies to design a 
QSTR based software application that addresses their task 
requirements.  The developer must understand 

• the process phases that an actual QSTR system follows 
when being used to address a problem, 

• what a QSTR model is and what it consists of, 

• what QSTR reasoning is and what it consists of and 

• the type of tasks that can be performed by QSTR 
according to the modelling and reasoning theory. 

The following sections present our design theory for each 
of these four aspects of applied QSTR. 

Problem Solving Process 

In general, models are used to represent salient aspects of a 
problem, and by reasoning about the model we intend to 
acquire a useful problem solution. QSTR is the problem 
solving approach that uses qualitative models and 
qualitative reasoning. 
 We define an automaton to describe the QSTR problem 
solving process as illustrated in Fig 2.  The process of 
reasoning may develop or refine the model e.g. by 
inferring new information based on the given premises 
(model development).  Alternatively reasoning may 
provide a model querying mechanism, where interesting 
parts of the model are isolated based on query criteria 
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(model querying).  A formal definition of this automaton is 
provided in (Schultz, Amor and Guesgen 2007). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2. Nondeterministic finite state automaton used to describe 

the problem solving process.  Circles represent states, arrows 

represent possible state transitions, and the arrow annotations 

describe the effect of the transition on the QSTR system. 

 

 

Using this automaton the software developer can begin to 
characterise their QSTR system by explicitly incorporating 
task requirements into the problem solving process.  
Strategies for using this automaton are part of design 
practice section of our overall framework.  Examples of 
task properties that can influence the QSTR system design 
are as follows: 

• model lifetime state: once initialised the model may 
never change, or it may change either monotonically or 
non-monotonically 

• model stability: an unstable model changes frequently, 
whereas a stable model does not 

• model dependency: a problem may only have initial 
dependency where all the information required for 
reasoning is initially available; other problems may have 
ongoing model dependency where some required 
information is not initially available 

Qualitative Modelling 

In order to determine what a qualitative model is, we 
consider a standard definition of the term “quality” as used 
in everyday language: a quality is an inherent or 
distinguishing property (Soanes and Stevenson 2006).  
From this we determine two things: firstly, qualitative 

models consist of objects and qualities (i.e. qualitative 
relations), and secondly that the primary function of a 
quality is to provide a distinction between the objects in 
our model. 
 We now consider how a quality can provide a distinction 
between objects.  To identify the essential characteristics 
of qualitative modelling we restrict ourselves to the 
simplest possible type of distinction that a quality can 
provide, i.e. a single point of difference: either the quality 
holds for an object in the model, or it does not hold.  From 
this we derive a basic principle of qualitative modelling: 
 
modelling principle. “qualities” are distinctions between 
objects based on whether the quality holds for the object, 
or it does not hold. 

Qualitative Reasoning 

In most cases some part of the model we are using is 
incomplete.  This represents the information that must be 
calculated or derived through reasoning in order to solve 
the problem at hand. 
 In general, reasoning applies domain constraints to the 
available information to infer plausible values for the 
incomplete fragments of the model.  In our interpretation 
of a qualitative model, domain constraints specify 
relationships between qualities; given a certain 
combination of quality values (holding and not holding) for 
an object, the constraint specifies which further qualities 
must hold or must not hold for that object.  For example 
the qualitative constraint “if a room appears warm and 
bright, then it evokes a relaxing impression” states that if a 
room object is “warm” and “bright” then it must also be 
“relaxing”. 
 
reasoning principle. the basis of reasoning is the domain 
constraints between qualities specifying that certain 
qualities must hold, and must not hold, for the same object 
at the same time. 

Tasks Performed by Pure QSTR 

We now consider the tasks that can be performed by QSTR 
according to our previous definitions of qualitative 
modelling and reasoning.  The process of applying 
qualities to a set of objects forms object classes or 
categories based on which qualities hold and do not hold.  
For example the qualitative constraint “roads far from the 
city that overlook the lake are idyllic” defines the class of 
“idyllic roads” as including road objects that are both “far 
from” the city and “overlooking” the lake. 
 
task principle. all pure QSTR tasks are a process of object 
classification 
 
 This provides the extent to which QSTR can be used to 
address a problem.  For example, reasoning to infer 
information about an incomplete model is the process of 
specifying the classes that the indefinite objects belong to.  
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Querying, i.e. isolating some relevant parts of the model, 
requires the user to provide a class description (in the form 
of qualities holding and not holding) and returns objects 
that meet the given class criteria. 
 It must be noted that a further common task in the QSTR 
field is to determine consistent numerical instantiations of 
a given qualitative model.  In our framework this can be 
understood more generally as finding a consistent 
interpretation of a given qualitative model in some other 
knowledge representation system (which may be, for 
example, a numerical system, a fuzzy system, or even 
another qualitative system).  This task is beyond the scope 
of pure QSTR and will not be addressed in this paper. 

QSTR Design Practice 

Design practice uses the previous theoretical principles to 
provide strategies for designing a QSTR system based on 
specific task requirements.  This section gives a brief 
outline of how each of the design principles can be used to 
drive design. 
 Firstly the developer must decide whether QSTR is 
applicable to the problem at hand.  Considering the task 
principle (refer to the section “Tasks Performed by Pure 
QSTR”), they must decide whether the problem can be 
solved by classifying objects.  The two most common tasks 
are: 

• reasoning: used to infer information about incomplete 
models 

• querying: used to isolate interesting fragments of models 
 
 The developer must then characterise the behaviour of 
their system by using the problem solving automaton (refer 
to the section “Problem Solving Process”), as this greatly 
influences the design of the QSTR model.  For example, if 
the QSTR system must allow substantial querying 
flexibility then the design theory recommends the inclusion 
of qualities that are not related by constraints.  This is 
because independent qualities, while being ineffective for 
reasoning about incomplete models, can be combined in 
many interesting ways providing a richer query language. 
 The developer must then decide on the objects and 
qualities that will be modelled in the system.  A quality 
should only be included if the distinction it provides is 
relevant for the task.  As a guide, the developer should 
review the expected typical use of their application, 
particularly the likely premise information or input and 
desired reasoning output. 
 Finally, the developer must specify the domain 
constraints that will be used for reasoning.  This can be 
viewed as linking the input of the model to the output, and 
may require the inclusion of further intermediate qualities.  
The developer must review suitable sources of domain 
information such as scientific studies, industry consensus, 
expert knowledge and client preferences (i.e. the intended 
users of the application being developed). 

 Further support for refining the design is provided in the 
framework’s implementation and validation processes. 

Future Work 

We are currently investigating methods for empirically 
assessing the effectiveness of our framework in supporting 
the application of QSTR.  For example, we anticipate 
conducting studies involving software developers with no 
previous experience of QSTR.  The participants will be 
asked to use our framework to develop a number of QSTR 
based software tools that each address a given domain 
specific problem, and then report on the results. 

Conclusions 

We are developing a framework for supporting the design, 
implementation and validation of QSTR systems based on 
specific task requirements.  The framework is application 
oriented and considers the theory and practice of applying 
QSTR in the context of problem solving and software 
development.  Thus, rather than providing a developer with 
software libraries of pre-made QSTR methods alone, we 
are taking a broader approach that equips a developer with 
the necessary theoretical foundation and practical strategies 
to develop a customised QSTR based software application 
for addressing their specific task requirements. 
 We have presented the theory and practice of the design 
process component of our framework.  Our design theory 
investigates four aspects of applied QSTR: the problem 
solving process, modelling, reasoning and task 
applicability.  Design practice then uses design theory 
principles to provide strategies for designing a QSTR 
system based on specific task requirements. 
 We are exploring methods for empirically determining 
how effective our framework is in supporting QSTR 
system development, for example, conducting studies in 
which software developers apply our framework to a 
selection of problems. 
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