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Abstract

The basic idea behind software reuse is that software devel-
opers usereusable componentsfound insoftware repositoriesto
reduce the amount of code that has to be written and so increase
productivity. A problem arises, however, if the repositoryis too big
— it becomes difficult to find relevant components. What is needed
is an effective means to query repositories. Most approaches to de-
veloping such means involves creating a goodindex to which the
queries can be applied. Developing a good index requires identi-
fying the relevant information on which to base the index. Inthis
paper, we present the results of a project that usedsource codeas
the basis for the index.
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1. Introduction

The basic idea behind software reuse is that software de-
velopers usereusable componentsfound insoftware repos-
itories to reduce the amount of code that has to be written
and so increase productivity [17]. The success of a repos-
itory depends on the number of components it contains. If
a repository has too few components, then a developer is
unlikely to get much benefit from it. However repositories
with many components face a different problem — how a
developer finds the particular component she needs, or, fail-
ing to find something relevant, how to be sure that this is
because there is nothing relevant in the repository. What is
needed is an effective means to query repositories, ideally
usingfree-textqueries. Most approaches to developing such
means involves creating a goodindexto which the queries
can be applied. Developing a good index requires identi-
fying the relevant information on which to base the index.
In this paper, we present the results of a project that used
source codeas the basis for the index.

The rationale for our approach is as follows. Anyone us-

ing a repository would have done so to solve a problem in a
specific domain. If they follow good programming practise,
they would name the identifiers in their code in a way that
reflects their use. We would hope then that the identifiers re-
lating to the use of entities from the repository would reflect
the given domain’s view of those entities. Given uses of a
repository entity from multiple domains, we would build up
a vocabulary of how programmers think of that entity upon
which we could build an index.

There are two main problems with this approach. The
first is, we need to find “enough uses” of a repository. For
this, we have a Software Corpus consisting of a number of
open-source Java applications [22]. As most Java applica-
tions use the Standard Java API [26], we would hope that
we would have enough uses of it to allow us to create an
effective index of the Standard API. The second problem
is, there is an important assumption in our rationale — that
programmers really do use meaningful names. Whether or
not this is the case is something we need to establish.

In this paper we present our study into the use of Java
source code to create an effective index to the Java Standard
API. The rest of this paper is organised as follows. In the
next section, we discuss related work and introduce the con-
cepts needed to explain our work. In section 3 we discuss
how what choices we considered for the various ways we
could use identifier information to create and index, carry
out queries on it, and evaluate the results. Section 4 presents
our results and these are then discussed in section 5. Finally,
we give our conclusions in section 6.

2. Background and Related Work

The problem we are addressing is an instance of the
problem identifying documents from a set of documents
that are most relevant to a given free-text query, which is
the domain of Information Retrieval (IR). The main issues
we feel we have to address are synonymy and polysemy.
Synonymy is that there are different words with a similar
meaning. For example, “hot” might be considered synony-



mous with “spicy”, “warm”, “eager” and “attractive”. Pol-
ysemy refers to the fact that one word can have multiple
meanings. For example, the word “plant” can mean vege-
tation or machinery. The use of words to describe the de-
sired component is based on different contexts, knowledge,
needs, or linguistic habits of programmers. Programmers
can therefore describe the same component differently. Fur-
nas et al. measured the probability of two people choosing
the same keyword for a single well-known object as less
than 20% [4]. The IR community has explored many av-
enues for dealing with this problem, and others have tried
applying IR techniques to the problem of indexing software
repositories.

One such attempt is by Maarek et al., who investigated
the use of attributes extracted from natural language doc-
umentation by using an indexing scheme based on the no-
tion of lexical affinities [15]. What is particularly of interest
to us is their motivation for indexing from documentation
rather than source code. They concluded, on examination of
samples of code that “even when dealing with well-written
code, there is a very low probability that the programming
styles of the various pieces of code will be consistent” and
that “a single programmer may use totally different iden-
tifiers for expressing the same concept.” We disagree —
rather than being a disadvantage this may actually be an ad-
vantage as it potentially provides more information about a
concept. However, exploiting this property requires some
means to correlate different words used for the same con-
cept.

The basis for many IR techniques is the Vector Space
Model (VSM). In this approach, every document and also
the query is represented as a vector with an entry repre-
senting the occurrences of a given term [24]. All terms are
sorted and their positions in the sorted set are used as in-
dices in the vectors. Most of the vector entries will be zero
for most documents, since the distinct terms found within a
document are only a subset of the terms found in the collec-
tion of documents. This means that a sparse matrix repre-
sentation is often appropriate. Thedocument vector matrix
(DVM) is then the matrix where each row represents a given
term, and each column represents a document.

One of the advantage of using the DVM is the fact that
the similarity between different terms, between a term and
a document, and also between different documents in the
collection can easily be calculated. However polysemy and
synonymy will reduce the effectiveness.

In the last few years there have been various attempts to
use latent semantic analysis(LSA) or latent semantic in-
dexing(LSI) [1] to index the Java API JavaDoc pages. This
technique uses uses Singular Value Decomposition (SVD)
[5] to reduce the DVM space, essentially merging dimen-
sions. Since each dimension corresponds to a term in a
document, the effect is as if the higher level concepts cor-

responding to the merged dimensions have been identified.
The first use was by Ye [28, 29]. He developed CodeBro-
ker, which provides retrieval ofmethodsfrom the Java API.
It uses LSA to provide free-text indexing, and augments the
retrieval process by usingsignature matchingto extract the
more suitable components identified by the LSA process.
CodeBroker is developed for Emacs.

We also have previously explored using LSI on the doc-
umentation of the Java API, in particular the JavaDoc pages
[11, 12]. As well as trying to reproduce Ye’s results, al-
beit in a different development environment (Eclipse), we
also looked at whether document granularity had an effect.
We compared the results treating each JavaDoc page as a
separate document with treating each method section of a
JavaDoc page as a separate document. While there were
many more method documents, the thought was that the
class documents would provide more context. We also com-
pared use of free-text queries with LSI based indexing with
straight keyword search and Google. Although it was diffi-
cult to compare our results with Ye’s, our results appeared
similar. Our results also indicated that the class documents
were more effective for use with LSI than method docu-
ments, and LSI often performed better than Google (with
Google searches sometimes not returning any result). As
we use this previous study to evaluate our work, we will
give more details of it later.

Similar work was carried out by Jensen [9], also based
on Ye’s work. Jensen obtained similar results to ours with
respect to the quality of retrieval, however unlike our work,
his system was not integrated with an IDE.

We are aware of no other work that specifically uses
identifiers to index software repositories, and in fact there
is only a small amount involving identifiers at all. One
example is by Michail and Notkins, who considered find-
ing components that are similar across libraries [18]. They
argued that one way to do so was by name matching, as
names given to different libraries are meaningful and there-
fore a component with the same name in different libraries
is likely to serve a similar purpose. One relevant aspect
of their work to ours is how they treated identifiers. They
observed that many identifiers are really several words con-
catenated together and these words needed to be identified.
They did so by using various heuristics for detecting word
boundaries, such as use of underscores or change in case.
They stated that although not a particularly good style of
programming, some developers may not separate words at
all and therefore investigated the use of a dictionary lookup
to break up words further.

Another project, by Zaremski and Wing investigated the
use of signature matching in organising, navigating through,
and retrieval from, software libraries [30]. This uses typein-
formation from method signatures, possibly extracted from
code. In contrast with Maarek et al., Zaremski and Wing ar-



gue code is a more reliable source of information than pro-
gram specifications. They state that, “we cannot, as yet ex-
pect programmers to document their program components
with formal specifications”.

Also relevant to this paper is a study completed earlier
in the project investigating the usage patterns of the Java
Standard API [13]. We needed this information in order to
determine how much information we would have available
to us for the indexing. We studied 76 open source Java ap-
plications from our corpus looking at the use of version 1.4
of the API. We found the usage to be much lower than an-
ticipated. About 50% of the Java classes and about 80% of
the Java methods are not used at all. While such low us-
age would restrict what we could index, there seemed to be
a lot of commonality between applications, suggesting that
we might at least be able to effectively index the common
subset.

WordNet is a manually-constructed online lexical system
developed by George Miller at the Cognitive Science Lab-
oratory at Princeton University [19]. Originally, the goal
of the WordNet project was to produce a dictionary that
could be searched conceptually instead of only alphabeti-
cally, WordNet has evolved into a dictionary based on cur-
rent psycholinguistic theories of human lexical memory.

We believe that WordNet can be used to help deal with
the problems of polysemy and synonymy. Documents re-
lated to the query sometimes contain only the synonyms of
the query words instead of the query words themselves. We
can use WordNet to create new versions of a query by re-
placing words in the original query with related words.

3. Methodology

Our basic hypothesis is that we can create an effective
index for the Java API using information found within vari-
able identifiers found in open-source Java applications. We
have developed a system to test this hypothesis. It consists
of several phases. The first phase extracts the identifier in-
formation from the source code from our corpus. The next
phase is the data preparation phase, which involves the or-
ganisation of the variable identifier data. The third phase is
the indexing phase, in which an index of the Java API using
the variable identifiers is created. The last phase is the query
phase, in which queries are submitted to the system. The
extraction phase is done effectively once. The data prepa-
ration and indexing phases are done several times varying
different options as described below. The query phase is
then applied as often as needed on the index resulting from
each indexing phase.

3.1 Corpus

As mentioned earlier, our study uses a corpus of Java
software we have been developing [22] and was also the
subject of our earlier study on API usage [13]. Due to the
way we have developed our corpus, we organised the ap-
plications into two sets: “Set 1” was the original set of 39
applications that were in the corpus when this project be-
gan, and “Set 2” was the 37 we added with the intent to
improve the representativeness (see [13] for their member-
ship). While the two sets did not show much difference in
the API usage patterns, we maintained this distinction for
this study. This allowed us to investigate to what degree
the choice of data source could affect our results. We also
had the implementation of the Java API itself as a source of
identifier information.

The reason we considered these different groups was due
to performance reasons. Considering all applications to-
gether required substantial time and memory as the larger
the set of applications, the more terms, and so the larger the
DVM. We were interested in determining whether or not we
could get acceptable effectiveness with a smaller set.

3.2 Identifier Information Extraction
Phase

In the work reported here we are interested in the identi-
fiers associated with the uses of the API. One attribute of in-
terest is the length of identifiers. Variable identifier lengths
can indicate amount of information that the variable iden-
tifier holds. For example if we found two variable iden-
tifiers for theString class,reservedWordStartand s, then
reservedWordStartholds more information about what the
Stringobject is being used for than the identifiers.

What we found was that in the corpus we analysed the
most common identifier length was 1, with the next most
frequent length being 4. As we were unsure of the con-
sequences of including many short identifiers, we decided
to classify applications as “good” or “bad” depending on
whether or not an application had a identifier length greater
than 6 characters with a frequency greater than 5% of all
identifiers used within the application. This added another
data source to those identified above.

As we had discovered with the API usage results, the
API implementation itself showed quite different character-
istics than the other applications. When considering the
applications, we found 1,288,711 unique variable identi-
fiers associated with the use of the API, whereas there were
2,039,735 used in the API implementation (since all iden-
tifiers in the API implementation had to be associated with
the use of the API). Furthermore, the most common iden-
tifier lengths were mostly in the range 10 – 15 (there were
only 153 identifiers of length 1 for example). This might



suggest that the developers of the Java API took more care
in their choice of identifiers.

Having the identifiers was not sufficient by themselves.
Many identifiers are actually multiple words concatenated
together (such asreservedWordStart) and so we needed to
extract the individual words.

In order to separate identifiers into multiple terms, two
forms of identifier splitting were employed. The first ap-
proach was by splitting the identifiers according to the Java
convention. The Java code convention is that multiple word
identifiers should be joined by camelcase, so the identi-
fier aMultipleWordIdentifierwould becomea multiple word
identifier. Acronyms were also identified in this process
for instancecheckURLvalidatorwould becomecheck URL
validator.This handling of identifiers is similar to the ap-
proach by Michail and Notkin [18]. Michail and Notkin
have used abbreviation expansion and dictionary-lookup,
which is also implemented in our system.

The second approach was by splitting the identifiers us-
ing the lexical online dictionary, WordNet [27]. Parts of
identifiers were run through WordNet to see if they were
actual words. This is because the Java convention approach
above assumed that all developers of the open-source appli-
cations within the software corpus followed the Java Con-
vention. However, while it may not be good practice, some
developers may not follow the convention. This means that,
for example,isenabledwould not be correctly split intois
enabled. Sometimes, it is also not always clear whether a
concept is written as one or two words, such as withScroll-
bar versusScrollBar. By using a dictionary we compared
substrings with the words in the dictionary to see if they
are actual English words or not. To avoid ambiguity, longer
words are preferred, as having more specific words would
be a better distinguishing factor.

Some words were not recognised by WordNet as actual
words but were in fact actual words used in the software do-
main such asscrollbar, checkbox, textfield. We generated a
list of software domain words not present within WordNet
and use it together with WordNet during the comparison
process. This means when a word is compared to Word-
Net to check if it is an actual word, it is also checked with
the software domain word list, if the word is found to be
present within either WordNet or the software domain word
list, then it would be considered an actual word.

On closer observation of application source code it was
clear that the use of abbreviations within variable identifiers
was very common. Manual studies showed the presence of
software specification abbreviations such ass, url, ex, src,
btnand single characters. These abbreviations caused prob-
lems when matching abbreviated words in documents to the
query. To avoid these problems, a table of common abbre-
viations was manually generated through domain analysis.
No existing domain specific abbreviations table could be

found relating to software. Those that exist are only for
some well-known domains.

Through the manual process of running through the list
of words and finding the associated expansion, a 382 word
software specific abbreviation lookup table was generated.
There was some ambiguity however when expanding some
abbreviations that have more than one expansion. For ex-
ample,dnscould be expanded todomain naming serveror
dynamic naming system. To choose the right expansion at
runtime would require an understanding of the context in
which the abbreviation is used, however for simplicity for
our system the expansion that is most often used with the
abbreviation was chosen.

3.3 Data Preparation Phrase

In this phase we organise the variable identifier infor-
mation extracted in the first phase into documents accord-
ing to the Java hierarchical structure. That is, an identifier
used in relation to a particular class in the API will be di-
vided into words as described above and added to a “doc-
ument” corresponding to the class. For example, an occur-
rence ofArrayList nameListin the source code will result
in the phrasename listbeing added to the text document
java/util/ArrayList.txt.

3.4 Indexing Phase

Using the data formatted in the data preparation phase,
a DVM is then created. The indexing phase is subdi-
vided further into four steps. The first step is to do a fre-
quency cut-off where terms appearing outside a given fre-
quency range are ignored. In other words, terms occur-
ring less thanlowerLimit number of times within a docu-
ment would be removed. For example given a document
(java.util.LinkedList) containing the termsname list name
list object. Applying a limiting function with a lower-
Limit=2, where terms appearing less than 2 time would
be removed, would mean only the termsnameand list
would be kept andobject would be ignored. Jones [10]
states that terms appearing less often in a collection of doc-
uments are better at distinguishing documents from each
other. Less frequent terms within a document also cause
unwanted noise. By reducing the number of terms in the
collection through this step, the complexity of the DVM is
reduced, and as an advantage would mean better retrieval
performance.

The second step is the removal of stop-words. Stop
words are words that are generally regarded as too com-
mon to be good at discerning documents. Jenson surmised
that elimination of stop words from his system could poten-
tially give better performance, however this is untested in
his system [9]. Our stop word list included words related to



software such asstring, int, booleanand most of the con-
tents of thejava.langpackage.

The third step is the application of stem removal algo-
rithms on the terms in the documents. Stem removal is a
method used to remove word inflections in order to reduce
the number of different terms for the same base word [21].
Terms with a common stem will usually have similar mean-
ings. Simple stemming usually involves the removal of a
word’s suffix. For example words likeconnect, connected,
connecting, connectionand connections. All these terms
have a similar meaning and therefore can be reduced into to
a single termconnect. The affect of stem removal is that the
number of terms found within the DVM matrix would be re-
duced, as like terms will be reduced to a single term through
the process of stem removal and as a result we would expect
some performance gain. Various suffixes -ED, -ING, -ION,
-IONS are also reduced. Three different Algorithmic stem-
mers were used in the development and testing of the system
— Lovins, Porter, and Snowball. Snowball is an extension
of the Porter stemmer.

Stem removal generally improves recall but leads to a
loss of precision. There are a lot of variations in the results
obtained from using stemming. Some have found the im-
provements in recall to be more significant than the losses
in precision [6]. Others have had opposite results [2]. How-
ever, in the detailed analysis conducted by Hull [8], he has
concluded that stemming in general is almost always bene-
ficial.

The final step in the creation of the DVM is by select-
ing the “term weighting” method. This determines what
actual values occur in the matrix. While using just the fre-
quency of occurrence of terms in a document is simplest,
it may not always be best. Manning and Schütze [16] ob-
serve that whether or not a term appears in a document at all
should have more significance than how many times it ap-
pears. This suggests that some kind of weighting of terms
should be used in the DVM. According to Dumais [3], us-
able weight schemes includebinary occurrences, tf-idf, and
term frequency.

Term frequency weighting gives a local weight that is ex-
actly the frequency of the term. As already observed, this
scheme possibly mis-represents the importance of the intro-
duction of a new term. Binary weighting assigns 1 if the
term is present (no matter how many times) and 0 if it is
not. Binary weighting as it is is too simple as it retains too
little information, and it is rarely used in practise.

It is a common assumption in IR that if a word occurs
in almost all documents, it is less suitable to distinguish
documents and therefore it should have a less weight. The
tf-idf weight (term frequency-inverse document frequency)
is often used in information retrieval and text mining [7] to
evaluate how important a term is in a document. The impor-
tance of a document increases proportionally to the number

of times a term appears in the document but is offset by the
frequency of the term in the corpus.

3.5 Final Phase: Querying

Queries are provided as strings, such asjudge if a file is
a directory. The query is taken in as a string and is then
split using the same process described in the data prepara-
tion phase. This means that identifier splitting is performed
and numbers are removed. The query is then treated as a
(pseudo) document and its VSM representation can then be
determined.

To deal with the problems caused by synonymy and pol-
ysemy queries are processed using WordNet. Two different
methods were employed. The first method was for each
word in the query to be expanded to all synonyms possi-
ble. For example, the queryappend two stringswould be
expanded toadd append supply add on tag on hang on two
deuce string chain strand thread. By doing so, it would
give all possible terms relating to the query and hence it
was hoped would return the components with terms that
were only synonyms of the words found within the query,
whereas before they were not returned as they did not have
terms matching the query. However this gave a very poor
result.

The second method we tried was to change each word of
the query one at a time to form a set of queries that were
then run through the system. The average rating for the
components returned was then calculated and used to repre-
sent the relevancy of the returned components. The affect of
doing so was also so that components with terms that were
only synonyms of the words found within the query would
be returned, whereas before they were not returned because
they did not have any terms matching the query. For exam-
ple the query above would form the set of queries:append
two strings, add two strings, supply two strings, add on two
strings, tag on two strings, hang on two strings, append
deuce strings, add deuce strings, supply deuce stringsand
so on. What is interesting about the second method is how
to combine the results of the queries given. Do we select the
set of components that are present in the retrieved compo-
nents of all queries? How do we calculate the rating of the
returned components? Do we ignore queries that have fewer
or more thann number of retrieved components? Previous
work using WordNet has not encountered this problem and
a more detailed study into the development of a proven al-
gorithm to handle the aggregation of the results needs to be
developed in future studies. For this study the system re-
turned the result that appeared in the most queries.

In order to rank the results, all documents are compared
to the query pseudo-document by computing the angle be-
tween the VSM representations of each document and the
representation for the query pseudo-document. The smaller



Query Free Text Query (F) Keyword Query (K) Desire Components
ID (Java Class)
1 judge if a file is a directory file directory java.io.File
2a split a string into substrings string split java.lang.String
2b substring java.lang.String
3 determine if it is a leap year leap year Java.util.Gregorian-

Calendar
4 return true if the string is capitalized capitalized String java.lang.Character
5 change the file name change file name java.io.File
6 append two strings append string java.lang.String

java.lang.StringBuffer
7 create a directory on a floppy disk create directory java.io.File
8 create a random number random number java.lang.Math

between two numbers java.util.Random
9a check if a character is a digit character digit java.lang.Character
9b digit java.lang.Character
10 a listener for mouse movement listener mouse movement java.awt.event.Mouse-

WheelListener
11 draw a circle fill with red color color circle java.awt.Graphics

java.awt.Color
12 establish a connection between connection internet java.net.Socket

two computers over internet
13 round a double to integer round integer java.lang.Math
14 sort a long array into descending sort array descending java.util.Arrays

order
15a create a application that runs application runs on browser java.applet.Applet

on browser
15b application browser java.applet.Applet

Table 1. Queries used

the angle, the higher the perceived similarity. The resulting
list is sorted by decreasing similarities. The topn (a con-
figurable value) documents with a non-zero similarity value
are returned along with the number of documents retrieved.

3.6 Implementation

The system was written in Java. It uses JWordNet [25]
to interface with WordNet. The vector representation of
documents was managed using The Word Vector Tool is an
open-source Java library for handling statistical modelling
[24]. To handle the complex data formats represented in
IR systems, and in particular to compute the similarity val-
ues between documents and queries, we used the Network
Common Data Form (NetCDF) package. It consists of an
interface for array-oriented data access and a library that
provides an implementation of the interface [23].

3.7 Experimental Setup

We use the same queries we have used in our earlier
work so that we could use our earlier study as a benchmark
[11, 12]. Following our earlier work, we considered two
kinds of search query — free-text queries, which were the
main target of our research, and keyword queries. Keyword
queries were considered because experienced programmers
might use these as short-cuts. They also allowed for a fairer
comparison with Google.

We used 15 free-text queries, which included 8 from Ye’s
work [28], which are shown in table 1. The queries were
chosen to be representative of the kind of free-text query
a developer might make in the midst of writing code, and
no attempt was made to “sanitise” them. From the free-
text queries we created 18 keyword queries, with 3 free-text
queries generating 2 queries each (IDs 2, 9, and 15). In the
results presented later, the free-text queries will be identi-
fied with the ID given in this table pre-pended byF and the
keyword queries pre-pended byK. Some of the queries have
multiple possible desired components. These are treated as



Query Set 1 Set 2 API Good All

F1 1 1 1 1 1
F2 17 18 18 18 20
F3 -1 -1 -1 -1 -1
F4 -1 -1 -1 -1 -1
F5 8 8 8 8 10
F6a 14 17 16 13 17
F6b 9 8 7 12 9
F7 13 12 9 13 14
F8a -1 -1 -1 -1 -1
F8b 9 8 7 12 9
F9 1 4 10 1 4
F10 2 2 2 1 1
F11a -1 -1 -1 -1 -1
F11b 2 3 2 2 2
F12 84 -1 -1 77 107
F13 -1 -1 -1 -1 -1
F14 -1 -1 -1 -1 -1
F15 6 7 6 -1 10

Table 2. Using different data sources for free-
text queries.

different variants of the queries when giving results.

4 Results

As indicated above there are a number of aspects that
we could vary, specifically: the data source, the frequency
cut-off, stemming algorithm, and term weighting. We tried
most combinations. We only have room here for what we
consider the most interesting. More details are available
elsewhere [14].

4.1 Changing Data source

Tables 2 and 3 show the results for the varying data
sources for the free-text and keyword queries respectively.
The values shown for a particular data source and query
refers to the position or “rank” within the list returned by
the query that the expected component appears. A “-1” re-
sult indicates that the relevant component expected for the
query was not returned. Rankings lower than 25 are high-
lighted. For example the queryF1when applied to the index
created fromSet 1has value 1 indicating that the component
expected for that query appear at the top of the list (closest
match).

The results are that about one third of the queries pro-
duced no component at all, but if a component was returned,
it was almost always in the top 25 of those returned, and in
fact as often as not were in the top 10. There is no obvious

Query Set 1 Set 2 API Good All

K1 1 1 1 1 1
K2a 17 18 18 18 20
K2b 1 1 1 -1 1
K3 -1 -1 -1 -1 -1
K4 -1 -1 -1 -1 -1
K5 8 17 8 8 10
K6a 14 21 16 13 17
K6b 19 23 23 21 24
K7 13 12 9 13 14
K8a -1 -1 -1 -1 -1
K8b 2 5 2 2 2
K9a 1 3 4 1 1
K9b 1 3 -1 -1 1
K10 2 2 2 1 1
K11a -1 -1 -1 -1 -1
K11b 1 1 1 1 1
K12 84 -1 -1 77 106
K13 -1 -1 -1 -1 -1
K14 -1 -1 -1 -1 -1
K15 3 4 4 -1 5

Table 3. Using different data sources for key-
word queries.

data source that is superior to the others. In particular, the
“good” applications showed no obvious difference from the
others. A slight argument could be made that “Set 1” had
the better results, and so for performance reasons we chose
to use that in the later experiments.

4.2 Limiting term frequencies

Tables 4 and 5 show the results of dropping terms that
occurred less often than a given lower limit. Only those
queries for which we got results without limits are shown.
The first column shows the results without a lower limit.
With the exception of a very large limit (100), changing
the lower limit has very little impact. There was some im-
provement in terms of performance as the lower limited in-
creased. A lower limit of 5 is used for the rest of the results
shown.

4.3 Stem Removal

Table 6 shows the results for the different stem removal
techniques. In the interests of space we just show how many
of each type of query that the expected component is re-
turned in the top ten of all the components returned. For
example, for Lovins stem removal algorithm, 4 of all the
free text queries returned the expected component in the



Frequency Limit
1 5 10 15 20 25 100

F1 1 1 1 1 1 1 17
F2 17 17 18 18 18 14 -1
F5 8 8 9 10 11 11 34
F6a 14 14 14 14 14 14 -1
F6b 19 20 20 20 20 21 -1
F7 13 13 15 15 15 15 -1
F8b 9 9 9 9 9 9 -1
F9 1 2 3 3 3 3 -1
F10 2 2 1 1 1 1 15
F11b 2 2 2 2 3 3 45
F12 84 81 81 81 81 81 38
F15 6 6 6 5 5 4 -1

Table 4. Set 1 limiting term frequencies (lower
limit, free-text)

top ten of all components returned and 5 of all the keyword
queries returned the expected component in the top ten of
all components returned. There does not appear to be much
difference due to the different techniques.

4.4 Term Weighting

Table 7 shows the results for the different term weight-
ing techniques. Again, there does not appear to be much
difference due to the different techniques.

4.5 Comparison with Lin’s results

Table 8 shows the comparison with our previously re-
ported results using JavaDoc pages and LSI (marked as
“Lin”), including the results using Google. We have high-
lighted those results that we subjectively considered to be
providing a useful answer. The cutoff value we have used
is 25, that is, if no approach ranked the expected compo-
nent less than 25 then we regarded that as no useful result
was produced. We chose 25 because the results were ei-
ther smaller than this, or noticeably larger than it, and it is
a small enough number that it is reasonable that developers
would look at a list that big. When multiple approaches pro-
duced a rank less than 25 we chose the one that was in our
opinion most obviously the best, but allowed “ties.” From
these results, there is no obvious improvement using docu-
mentation over source code identifiers, or vice versa. Both
showed some improvement over Google.

Frequency Limit
1 5 10 15 20 25 100

K1 1 1 1 1 1 1 17
K2a 17 17 18 18 18 14 -1
K2b 1 -1 -1 -1 -1 -1 -1
K5 8 8 9 10 11 11 34
K6a 14 14 14 14 14 14 -1
K6b 19 20 20 20 20 21 -1
K7 13 13 15 15 15 15 -1
K8b 2 2 2 3 3 4 -1
K9a 1 1 2 2 2 2 -1
K9b 1 -1 -1 -1 -1 -1 -1
K10 2 2 1 1 1 1 16
K11b 1 1 1 1 1 1 -1
K12 84 81 81 81 81 81 81
K15 3 3 3 3 3 3 -1

Table 5. Set 1 limiting term frequencies (lower
limit, keywords)

F K
Lovins 4 5
Porter 6 9
Snowball 6 9

Table 6. Different stem removal techniques
(top 10)

5. Discussion

There were a number of queries for which queries on the
indexes created from the identifier data produced no result
at all, so we can hardly claim a great success. Nevertheless
for a number of queries we did get a result, and it was often
quite a good result. Furthermore, while basing our system
on identifiers in source code did not obviously perform bet-
ter than our previous system based on documentation, it did
not perform obviously worse either. We believe this is a
significant result — this is a strong indication that signifi-
cant semantic information can be gleaned from the identi-
fiers used in source code. We believe this is the first such
indication.

There are several aspects of our study that means our re-
sults must be treated with some caution. The first is our
choice of queries. It came from our previous study [11, 12],
and that was based on a set by Ye to evaluate his system
[29, 28], so there is some justification for our choice. Nev-
ertheless it is easy to believe a different set of queries would
produce different results. What we would really like to do is
to gather standard set of “typical” queries made be develop-



F K
Term Frequency 6 10
tf-idf 6 9
Term occurrence 6 9
Binary occurrence 6 9

Table 7. Different term weighting technique
(top 10)

ers. Not only would we get a wider set of components being
asked for, but we would also get variations of wordings for
the same queries. For example, instead ofjudge if a file is a
directorywe might getis the file object a directory.

While the corpus on which we have based our study is
significantly bigger than those used in most other studies,
in terms of the population of Java applications it is but a
small fraction. Despite this, we were as successful (by some
measure) as approaches using non-code artifacts. It would
be interesting to see what effect a significantly larger cor-
pus would have. It is somewhat surprising how insensitive
our results were in terms of choice of data source so it is
possible a larger corpus would not make much difference.

The number of non-results is something that we need
to investigate further. One possibility is the lack of use of
the relevant components, meaning we would not have any
data on which to base the index on. We know from our
usage study that much of the Standard API is not used in
our corpus, so this is certainly a possibility. It does not
explain some results, such as that for F4 however. The
expected component here wasjava.lang.Character,
which we would expected to be used. Furthermore, it seems
unlikely that the methods needed to do capitalisation would
be unused. One possibility is that the kinds of identifiers
used in associate withCharacter used words that are not
related to words like “capitalized”, at least as far as Word-
Net is concerned. This means our results may be affected
by the quality of WordNet’s data.

A potential future direction is to combine the two ap-
proaches, as they do seem to complement each other. In
particular, this would allow the issues associated with lim-
ited usage data that this approach presented here requires.
This would at least involve using both the JavaDoc pages
and the identifier data, but could also extend to either using
the WordNet approach to index the JavaDoc information, or
using LSI on the identifier data.

Finally we should mention our choice of performance
measure. The standard performance measures for informa-
tion retrieval systems are precision and recall, however they
are not very useful for our case. Because we expect only a
very small number of components to be relevant (we don’t
usually expect a library to provide the same functionality

ID Free Text Keyword
Set 1 Lin G Set 1 Lin G

1 1 33 -1 1 33 12
2 17 7 1 17 80 1
2b 1 9 17
3 -1 2 -1 -1 2 1
4 -1 14 -1 -1 8 -1
5 8 251 7 8 251 7
6a 14 1066 51 14 1600 11
6b 19 2 16 19 2 16
7 5 5 -1 5 8 66
8a -1 324 -1 -1 130 4
8b 2 3 -1 2 2 1
9 1 69 -1 1 60 1
9b 1 26 7
10 2 2 -1 2 2 2
11a -1 24 -1 -1 21 1
11b 2 2 -1 1 66 0
12 52 64 -1 52 62 5
13 -1 21 5 -1 21 0
14 -1 59 -1 -1 20 0
15 6 3 1 3 3 2

Table 8. Comparison with Lin and Google (G)

in many different ways) the precision is always going to be
very small. Furthermore, as there is the possibility that there
are no relevant components in the library, recall will not be
a useful measure either. We consider evaluation based on
the rank of the correct component to be most useful. Others
have suggested rank-based measures may be more useful in
other cases [20].

6. Conclusions

We have presented a study investigating the indexing of
the Java Standard API using information gained from the
identifiers used in the source code of applications that are
used in conjunction with Java Standard API components.
Extracting information from source code requires a reason-
able amount of relevant source code — we use what we
hope will be the beginnings of a standard Java corpus for
this kind of study. Identifiers are often not English words
themselves, and so we have had to decompose the identi-
fiers. We use a heuristic based on a standard convention for
Java identifiers and also identifying words that make up an
identifier using WordNet [27]. To deal with the problems
caused by synonymy and polysemy queries are processed
using WordNet to create new queries that include words re-
lated to the original query words.



Our results, while not good enough to declare our ap-
proach a complete success, are very encouraging. For many
of the queries we used we got be the expected component in
the top 25 return results. This is at least as good as previous
work. One important consequence of this is that our results
provide what we believe is the first evidence that useful in-
formation can be extracted from source code.

Our approach clearly has a limitation in that it can only
be used on the part of the Standard API that we have usage
information for. Nevertheless our results are very encour-
aging. We also note that indexing based on documentation
is also encouraging but not a complete answer. We suggest
that the two approaches compliment each other, and believe
that finding an effective means to combine them is the next
challenge.
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