
A Java Reuse Repository for Eclipse using LSI

Ming-Yang (Jerry) Lin
�
, Robert Amor � , Ewan Tempero �

Department of Computer Science
University of Auckland
Auckland, New Zealand�

mhsi005@ec.auckland.ac.nz
��� trebor,ewan � @auckland.ac.nz

Abstract

Software Reuse is a concept that is frequently mentioned as a
way to improve software developers’ productivity. However, there
are a number of issues that need to be addressed in order for soft-
ware reuse to be adopted by developers. One of those issues is
providing enough reusable artifacts. The Java Standard API has
been quite successful in this, with the latest version having over
3000 classes available. However this raises the issue of finding
the right artifact to reuse. With the Java API, this means trawling
through the JavaDoc webpages, which has the risk of not being
able to find the right artifact, even though it is in the API. In this
paper, we explore the use of latent semantic indexing as a means
to index the Java API JavaDoc pages. Specifically, we describe
Prophecy, an Eclipse plug-in that presents the Java API as a soft-
ware repository.

Keywords: Code Reuse, Software Repositories, Latent Se-
mantic Analysis

1 Introduction

Software Reuse has been proposed as a solution to the
software crisis since McIlroy [16]. The basic idea is that
software developers use reusable components found in soft-
ware repositories to reduce the amount of code that has to
be written and so increase productivity. The success of a
repository depends on the number of components it con-
tains; if a repository has too few components, then a devel-
oper is unlikely to get much benefit from it. However repos-
itories with many components face a different problem —
how a developer finds the particular component she needs,
or, failing to find something relevant, how to be sure that
this is because there is nothing relevant in the repository.
In this paper, we present an approach to dealing with the
problem of efficiently locating components in a large repos-
itory. The approach uses latent semantic indexing[1] and is
provided as a plug-in to the Eclipse Integrated Development

Environment.
The Java Standard API [18] makes large number of use-

ful classes available to a Java programmer. To some extent it
is beginning to suffer from its success in that it is sometimes
difficult to find relevant components. The standard mecha-
nism for finding components in the API is to browse the
web-based documentation provided by the JavaDoc mech-
anism. This documentation is organised as a set of web
pages, roughly one per class, in a hierarchy that corresponds
to the java package structure of the classes. The package
structure tends to group related classes, and so the devel-
oper can find relevant classes by using the structure to guide
her browsing.

When the API consisted of 200 or so classes in its first
release in 1996, the browsing mechanism was an accept-
able approach because it was feasible to look at every class.
However the most recent release (5.0) has approximately
3200 classes and there are many other APIs now available
to developers. It is now less feasible to look at every class,
and so developers must rely on the package organisation to
guide their searches. However this structure is becoming
unwieldy, and it’s also not always organised as expected.

Our plan is to using indexing to improve the efficiency of
finding relevant classes in the Java API. The question then
is how to index and how to present the index to the devel-
oper. We have developed a tool called Prophecy. Prophecy
uses two tactics to provide more efficient access to the Java
API. We use Latent Semantic Indexing (often referred to
as Latent Semantic Analysis) to do the indexing. This is
a free-text indexing and retrieval mechanism that involves
statistical probability and correlation between terms in doc-
uments to reduce the semantic distance between words. [1].

Prophecy is provided as a plug-in to the Eclipse Inte-
grated Development Environment. Developers can describe
the desired functionality in a comment in the source code,
and Prophecy will provide a candidate list of classes from
the Java API.

The rest of this paper is organised as follows. We be-

1



gin by exploring in more detail the issues relating to Soft-
ware Reuse that are relevant to our research, and discuss the
specific problem we are addressing in more detail. In sec-
tion 3, we provide an overview of Latent Semantic Index-
ing. Section 4 presents Prophecy. We then describe studies
we carried out investigating the effectiveness of Prophecy
in section 5. We discuss our results in section 6, and finally
present our conclusions in section 7.

2 Software Repositories

The notion of software reuse has been widely discussed
since 1968, when McIlroy promoted the idea of off-the-
shelf reusable components that have been fully tested and
ready to be reused without further testing[16]. Since then,
considerable research has been devoted to the subject. Even
though software reuse has been widely believed to be a tech-
nique with great potential to increase software productivity
as well as quality, it is still struggling to become standard
practise [17].

Many approaches to reuse have been developed and ex-
plored. Most involve a software repository, a repository
of software entities (often referred to as components) that
can be considered for reuse in any development project[12].
Software repositories have tool support for managing com-
ponents, allowing components to be added, updated, or re-
moved, usually subject to some form of quality control. In
particular, they provide tool support to allow a software de-
veloper to find, assess, and retrieve components for reuse.

The research in the software repository area has focused
on such topics as: tools for identifying and constructing
components [3], tools providing access to components [15],
and tools to find relevant components [10, 11]. It is this
last topic that is most relevant to our work. As discussed in
the introduction, the larger the repository, the more likely
there will be a component to suit a developer’s needs, but
the harder it will be to actually find that component.

There are a number of kinds of indexing schemes a
repository system might use. These can be classified as
uncontrolled vocabulary and controlled vocabulary. Con-
trolled vocabulary systems restrict the terms available to do
the indexing and to those making the queries. Examples of
controlled vocabulary include hierarchical structures sim-
ilar to the Dewey Decimal system, or predefined lists of
properties or facets a component might have. As we will
discuss below, this kind of indexing usually requires human
intervention, making it expensive, and even so cannot al-
ways provide good quality.

Uncontrolled vocabulary places minimal restrictions on
the terms available for indexing and retrieval. The index-
ing process is often automated by software based on doc-
uments that are available rather than employing human in-
dexers, and so it potentially much cheaper to create than

controlled vocabulary systems. Prophecy uses an uncon-
trolled vocabulary index system using the API Specifica-
tion, or “JavaDoc” pages.

2.1 Indexing the Java Standard API

The Java Standard API is an extensive set of Java classes
available to any Java developer. It is not a software reposi-
tory as usually defined in the software reuse research com-
munity because it does not have the tool support normally
associated with software repositories. It does have one char-
acteristic of many repositories. The components are organ-
ised in a hierarchical fashion allowing developers to browse
the set of available components. Developers can make rea-
sonable guesses based on the hierarchy as to the location of
what they are looking for.

Browsing a repository can be effective when all of its
contents are in the “obvious” place and even if they aren’t,
if the the number of components is relatively small, or its
content is already reasonably well known to the developer
then it’s still possible to effectively look at the whole repos-
itory to find something. But as the size of the repository
gets bigger, not only is exhaustive search not practical, but
it also becomes harder to organise its contents in a hierar-
chical manner so that everything is in the “obvious” place
as there can be a number of different hierarchical organi-
sations that might work. For example, in the Java API, it
is not obvious where one would find something to format
double as a string (it’s neither in the Double class nor
the String class). The goal of our research is to provide
a search mechanism to the Java API, to allow developers to
find relevant components more efficiently than through the
use of browsing.

The usual approach to developing a reuse repository is to
develop a tool set that manages the repository that includes
the place where the components are stored, and means for
adding, deleting, searching and retrieving of the compo-
nents. Since the Java API comes already packaged in a Java
distribution, repackaging it is both redundant and also in-
terferes with the normal use of Java. An alternative would
be to store meta data about the Java classes in the reposi-
tory rather than the classes themselves, but this raises the
question of how to capture and represent the data.

The key observation on which our work is based in that
we already have quite a bit of useful information about the
classes in Java API, namely their JavaDoc pages. We would
like to extract what we need from these pages. This changes
the problem to more that of an information retrieval prob-
lem. We index the JavaDoc pages so that queries for com-
ponents become queries for particular documents. The con-
ventional approach of retrieving textual information from
a repository is lexical matching (often known as keyword
matching) between the terms in user query and the terms

2



Ring
Doughnut
Tyre
Wheel
Circle

Student Responses

java.awt.Graphics.fillOval(int x, int y,
int width, int height)

Description

Fills an oval bounded by the specified
rectangle with the current color.

Figure 1. The Vocabulary Problem

used to index documents.

Issues with performance in conventional free-text re-
trieval techniques can be broken down into two causes: syn-
onymy and polysemy. Synonymy in a general sense is de-
scribing that there are words with similar or same mean-
ing. For example, “hot” has synonym of “spicy”, “warm”,
“eager” and “attractive” as English slang. Polysemy refers
to the fact that one word can have multiple meanings. For
example, the word “plant” can mean vegetation or machin-
ery. The use of words to describe the desired component is
based on different contexts, knowledge, needs, or linguis-
tic habits of programmers. Programmers can therefore de-
scribe the same component differently. Furnas et al. mea-
sure the probability of two people choosing same keyword
for a single well-known object is less than 20% [5].

Henninger showed the graphic shown in figure 1 to a
group of students and asked them to name it as they would
to a repository. Some of the responses are shown, and none
of those given are keywords that appear in the description of
the component one would use from the Java API to create
the figure (also shown).

There are three major factors why conventional indexing
and retrieval methods fail to overcome the problems due to
synonymy and polysemy [4]. The first factor is the way in-
dex terms are identified incompletely. The terms used to de-
scribe or index documents are an abstraction that only con-
tains a portion of the terms. The second factor is the lack of
an automatic method to overcome the problem of polysemy.
Approaches such as human intermediaries acting as trans-
lators, or using controlled vocabulary to solve the problem
are too expensive and not very effective. The third factor
is to do with the way conventional indexing and retrieval
systems work. In such systems every term is treated inde-
pendently from each other, the system omits the fact that
there are correlations between terms that frequently appear

together, and they are weighted as equally as ones that are
rarely found together. This problem prohibits the user from
using compound terms or long free text queries effectively
in expanding or limiting a search [4]. Therefore, a suitable
free-text indexing and retrieval mechanism for the purpose
of this research has to include the semantic aspect of free-
text information.

Others have addressed this problem. The closest to our
work is by Ye [20, 22]. He developed CodeBroker, which
provides retrieval of methods from the Java API. It uses
latent semantic analysis (LSA) to provide free-text index-
ing, and augments the retrieval process by using signature
matching to extract the more suitable components identified
by the LSA process. CodeBroker is developed for Emacs.
The questions we address in our work are, how effective is
LSA, in particular how well does it work without augmen-
tation, and is the method level the most effective level for
component retrieval.

3 Latent Semantic Indexing

As described above, there is a strong motivation to allow
programmers to search for reusable components through
a description comprising keywords or normal text. How-
ever, simple free-text indexing and retrieval methods per-
form poorly with search terms requiring almost exact word
matches to be effective.

Latent Semantic Indexing (LSI) [1] is a free-text index-
ing and retrieval mechanism that involves statistical prob-
ability and correlation between terms in documents. The
basic idea being that a particular concept is described not
just with a unique word, but with a distribution of words fo-
cused around the concept. If indexing and retrieval is based
around matching concept distributions then the reliance on
matching against a particular word is removed from the pro-
cess. This approach should reduce the effect of synonyms
as the match is not on a single word (which may have syn-
onyms), but a distribution of words around that topic. This
approach should also reduce the impact of polysemy as the
distribution of words will differ for each unique meaning
(e.g., for machine plant versus the organic plant). While a
full description of LSI is beyond the scope of this paper a
brief introduction to the technique is presented below.

LSI is based on the Vector Space Model (VSM), which is
a technique commonly used in traditional Information Re-
trieval (IR) [9]. VSM represents a document as a vector of
multiple dimensions, where each element of the vector rep-
resents the presence, or otherwise, of a keyword of interest
to the domain. A query comprising free-text or keywords
can similarly be represented as a multi-dimensional vector.
If a query contains the same keywords as a given document,
then the vectors for the document and query will be identi-
cal. Queries that have terms that aren’t in the document will

3



have vectors that are further away from the document’s vec-
tor. This means that the closeness of a query to a set of doc-
uments can be ranked according to the angle between the
documents’ vectors and that of the query, with those having
the smallest angle considered to be the closest match to the
query. In the VSM it is usual to choose a particular angle
as the cut-off between relevant documents and non-relevant
documents when ranking documents.

VSM requires an enormous vector space for most real
problems, with the size driven by the number of keywords
for the domain versus the number of documents to index.
This vector is typically sparse and it is possible to apply
statistical techniques to reduce the vector size while main-
taining the most important relationships between terms in
the documents. LSI assumes there are latent semantic re-
lationships between terms and documents, and the relation-
ships can be revealed by statistically analysing the overall
word usage patterns across the whole document collection.
LSI uses Singular Value Decomposition (SVD) [7] to re-
duce the term-document space, essentially merging dimen-
sions. Since each dimension corresponds to a term in a doc-
ument, the effect is as if the higher level concepts corre-
sponding to the merged dimensions have been identified.
Since SVD produces lower-dimension vectors that still re-
tain many characteristics of the original vector, the argu-
ment is that the terms that are merged are mainly those that
have a semantic relationship.

As can be imagined from the description of VSM and
SVD the accuracy of these approaches is contingent upon
careful choice of the parameters around which these meth-
ods are based. The number of keywords and their spread
across the domain of interest are vital to the later retrieval
results. Weighting schemes for keywords can also vary the
results significantly. Local schemes look at the number of
occurrences of a particular keyword in a document as a
measure of its importance whereas global schemes provide
weighting factors for each keyword up-front. When per-
forming the SVD analysis the choice of the ‘ � ’ factor, rep-
resenting the number of dimensions to be reduced down to,
has a marked effect on the maintained dependencies. In or-
der that the ‘correct’ values are derived during SVD a ‘train-
ing set’ of documents is usually established to provide a fair
coverage of terms and concepts for the domain.

As an example of how LSI works, suppose we are
searching for information in a LSI indexed database con-
taining Java programming articles. If there are enough ar-
ticles that contain all three words “String”, “append”, and
“Stringbuffer”, the LSI algorithm will reveal the correlation
between these three terms in the article collection. A search
query of “Append String” will find a set of articles contain-
ing these two terms, as well as articles that contain just the
word “Stringbuffer”.

4 Prophecy

4.1 Usage

As mentioned earlier, Prophecy is a plug-in to the
Eclipse IDE[19]. The interface has been designed to be
consistent with the overall Eclipse design and to be as min-
imalistic as possible.

There are four issues to consider when displaying re-
trieved reusable components: what information to present,
how much to present, where to present it, and when to
present it. Prophecy shows the class name and the begin-
ning of the class description, since this is usually enough
for developers to identify the relevancy of a class to the cur-
rent requirements. The number of candidates to present is
dependent on how the user has customised the IDE, but is
typically 10. This information is presented in the Results
View (a view is a standard concept in the Eclipse IDE) and
located where other common views are found in the IDE
(see figure 2). Programmers can also view the complete
API specification of any chosen class, and the specification
will be displayed in Browser View (figure 3).

Queries are made to the Java API by giving the require-
ments for the component as a Java multi-line comment. As
the comment is completed (by typing */) Prophecy passes
the content of the comment to the search subsystem. The
results of the search are then immediately presented in the
Results View.

Figure 2 shows an example of this. Highlighted in the
central panel is the query being made. Upon the comple-
tion of comment “change the file name”, the candidate Java
classes are shown in the Result View in the panel at the bot-
tom. Developers can access the complete set of results using
the arrows on the top right hand side corner of Result View.

Prophecy in fact provides two search mechanisms. As
well as one based on LSI, it also provides one based on
Google[8]. The user can choose which of the mechanisms
is used for the search. As well as providing an alternative
search mechanisms, it also allows us to make comparisons
between conventional lexical keyword matching retrieval
techniques and those based on LSI. We discuss this further
in section 5.

As mentioned above, the intent of the design of
Prophecy’s user interface was to be consistent and minimal-
istic. This is achieved by incorporating the query mecha-
nism into the code development activity, rather than hav-
ing a separate dialog or similar mechanism. The results
are provided in a non-obtrusive fashion, in that focus is not
changed and users are not forced to acknowledge them be-
fore doing anything else (as with pop-up dialogs for exam-
ple). The results remain until the next comment is com-
pleted, so providing context for the current development.

In the event that the class name and start of the descrip-

4



Figure 2. Queries made in comments (centre-right panel) yield a list of candidates (bottom-right
panel).

tion is insufficient to identify the required component, the
full API specification can be accessed. The Browser view
is exactly the same as any web browsers that render HTML
file except that it is implemented as an Eclipse view plug-in
rather than used as an external program. The benefit of hav-
ing a fully integrated environment is to prevent program-
mers from shifting their focus “too far away” from their
current tasks. As shown in Figure 3, having the API specifi-
cation displayed in the same environment allows program-
mers to immediately reflect what they’ve comprehended in
the specification to the current task in the JavaEditor.

4.2 Design and Implementation

Prophecy involves several Eclipse plug-ins and utilises
existing Eclipse interface components. The general soft-
ware architecture of the Prophecy system is shown in figure
4. Prophecy consists of three subsystems: Eclipse, General
Text Parser (GTP) and Google Web API.

Eclipse is a platform-independent open-source software
framework written in Java. A major application of the
framework is to provide an Integrated Development Envi-
ronment (IDE) for Java (hereafter referred to as the Eclipse

IDE). The Eclipse framework has a plug-in architecture.
Three plug-ins (Result View, Browser View, and JavaEdi-
tor) have been created for Prophecy

General Text Parser (GTP) [6] is an existing implementa-
tion of LSI, and in this research GTP is adopted and slightly
modified to construct the component repository described
and perform query matching described in section 3. GTP is
an integrated software package for creating data structures
and the encoding needed for information retrieval models.
The functionalities implemented in GTP include parsing
ASCII files, creating term-by-document matrix with options
of several local and global weighting scheme, producing k-
dimensional space via matrix decompositions of the SVD,
and performing query matching which returns a cosign-
ranked list of documents. GTP is implemented in both C++
and Java, with the Java version used for Prophecy. GTP was
developed and tested on a Linux platform, and so some mi-
nor modifications were made to make it run under Windows
platform. GTP is also used to index the Java API specifica-
tions to create the Java Class Component Repository shown
in figure 4. We explored several indexing schemes, as dis-
cussed in section 5.

Google Web APIs [8] is an open-source Java package

5



Figure 3. Figure Browser View. Displays the API Specification of selected Java class, File, from figure
2.

that enables developers to incorporate Google web search as
a resource in their applications. Google Web APIs provides
a programming interface to send query requests to Google’s
index and retrieve web pages in a structured data format that
is easy for further processing.

JavaEditor is a part of the Java development environment
provided with the Eclipse deployment. It includes a scan-
ner that continuously scans the input to the editor to provide
for such things as formatting and colouring code, provid-
ing completions, and so on. This has been modified to, on
completion of a multi-line comment, send the contents of
the comment to the designated search system, as discussed
above.

4.3 Indexing for Prophecy

In order to be used in Prophecy the Java API had to be
indexed. Initially the API was preprocessed to generate a
set of keywords for the LSI process (approximately 11,000
keywords were identified) and to create a document set to
index. Within Prophecy two different types of document
set were examined. One where each document consisted of
all the text (ignoring markup tags and images) for a class,

Corpus ID Corpus #Terms #Documents
C1 J2SE class 12797 6590

documents
C2 C1 + extra 23406 9578

training
documents

C3 J2SE method 10224 45666
documents

C4 C3 + extra 22066 48654
training
documents

Table 1. The four corpora

similar to what is presented in the Java API web pages, the
other where each document consisted of the text of an in-
dividual method description. For each document set the
normal stemming techniques and stopword removal was ap-
plied prior to creating vectors.

6



Figure 4. Software Architecture of Prophecy System

5 Evaluation Study

In this section we present a study we conducted to de-
termine the effectiveness of our use of LSI. As mentioned
earlier, the effectiveness of LSI depends on the number of
dimensions that are reduced, the weighting that is used, and
the training documents that are used. Our goal was to de-
termine a solution that is computationally feasible and that
yields acceptable retrieval results to support programmers
finding reusable components.

There are a number of variables to consider: the LSI con-
figuration (in particular the value of � ), the type of search,
and the corpora. We also compared the results from using
LSI with those achieved using Google.

5.1 LSI Configuration

As discussed earlier, the effectiveness of LSI depends
in particular on the amount of dimension reduction that is
done, that is, the value of � . Finding the value of � is still
an open research problem, with the value often determined
by empirical testing [2]. Furthermore, the best value varies
depending on the number of unique terms and documents in
the corpus. As this was not the goal of our work, we choose
to use the configuration used by Ye [21]. This also had the
advantage of allowing us to compare our results with Ye’s.

Ye’s value of 328 was used, though this is outside
the range of 100 to 300 often recommended [13] for LSI

(though the value is often constrained for reasons of com-
putational feasibility rather than retrieval accuracy). In
this implementation no global weighting scheme was ap-
plied to the keywords but log-based local weighting was in-
corporated (weighting keywords with multiple occurrences
higher than those with a single occurrence).

5.2 Query type

We considered two kinds of search query — free-text
queries, which were the main target of our research, and
keyword queries. Keyword queries were considered be-
cause experienced programmers might use these as short-
cuts. They also allowed for a fairer comparison with
Google, as discussed below.

We used 15 free-text queries, which included 8 from Ye’s
work (see table 2). The queries were chosen to be repre-
sentative of the kind of free-text query a developer might
make in the midst of writing code, and no attempt was made
to “sanitise” them. From the free-text queries we created
18 keyword queries, with 3 free-text queries generating 2
queries each (table 3).

5.3 Corpora

For the training set, we considered the two document
sets discussed earlier (one document per class versus one
per method) and nothing else, and then those document set
with extra documents added. These documents were: the

7



Query Free Text Query Desire Components Rank
ID (Java Class)

C1 C2
F1 judge if a file is a directory java.io.File 33 3870
F2 split a string into substrings java.lang.String 7 1244
F3 determine if it is a leap year Java.util.GregorianCalendar 2 956
F4 return true if the string is capitalized java.lang.Character 14 643
F5 change the file name java.io.File 251 4159
F6 append two strings java.lang.String 1066 2221

java.lang.StringBuffer 2 2623
java.lang.StringBuilder 1 4934

F7 create a directory on a floppy disk java.io.File 5 5081
F8 create a random number between java.lang.Math 324 6497

two numbers java.util.Random 3 2046
F9 check if a character is a digit java.lang.Character 69 308
F10 a listener for mouse movement java.awt.event.MouseWheelListener 2 6341
F11 draw a circle fill with red color java.awt.Graphics 24 1621

java.awt.Color 2 2756
F12 establish a connection between java.net.Socket 64 3547

two computers over internet
F13 round a double to integer java.lang.Math 21 969
F14 sort a long array into descending java.util.Arrays 59 3552

order
F15 create a application that runs java.applet.Applet 3 2443

on browser

Table 2. Ranking of relevant components retrieved from corpus C1 and C2 using free-text query.

Java 2 SDK 5.0 documentation, the Java virtual machine
specification 2.0, the Java language specification 2.0 and a
Java textbook.

In total, there are 4 corpora being examined (see Table
1): J2SE class documents, J2SE class documents and extra
training documents, J2SE method documents, J2SE method
documents and extra training documents. As can be seen
in the Table 1, the training documents have approximately
double the vocabulary of C1 and C3.

5.4 Results

We show the results only for C1 and C2 due to space
limitations. Tables 2 and 3 show the results for free-text
and keyword search respectively. The rank is the position
the “desired component” in the list provided by the retrieval
method, so smaller is better. For this document set, the
desired component was considered to have been the best
ranked method belonging to the same class. The best ranked
method is not necessarily the one that could be reused for
the task described by the query, but it takes programmers to
the same class containing the desired method in Java API.

We also carried out the same queries using Google, by
modifying the query to include +"Standard E. 5.0"

+site:java.sun.comwhich then restricted the search
to to the web pages of the Java API for J2SE 5.0 on the Java
official website. The results are summarised below, with the
full results available from [14], although these results must
be viewed with some caution as they Google API does not
appear to use the same data as the google.com website.

5.5 Analysis

There are a number of points of interest in the results
shown above. The first is that despite the fact that the
queries were taken as is without careful wording, a num-
ber of the free-text queries performed quite well. That said,
quite a number of queries did not perform so well. If we
assume that 10 candidates are displayed at a time in the
Prophecy Results View, then not quite half of the queries
would have the desired component appearing in the first
page, and going two more pages would only add 3 more,
and for some it is unlikely the developer would be patient
enough to page though to them.

Next is the comparison with keyword queries. In fact
most performed worse than the free-text queries they were
derived from with several performing significantly worse.

Finally there are the very poor results with the C2 corpus,

8



Query Free Text Query Desire Components Rank
ID (Java Class)

C1 C2
K1 file directory java.io.File 33 3870
K2.1 string split java.lang.String 80 1397
K2.2 substring 9 1093
K3 leap year Java.util.GregorianCalendar 2 1614
K4 capitalized String java.lang.Character 8 488
K5 change file name java.io.File 251 4159
K6 append string java.lang.String 1600 2221

java.lang.StringBuffer 2 2623
java.lang.StringBuilder 1 4934

K7 create directory Java.io.File 8 5091
K8 random number java.lang.Math 130 4928

java.util.Random 2 3981
K9.1 character digit java.lang.Character 60 467
K9.2 digit 26 4428
K10 listener mouse movement java.awt.event.MouseWheelListener 2 6341
K11 color circle java.awt.Graphics 21 2317

java.awt.Color 66 4561
K12 connection internet java.net.Socket 62 5447
K13 round integer java.lang.Math 21 639
K14 sort array descending java.util.Arrays 20 4375
K15.1 application runs on browser java.applet.Applet 3 1884
K15.2 application browser 1 2524

Table 3. Ranking of relevant Java components retrieved from corpus C1 and C2 using keyword query

with all queries performing spectacularly poorly.
Not surprisingly, Google did not perform so well with

free-text search, often not returning any documents as those
queries often used terms that didn’t appear in any docu-
ments. Google did perform somewhat better than LSI for
keyword search, with 12 queries having their desired com-
ponent ranked in the first 10 and another 4 in the second
10 However 4 queries returned no results at all. We also
tried synonym search with mixed results. In some cases it
performed slightly better, and in others slight worse.

6 Evaluation

There are a number of complications to determining just
how good Prophecy is. Measuring the effectiveness of an
information retrieval method is usually done with recall
(what proportion of relevant documents are retrieved) and
precision (what proportion of the retrieved documents are
relevant). The similarity value computed by LSI between
query and document is a continuous value and so there is no
obvious point at which a document is “not similar enough”
to retrieve. Others (e.g., Ye [20]) set a specific threshold
(either in similarity value or absolute number to retrieve).

With Prophecy, it effectively returns everything, meaning
recall is always 1 and precision is always very small. For
this reason we have reported rank. This makes it difficult
to compare to Ye’s results, who provides recall and preci-
sion values. The values he reports are (for example), 100%
recall gives about 13% precision.

Another point of difference is that in the results reported
in tables 2 and 3 the “desired components” are classes not
methods, whereas Ye performed indexing on a per-method
basis. We also carried out the studies where the documents
contained individual methods, but the results were uni-
formly poor (see [14] for details). This is perhaps not sur-
prising. Documents of longer length generally have more
semantic content and higher term frequency of semantically
important keywords compared with shorter documents in
the same corpus. However it does not explain why Ye’s re-
sults appear so much better than ours.

We worked with Java SDK 5.0, whereas Ye worked with
an earlier version. We also used a different set of extra train-
ing documents than Ye did (for example he included Linux
on-line manuals) with a total 78,475 documents and 10,988
different terms. The expectation is that adding more train-
ing documents will reduce the semantic distance between

9



terms used to mean the same thing and so improve perfor-
mance. It is difficult to determine what caused such poor
performance. Perhaps the increase in the number of terms
(roughly double that of C1) introduced too much noise, or
perhaps the � value used was inappropriate for the C3 cor-
pus. Again, our results are not consistent with Ye’s. It is
possible we should have tuned the LSI better, however in
fact we had the best results with the values provided by Ye.

7 Conclusions

We have presented Prophecy, a tool that provides soft-
ware repository support for the Java Standard API in
Eclipse. Prophecy’s user interface is intended to be con-
sistent with the Eclipse look and feel and minimalistic in
terms of how much it controls the user’s focus.

We have tried to reproduce Ye’s results from CodeBro-
ker, but have not been able to do so, although we believe
the results we have do suggest that Prophecy could be an
effective tool with better tuning of the indexing. However
the effort required to get good behaviour raises questions as
to the effectiveness of LSI in this context.

Ultimately, the question we really want to answer is
whether using Prophecy with LSI is faster than other means
of finding appropriate components from the Java Standard
API, such as just using a web browser and Google. For
this, we need to perform empirical studies, which will be
the subject of future work.

References

[1] M. W. Berry and M. Browne. Understanding Search En-
giners: Mathematical Modelling and Text Retrieval. SIAM,
1999.

[2] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Review, 41(2):335–
362, 1999.

[3] R. Biddle and E. Tempero. Towards tool support for reuse.
In M. Purvis, editor, Software Engineering: Education and
Practice ’98, pages 126–133, Dunedin, New Zealand, Jan.
1998. IEEE Computer Society.

[4] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

[5] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Du-
mais. The vocabulary problem in human-system communi-
cation. Communications of the ACM, 30(11):964–971, 1987.

[6] J. Giles, L. Wo, and M. Berry. GTP (General Text Parser)
software for text mining. In H. Bozdogan, editor, Statisti-
cal Data Mining and Knowledge Discovery, pages 455–471.
CRC Press, Boca Raton, 2003. http://www.cs.utk.
edu/˜lsi.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. John
Hopkins University Press, 1989.

[8] Google Web APIs. Develop your own applictionas using
google. http://www.google.com/apis/, Retrieved
May 5 2005.

[9] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. Gloss: text-
source discovery over the internet. ACM Transactions on
Database Systems, 24(2):229–264, 1999.

[10] S. Henninger. Using iterative refinement to find reusable
software. IEEE Software, 11(5):48–59, 1994.

[11] S. Henninger. An evolutionary approach to constructing ef-
fective software reuse repositories. ACM Transactions on
Software Engineering Methodology, 6(2):111–140, 1997.

[12] C. W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, 1992.

[13] T. A. Letsche and M. W. Berry. Large-scale information re-
trieval with latent semantic indexing. Information Sciences,
100(1-4):105–137, 1997.

[14] M. Y. Lin. Supporting software component reuse with
active-retrieving component repository system. Master’s
thesis, University of Auckland, 2005.

[15] S. Marshall, R. Biddle, and J. Noble. A web user interface
for an interactive software repository. In Fifth Australasian
User interface Conference, pages 57–64, Darlinghurst, Aus-
tralia, Australia, 2004. Australian Computer Society, Inc.

[16] M. D. McIlroy. Mass produced software components. In
P. Naur and B. Randell, editors, Proceedings of NATO Soft-
ware Engineering Conference, volume 1, pages 138–150.
NATO Science Committee, Jan. 1969. Presented at the
NATO conference on software engineering, Garmisch, Ger-
many, 7-11 October, 1968.

[17] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and
research directions. IEEE Transactions on Software Engi-
neering, 21(6):528–561, June 1995.

[18] Sun Microsystems. Java 2 platform standard edition 5.0.
api specification. http://java.sun.com/j2se/1.
5.0/docs/api/, 2004.

[19] The Eclipse Foundation. The eclipse project. http://
www.eclipse.org, 2005.

[20] Y. Ye. Supporting component-based software development
with active component repository systems. PhD thesis, Uni-
versity of Colorado, 2001.

[21] Y. Ye. Personal communication, 2005.
[22] Y. Ye and G. Fischer. Promoting reuse with active reuse

repository systems. In 6th International Conerence on Soft-
ware Reuse, pages 302–317, London, UK, 2000. Springer-
Verlag.

10


