
Peer Teaching Extends HCI Learning
Beryl Plimmer and Robert Amor

Department of Computer Science
University of Auckland

New Zealand
+64 9 3737599

{beryl|trebor}@cs.auckland.ac.nz

ABSTRACT
Crafting a good user experience requires skills in several
disciplines. Few people have this breadth of knowledge, and
undergraduate computer science students are no exception.
Encouraging computer science students to appreciate the ways
that other disciplines contribute to Human Computer Interaction is
important, yet difficult. Our students learn about this disciplinary
interdependence through peer teaching as part of a group project.
Each group contains students with complementary skills and we
expect a transfer of knowledge. Here we discuss the educational
theory behind the project, the project’s essential elements and an
evaluation of how it aids learning. The model we have developed
could be easily adapted for other courses which draw on diverse
skills.

Categories and Subject Descriptors
K.3.2 Computer Science Education: HCI Education

General Terms
Human Factors

Keywords
HCI Education, Peer Teaching, Group Projects.

1. INTRODUCTION
A good user experience is the result of careful planning and
evaluation. Too often we allow students to graduate who are
technically brilliant, but completely unaware of the frustrating
interfaces they inflict on users. To build usable systems students
need to know more than technology. They need to understand
users’ goals, capabilities and what humans find aesthetically
appealing. This is what Human Computer Interaction (HCI) is all
about.

HCI is undeniably multidisciplinary: the three major contributors
are computer science, psychology and graphic design. We teach
in a traditional computer science department in New Zealand’s
largest university. Our Computer Science degree includes one
HCI course at third year; however, the structure of the degree

encourages students to include courses from related disciplines.
The goal of this HCI course is to extend students’ understanding
of what it means to develop an excellent system – a system that
not only executes correctly but is useable.

This ambitious goal is met by combining traditional lectures with
a carefully crafted group project. Below we describe the
educational theory that underpins the course; the parameters we
use to create the project problems; examples of successful
projects; an evaluation of the course; and a discussion on how this
course model may be useful to others.

2. BACKGROUND
In a single course there is not time for in-depth coverage of the:
psychology, graphic design and computer science of HCI. As this
is a third year computer science course, we can presume that all
students have a solid grounding in computer science, yet they also
have a wide range of other skills and knowledge which may be
helpful. Constructivist learning theories [3] state that people
assemble an understanding of new knowledge by combining new
information and experiences with existing knowledge. We can
therefore assume that students with knowledge of psychology and
graphic design will bring this to bear when they are designing a
user experience. It is also clear that students learn as much from
their peers as their teachers [10]. This course leverages these two
factors: existing knowledge and peer teaching/learning to increase
the amount of actual learning that takes place.

To optimize learning a structure is required: First, Kolb’s [5]
experimental learning cycle suggests that learning is most
successful when it is an iterative process that includes; acquiring
new knowledge, practicing the application of that knowledge and
reflecting on the practice. This suggests a pattern of presenting
new knowledge to the students in a formal context (lecture) and
then requiring them to practice (project) and reflect (review).
Second, activity theory [7] proposes that outcomes are achieved
by people using knowledge and tools to transpose inputs (data,
goals and constraints) into the desired outputs; there is often a
complex interplay between the different components of the
system (people, knowledge and tools) to achieve the desired
outcome. The parallels between activity theory and HCI best-
practice have seen this theory gain support in the HCI and HCI
education communities [7]. We structure the project requirements
and hand-in dates to foster these types of exchanges. Finally,
group work encourages the transfer of knowledge between
individuals, and it has a wide range of additional benefits
including preparing students for the real-world work environment
[1, 6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

3. PROJECT MODEL
From an HCI perspective we want the students to think deeply
about the user’s interaction with the software while considering
the user’s mental and physical capabilities, and the aesthetics of
the interface. We also want the students to utilize user centered
software design methodologies. In order to meet these
requirements within the semester we tightly constrain the problem
and deliverables, while, at the same time, leaving some user
details and technology decisions quite open. In this section we
discuss the project in terms of the target user, problem domain
and course.

To limit the scope there is a single user for the project. However,
to encourage the students to learn more about human capabilities
that user is representative of a target user group with specific
interaction needs. They are, for example, a child, elderly, or
disabled in some way: definitely not a healthy 20 year old male,
the archetypal computer science student. There is always
something in their profile to indicate that ‘normal’
keyboard/mouse interaction would be unsuitable. Unfortunately,
because of ethical requirements we can not use a real person.
However, this has some benefits. The students must explore the
research literature on the target user group; we provide one or two
references and expect them to locate other articles. Also, not
having access to real users is the reality of much commercial
development [4].

The problem domain is quite specific, but outside the realms of
usual computer science assignment scenarios. We provide
students with one or two references to the domain and one or two
about software written for the domain. In order to explicitly
incorporate graphic design the project has a strong visual element.

To summarize, the project has an atypical user requiring a non-
standard interface, a strong visual component and addresses an
uncommon goal. To satisfy these aims the students, inevitably,
are challenged to extend their technical knowledge and employ
high-level computer science skills. The deliverables and timetable
effectively guide them through a user-centered design process.

The course consists of three lectures a week for 12 weeks (with a
two week mid-semester break) and each student attends one
tutorial a week. There are 100 students in the course; tutorials are
about 33 students each. The lectures are a broad introduction to
human computer interaction, based on Dix et al. [2]. The material
covered in the lectures is much wider than is required for the
project. Thus we are not taking a standard problem-based learning
approach where the theory is directly related to the problem [9],
but rather expect students to select appropriate basic theory to
apply to the project problem and to extend the introductory
material with their own research into the specific requirements of
the project. However, the theoretical material is delivered in an
order that is likely to be useful to them for the project.

4. IMPLEMENTATION
In the first lecture the students are given the project requirements
that include: a very brief persona and scenario and references to
material on the target user group and domain literature (both the
domain itself and software for the domain). The students form
into groups of four in the tutorials. We suggest (but do not insist)
that each group includes at least one person who knows about
psychology, one person who knows about graphic design and one

‘A’ programmer. To aid group formation each individual writes
him/herself a name tag and self-identifies his/her skills with
colored dots. We warn them against forming a group with friends,
unless the group has the requisite range of skills. We have found
that this hands-off approach works remarkably well. By the end of
the first week the groups are finalized and the project work
started.

In the first three weeks of lectures we cover the user-centered
software development methodology, early design techniques
(personas, scenarios and low-fidelity prototyping) and the basics
of human processing systems (senses, memory and cognition). In
week 4 each group hands-in: a fleshed-out persona and scenario
(they may invent more detail about the user and his/her goals);
two short summaries of their research, one on the target user
group and one on the domain; and a low-fidelity prototype of the
system (see figure 1). They also present their low-fidelity
prototypes in tutorials; the benefit of this is that the students see a
wide range of ideas that have been generated to solve the same
problem. After the presentations they may make any changes they
deem appropriate to their design.

Figure 1. A paper prototype of a grandparent’s photo-story

album

Over the next three weeks the lectures cover basic models of
human computer interaction, design paradigms and
implementation issues and support. During this time the students
are working on the prototype implementation. We do not specify
the programming language, only that the prototype must run in
the department’s laboratories. In week 7 (after the mid semester
break) the prototype implementations are handed-in and there is a
‘show and tell’ session in one of the laboratories. Each group
must have their software running on a machine and the students
critique other groups’ work.

Weeks 7 to 9 of the lectures cover evaluation techniques. Each
group is given another group’s project and is required to conduct
both expert evaluations and user studies. For the expert evaluation
each member of the group completes a heuristic evaluation and
then the group merges all of these into a ‘master list’. They also
evaluate the software against the guidelines for the target user
group that they had prepared during the first phase of the project.

Lastly, they prepare a user observation study and trial it with two
class members.

We assess the project work in two ways. First, the deliverables are
marked. One third of the marks are allocated for each hand-in;
research and low-fidelity prototype, implementation, and
evaluation. All members of a group are given the same mark for
the project work. This contributes 12% to each student’s final
grade – not commensurate with the effort required. Second, the
term test and final examination include questions on the project
specifics and process – about 25%. This dual approach allows us
to measure individual knowledge without a peer grading system.

Time constraints mean that we can not iterate through the process
a second time. However, the low-fidelity prototype presentations
in week 4 act as a very effective review and the groups are free to
modify their design after the presentation. Also, some of the test
and examination questions specifically require them to reflect on
the project.

5. EXAMPLES
Defining an appropriate project is essential for the success of this
course. We have run this course twice with this structure. The first
time the project was to design a paint package for ‘Lindsay’ a
disabled six year old who uses eye-gaze software but wanted to be
able to create pictures like his/her friends. Lindsay was the
opposite gender to the majority of the group members: mostly
Lindsay was a girl – this led to some intriguing comments during
the presentations – ‘our interface has real colours like blue and
red and yucky girl colours like …. pink… ’. The software the
students produced was innovative and, considering the eight week
timeframe, very professional (see Figure 2). More details on this
project can be found elsewhere [8].

Figure 2. A paint package to use with eye-gaze software

Most recently the project was an electronic photo-story album for
a grandparent to record his/her memories. The grandparent has an
old shoebox full of photos and the student(s) have been fascinated
by the stories associated with the photos. The student(s) decide to
write a program for their grandparent to build a photo album and
record the stories with the photos. They created paper prototypes
(see Figure 1) and implementations (see Figure 3).

The students were provided with references to four papers on
interfaces and the elderly, five references to the use of photos in
history and four references to photo-based story-telling software.
This provided a solid foundation for user group requirements and
software development in the field, and a base to locate further
information of interest.

The project specification stated that the user was ‘a grandparent
who wanted to record his/her photos and stories for posterity’. A
member of the technical staff made available an online collection
of his grandfather’s WWI photos and stories which made a
realistic and motivating dataset for many of the students.
However, the group could choose their own user and many groups
based their project around a grandparent of one of the group
members (to respect the university’s ethical guidelines they could
not interview or ask the grandparent to play the role of user in the
development process). Regardless of whether they used the
dataset provided or a family member’s photos, each group wrote a
user persona that included relevant (possibly fictional)
biographical information.

Figure 3. An Implementation of a grandparent’s photo-story

album

Both of these problems required the students to find out about
nonstandard users – children or elderly, with physical constraints
– eye-gaze interaction or age-related problems, a domain they
were unlikely to know about – kids drawing or the use of photos
in family history, and both projects had a strong visual element.

6. EVALUATION
At the end of the most recent offering of the course we surveyed
the students to ascertain their thoughts and feelings. We asked
them to rate the importance of the contributing disciplines to HCI
on a four point Likert scale (Irrelevant, Unimportant, Important,
Essential) we coded their responses correspondingly 1 – 4 (Table
1). The analysis shows a similar pattern with computer science
and design knowledge: most students scoring them important or
essential and no one scored them irrelevant. Psychology had the
most variation in responses with 45% scoring it important but 8%
saying it was irrelevant.

Table 1. Importance of contributing disciplines

How importance was ……. to your
project? mean std

Computer science 3.40 0.55

Design knowledge 3.30 0.54

Psychology knowledge 2.74 0.88

Domain knowledge 2.61 0.68

We also asked what contributing disciplines they had skills in
prior to the course and whether they taught other members of the
team. A huge 72% claimed to have design skills, 29% had
knowledge of psychology, while 11% had knowledge of the
domain (photo-stories). As for teaching skills to their peers: 34%
taught computer science skills, 56% design, 31% psychology, and
12% the domain, with 92% claiming to have taught something to
other team members. Certainly from the students’ perspective
they believed that peer teaching was taking place.

Using the same four categories we asked which parts of the
project each student contributed to; 25% claimed all four parts,
20% three parts, 28% two parts and 27% one part. We checked
how this corresponded to the answers of the other members of the
group. Although there were insufficient samples for statistical
measures we noticed that of the 23 groups, in 3 groups all the
members contributed to all parts, 5 groups had one member who
participated in all parts, while the other groups had varying
arrangements of contribution. To ensure that all students
considered the different parts of the project they were told to
assume that there could be test and examination questions on any
aspect of the project.

We asked the students to answer questions on the relationship
between the theory and project, and about the group work on a
strongly disagree, disagree, agree, strongly agree, scale which we
coded correspondingly 1 – 4 (Table 2). Most people thought that
the project helped their understanding of the theory and the theory
helped with the understanding of the project, those that didn’t
tended to think there was little relationship either way, scoring
both questions disagree or strongly disagree. There was a strong
correlation between the two group work questions (r 0.82), 70%
agreed that the group work helped their learning (38% strongly
agreed, 32% agreed). Similarly 75% agreed that group work made
the course more enjoyable (25% strongly agreed, 50% agreed).

Table 2. Practice/Theory link and group work

Statement mean std

The project helped my understanding of
HCI theory 3.40 0.58

HCI theory helped with the project
development 3.40 0.54

Working in a group helped my learning 2.78 0.85

Working in a group made the course
more enjoyable 2.66 0.68

Lastly we asked two open questions: what was the most
interesting part of the course and what we should consider
changing. About half the respondents said the project and group
work was the most interesting part of the course, with the show
and tell also getting a number of favorable comments. For
changes, about 10% thought we should drop the group project.

We noticed with both the Lindsay and grandparent projects that
the students put in considerable effort to make the software usable
for their target user. In the semester following the Lindsay project
we were delighted to see a group of students in the lab applying
personas and a scenario to a group project for a non-HCI course.

7. DISCUSSION
There are two key elements of this course: first the nurturing of
peer teaching. The group project is clearly a very successful tactic
to foster peer teaching. The students’ evaluation of the course
indicates that there was substantial sharing of knowledge and that
they found this both enjoyable and useful. They undoubtedly
appreciate the contributions of computer science and design to
HCI. We would have liked to see a higher appreciation of
psychology too. We are considering a number of ways to achieve
this, possibly more emphasis on the contribution of human factors
and ergonomics in the lectures along with more specific links to
psychology in the project.

Most members of the class thoroughly enjoyed the group project.
There is a small minority who find group work difficult, yet
employers continually ask tertiary institutes to produce graduates
who can work together. In two offerings of this course we have
had about 50 groups, only one group had serious problems that
required our intervention. We believe putting the responsibility on
them to form their own groups is a vital ingredient here.

This course’s approach reflects the real-world where a group
comes together for a particular project. Group members will be
chosen for the specific skills they can bring to the project.
Pertinent information must be gathered from research and a plan
devised and executed. And just like real projects, different groups
operate in different ways.

The second key element is defining a project that requires diverse
skills and independent research. Although we present a lot of
high-level HCI theory in the lectures, we expect the students to do
exactly what is required in a real-world situation, to filter the
appropriate information to use in their project. The survey
responses indicate that they successfully related the theory and
practice. In addition, just as they would in the real-world, they are
expected to research independently about the specific needs of the
target users and system.

Restricting the human-computer interaction space with a specific
user’s needs forces the students to think carefully about the
interaction their software provides, rather than simply adopting
the programming language defaults. Additionally, it makes them
aware of accessibility issues.

Setting a non-standard project opens the students’ eyes to the
information they can gather from resources such as the ACM
digital library. This type of project also, inevitably, poses some
technical challenges which keeps the ‘geeks’ engaged in the
project.

Having all the groups working on the same project also has
benefits. The presentations of both the low-fidelity prototypes and
implemented prototypes were commented on as being a highlight
of the course by a number of students. Rarely do software
designers have the opportunity to see a large number of
prototypes for the same problem. The breadth of innovative ideas
produced is a delight to both us and the students.

There are many higher level courses that could take a similar
approach, particularly when the students have previously
completed a range of optional courses. It is essential to check that
there are sufficient numbers of students with suitable
backgrounds; for example our projects would be less successful if
only 5% of students had studied psychology. Also, a carefully
thought-out project will draw together the different sub-
disciplines and challenge the students to conduct some
independent research.

8. CONCLUSIONS
The approach described here draws on sound educational
psychology theory to encourage students to share their existing
knowledge with their peers thus enriching the learning
experience. The students learn the basic theory of HCI and
practice user-centered software development. They successfully
related the theory to the practice through the use of special-case
and research intensive projects. In addition, the generic skills of
group work and independent research are fostered. This approach
could be adapted to other courses where the students have diverse
backgrounds.

9. REFERENCES
[1] Brown, J. and Dobbie, G., Supporting and evaluating team

dynamics in group projects in The proceedings of the
thirtieth SIGCSE technical symposium on computer science
education ACM Press (1999).

[2] Dix, A., Finlay, J., Abowd, G.D., and Beale, R., Human-
computer interaction. 3rd ed. Prentice Hall (2004).

[3] Gardiner, L.F., Producing dramatic increases in student
learning: Can we do it? National Teaching and Learning
Forum, (1997). 6, 2: 8-10.

[4] Greenburg, S., Teaching human computer interaction to
programmers. Interactions, (1996). 3, 4: 62-76.

[5] Kolb, D.A., Experiential learning: Experience as the source
of learning and development. Prentice-Hall Inc (1984).

[6] Koppelman, H., van Dijk, E.M.A.G., van der Mast,
C.P.A.G., and van der Veer, G.C. Team projects in distance
education: A case in HCI design. Proc. ItiCSE 2000. ACM,
(2000), 97-100.

[7] Nardi, B., Context and consciousness: Activity theory and
human-computer interaction. MIT Press (1996).

[8] Plimmer, B. A computer science HCI course. Proc. HCI
2005, (2005), 185-199.

[9] Vat, K.H. Teaching HCI with scenario-based design: The
constructivist's synthesis. Proc. ItiCSE. ACM, (2001), 9-12.

[10] Vygostsky, L.S., Mind in society: The development of
higher psychological processes, ed. Cole, M. Harvard
University Press (1978).

