
Keeping things consistent

JOHN HOSKING, WARWICK MUGRIDGE and ROBERT AMOR

Department of Computer Science
University of Auckland
Private Bag 92019, Auckland
{john,rick,trebor}@cs.auckland.ac.nz

JOHN GRUNDY

Department of Computer Science
University of Waikato
Private Bag 3105, Hamilton
jgrundy@cs.waikato.ac.nz

Abstract

In many applications there is a need to keep shared or
related information consistent. For example, in a
CADrafting package it is necessary to keep views of an
artefact from different perspectives consistent with one
another. In software development environments there is
a need to keep diagrammatic views, such as OO analysis
diagrams, consistent with corresponding textual code. In
this paper, we describe a number of techniques we have
developed to solve consistency problems in a wide
variety of application domains. These techniques include
uni- and bi-directional constraints, propagation of
discrete change descriptions, and transaction based
version merging.

1. Introduction

Software designers are often faced with a need to keep
different parts of an application consistent with one
another as changes are made to the program or system
state. These can be quite low-level, such as ensuring the
rendered image of a figure moves by the appropriate
amount in response to a drag event, through to very high
level, such as ensuring a system implementation is kept
consistent with changes to its requirements or design.

In this paper, we describe a number of approaches to
maintaining consistency across applications that we have
developed over the years, together with some of the
motivation for their development. We commence with a
description of Kea, which provides one way
dependencies as a way of keeping the results of function
applications consistent with changes to input data
without programmer overhead. This is followed by a
description of multi-directional constraints as
implemented in the Snart object-oriented constraint
language. Such constraints permit multiple
representations of information to be kept mutually

consistent with one another in a declarative manner. We
then introduce the CPRG (Change Propagation and
Response Graph) model. This elevates the description of
changes to first class status, allowing complex reasoning
about changes, and permitting implementation of partial
consistency and change histories. This is followed by a
description of VML (View Mapping Language), which
provides a somewhat more declarative approach than the
CPRG model to handling complex mappings between
large, related models. We conclude with a brief
description of related work and our future directions.

2. Kea and functional consistency

Kea is a functional object-oriented language (Hamer,
1991). Its motivation was to provide a means of
expressing code of practice provisions in a manner
allowing their interpretation for conformance checking.
Several such applications have been developed for
interpreting building codes, in collaboration with the
Building Research Association of New Zealand. These
include FireCode (Hosking et al, 1987), Seismic
(Hosking et al, 1989), WallBrace (Mugridge and
Hosking, 1988), and ThermalDesigner (Amor et al,
1992). Fig. 1 shows a typical provision, taken from the
thermal insulation code of practice on which
ThermalDesigner is based.

The seasonal heat loss of a building
is the air heat loss plus the sum of
the floor, wall, window, and roof
heat losses for each space in the
building.
The heat loss of a floor is the floor
area times the annual loss factor of
the floor divided by the thermal
resistance of the floor.

Figure 1: Example provision used in the development of

ThermalDesigner

In typical usage, such provisions are interpreted in a
functional manner (Fenves et al, 1987) as opposed to a
multi-way constraint. For this reason, Kea uses a
functional representation of provisions. In addition, a
code conformance system requires a representation of
the building being checked. Kea uses an object-oriented
approach, which is the norm in code interpretation
systems (de Waard, 1992). The code provision
representation is then incorporated with the
representation by integrating the code provision
functions within the object-oriented building model.

As an example, Fig. 2 is a Kea representation of the
provision of Fig. 1 and its implicit building model.
Classes represent buildings, spaces, floors, etc. Buildings
contain a collection of Spaces (indicated by the spaces
attribute of Building), while Spaces contain collections
of Floors, Walls, Windows, and Roofs. The provision is
represented by a function seasonal_heat_loss in class
Building, which makes use of functions in the other
classes (eg heat_loss in Space). Liberal use is made of
Kea's list manipulation functions which allow projection
of values from lists (eg collect), accumulation of values
from a list (eg sum), and mapping of functions over lists.

I/O facilities are also needed for entering building
information such as plan and materials data. Kea handles
this via PlanEntry, a specialised plan drawing system
(written in C), plus a forms interface that allows objects
to be associated with forms and object attributes with
menus, edit fields etc. Thus information for checking
conformance of the seasonal_heat_loss provision is
obtained from PlanEntry data supplemented by form
data (see Fig. 3). Provision calculation is initiated by
ThermalDesigner constructing a form requiring (directly
or indirectly) the provision's results. This in turn triggers
access to the PlanEntry data, and construction of forms
for supplementary data.

In design-assistance type applications, such as
ThermalDesigner, it is important to allow users to
experiment with modifications to their designs. In a
conventional application, this requires large amounts of
code to handle modification of input data and
appropriate recalculation of results. Kea takes a very
different approach to handling such modifications. Each
Kea function application also implicitly defines a one
way constraint between its result and the values used in

deriving that result. Any change to one of those latter
values causes recalculation of the function result (with
caching of intermediate results for efficiency). Thus,
changing an input field on a form, or an element of the
plan in PlanEntry, automatically causes recalculation of
any values dependent on that data item.

Object creation and destruction can be conditionally
dependent on the values of input data items. Thus,
changing an input data value may cause new objects to
be created and old objects destroyed (together with their
associated forms) to maintain consistency with the new
value. The dependency mechanism also works over list
operations, such as the list accumulations used in the
seasonal_heat_loss calculation of Fig. 2. Thus, the
addition of a new Space using PlanEntry will trigger
recalculation of seasonal_heat_loss due to the change in
the Building's spaces attribute.

class Building
 spaces: list Space.
 public seasonal_heat_loss: float
 := air_heat_loss + sum(collect(s
 in spaces, s^heat_loss)).
 air_heat_loss: float := ...
end Building.

class Space
 floors:list Floor. walls: list
Wall.
 windows:list Window. roofs: list
Roof.
 public heat_loss: float
 := floor_heat_loss +
 wall_heat_loss +
 window_heat_loss +
 roof_heat_loss.
 floor_heat_loss: float :=
 sum(collect(f in floors,
 f^heat_loss)).
 : % detailed code elided
end Space.

class Floor
 public heat_loss: float := area *
 annual_loss_factor /
 thermal_resistance.
 annual_loss_factor: float := ...
 : % etc
end Floor

Figure 2: Kea representation of the provision of Fig. 1.

Building

Space

WallRoofFloor

Floor_material

Roof_material

WindowWall_material

Window_material

Plan Entry Thermal Designer
Building Model

Forms

Figure 3: ThermalDesigner framework

This approach to consistency is in marked contrast to the
typical procedural approach. In writing a Kea program,
the programmer constructs programs as if input data,
once supplied, remains unchanged. Thus there is no
explicit code required to maintain consistency when
input values do change; the effects are instead calculated
automatically. Thus the programmer can concentrate on
writing a "clean" declarative representation of the code
of practice provisions, without worrying about the
effects of modifications to the program state.

Kea's one way dependency mechanism is similar to the
automatic recalculation facilities of spreadsheets. Kea
differs in that the dependency is set up from the tree of
function applications, rather than through statically
specified cell equations, and the dependencies are
distributed over all of the objects, forms, and PlanEntry
windows involved.

Kea provides a relatively clean approach to consistency
maintenance. However, there is a price to pay in terms of
the limited expressiveness of the language. The
functional nature of Kea, while being exceptionally good
for expressing code of practice provisions, makes it
difficult to direct the flow of control. This makes issues
such as directing a dialogue, or managing inter-form
navigation difficult to do within the language. As a result
Kea has been extended with procedures and conditional
procedures (triggered by changes to data values). This
allows sequences of actions, in particular the hiding and
displaying of forms, to be executed. The addition of
these language features, however, considerably
complicates an otherwise relatively clean and elegant
architecture for managing the one way dependencies.

A more serious problem, though, is the inability of the
Kea one way dependency approach to handle bi-
directional consistency. For example, in the PlanEntry
component it is desirable to have multiple editable views
of a building (eg plan and elevation) with editing
changes in either view reflected in the other (and of
course in the underlying building model). Keeping such
views mutually consistent is beyond the ability of Kea's
one way dependencies. A similar problem arises with
multiple data entry points when integrating tools for
code conformance checking (Mugridge and Hosking,
1995). To provide a solution to this problem alternative
techniques, such as those described in the next three
sections, are needed

3. Snart and multi-directional
constraints

Snart (Hosking et al, 1994) is an object-oriented
extension of Prolog with multi-directional constraint
propagation (Hill, 1993; Freeman-Benson, 1991). The
imperative features of Snart and Prolog provide general-
purpose facilities for procedural programming within an
object-oriented setting. This, for example, permits all

user-interface processing to be developed within the
language, rather than having to use a separate language
(as with Kea).

The addition of multi-directional constraints to Snart was
motivated by the multi-view plan and data entry
problems described above. We felt that a multi-
directional constraint approach would allow changes to
be made at any of several inter-dependent points and
propagated to the others.

Fig. 4 shows the use of multiple views in a version of
PlanEntry implemented in Snart (Hosking et al, 1994).
Tools for creating spaces, roofs, walls and windows are
provided. Handles are used to manipulate plan elements.
Equality constraints may be placed between the handles
of spaces. For example, two spaces may be constrained
to remain abutted, so that moving (or resizing) either
space will move the other. A labelled view line in a view
indicates the plane of another orthogonal view; a view
line may be moved to provide a different view or may be
constrained to be aligned to a surface of one of the
spaces making up the building. Additional views may
be added as desired.

In PlanEntry, multi-directional constraints are used for
defining inter-dependencies between building elements
(such as abutment) and also to maintain consistency
between multiple views of the building. This is
illustrated at the bottom of Fig. 4, where the objects
representing a plan view and a view from the left of a
building space are shown. A change to the 2-D
representation in one view is propagated by multi-
directional constraints to an underlying 3-D model of the
building; this change is then propagated to any other
views affected by the change.

As a more specific example, consider roofs. The z
dimension of a roof is represented by three attributes
(Fig. 5(a)). A change to any one of these attributes leads
to a change to one of the others. For example, if the top
of the roof (z1) is dragged upwards, the height is
changed. The relationship between these attributes is
handled by the constraint height = z1 - z in class roof
(Fig. 5(b)). When the value of any one of height, z, or z1
changes, one of the other attributes is changed in order
to resatisfy the equality specified by the constraint.

In general, when there are more than two attributes in a
constraint it is unclear how the change is to be handled.
This problem is solved in Snart with directions. A
constraint may have explicit directions that specify how
the constraint is to be interpreted when an attribute value
is changed. Default directions are applied if none are
specified. The defaults are as follows: a change to the
first attribute leads to constraint propagation to the
second; any other changes lead to the first attribute
being recalculated. Thus, the default directions for the
constraint in Fig. 5 are: (height=>z1, self=>height,
z=>height, z1=>height) where (height=>z1) means that
on a change to height the attribute z1 is recalculated.

The direction (self=>height) means that the height will imposed.
be calculated (if possible) when the constraint is first

rect

y1
y0
x1
x0

rect

y1
y0
x1
x0

space

z1
z
y1
y
x1
x

rendertool
manipulation

tool
manipulation render

x0=x
x1=x1
y0=y
y1=y1

x0=y
x1=y1
y0=-z1
y1=-z

Figure 4: PlanEntry system in use

height
z

z1

class(roof,
 features(height: int, z: int,
 z1: int, ...),
 ...
 constraints(height = z1 - z
 and_with move(z =>z1))
).

Figure 5: (a) Roof z dimension attributes (b) Snart

constraint on roof attributes

The interpretation of a constraint can also depend on the
reason for a change (as specified at the time an
assignment is made). The constraint in Fig. 5 has an
additional direction (following and_with), move(z=>z1),
which means that if the current reason is move, a
change to z will lead to z1 being recalculated (z1 :=
height + z). The overall effect of the constraint is that the
top and bottom of the roof can be changed
independently, with height automatically recalculated

each time, but if the bottom of the roof is moved the top
of the roof is also moved, keeping height constant.
Snart demons are used in PlanEntry to ensure that a
changed building component is rendered afresh. A
demon is a piece of Prolog code that is executed
whenever the value of any of the Snart class attributes
used in the demon is changed. In that respect they are
very similar to the conditional procedures introduced
into Kea. In a conventional language, procedural code
would be needed to handle this dependency explicitly.

Snart has other features for constraint processing,
including path handling, constraints over classifiers and
objects, and relational constraints (Mugridge et al,
1995). However, it lacks one feature available in Kea
which is particularly valuable for our work on code
conformance systems: constraints over collections, such
as the implicit 1-way dependencies over the
accumulations in Fig. 2. Current work aims to add uni-
directional collection constraints to Snart to rectify this.

4. Change Propagation and Response
Graphs

CPRGs (Grundy et al, 1995b) provide an alternative
consistency management approach to Kea's 1-way
dependencies and Snart's n-way constraints. CPRGs
represent information as attributed components linked by
relationships (relationships are themselves components,
ie. they are able to be linked by other relationships.
Whenever a component is modified, a change
description is generated documenting the exact change in
the component's state. Thus, if a component Comp has
its attribute Name changed from John to Rick, a change
description of the form update(Comp,Name,John,Rick)
is generated. Change descriptions may be low-level,
documenting simple attribute changes, or may describe a
more abstract change in the component's state.

Change descriptions are propagated to all relationships
that the updated component participates in. These
relationships then interpret the change description and
either (i) update their own or related component states,
(ii) propagate the change description to related
components, or (iii) ignore the change in state of the
updated component.

A simple example is shown in Fig. 6. This shows a
dialogue editor and its corresponding CPRG
components, representing the state and structure of the
dialog and its controls. The dialog box border has been
interactively dragged to a new location and the dialog’s
associated components must then be updated to move
with the dialog box they belong to: 1) The drag causes
the dialog CPRG component’s X and Y co-ordinates to
be changed; 2) dialog propagates change descriptions to
its parts relationship, which forwards them to the
name and age edit field controls; 3) name and age
respond to the change descriptions by updating their own
co-ordinates, to be consistent with that of dialog’s (ie.
name and age are constrained to follow dialog’s
positional changes); 4) name propagates the change
descriptions its operations produced to parts, which
propagates them to dialog. dialog ignores the changes
in name’s state, as it is not constrained to follow its
fields’ positional changes. The graphical or textual
renderings of the changed CPRG components are
redrawn, to reflect their changed states (using an
approach similar to that of Snart demons).

Programmers using CPRGs must define appropriate
responses to change descriptions using operational-style

code, in contrast to Kea and Snart constraints, which use
functional and dependency-driven recalculation. CPRGs
are thus less declarative than the Kea and Snart
approaches, but more flexible, as programmers can
define complex structures and responses to changes
based on before/after update information.

CPRGs support several other consistency management
techniques in addition to the simple attribute dependency
described above. One powerful abstraction is generic
relationships, which encapsulate a predefined set of
change description responses. Examples include
relationships implementing general graphical figure
constraints (as above), aggregation structures, multiple
views of information, and flexible attribute recalculation.

MViews, a framework for building multi-view editing
environments, is based on the CPRG architecture
(Grundy and Hosking, 1993). MViews provides extra
abstractions for specifying base information repositories,
multiple views of these repositories, and graphical and
textual renderers and editors for manipulating view
information. MViews has been used to implement
several multi-view editing environments, including:
MViewsDP, a dialogue box editor; MViewsER, an ER
diagram/relation schema editor; EPE (Amor et al, 1995),
an environment for EXPRESS programming; Cerno
(Fenwick et al, 1994), a visualisation tool; and SPE
(Grundy et al, 1995a). A screen dump from SPE (Snart
Programming Environment) is shown in Fig. 7. SPE
supports multiple textual and graphical views of a Snart
program. These include graphical analysis and design,
and textual implementation and documentation views.
All of these views are kept consistent with one another
via the CPRG consistency management mechanism.

CPRGs not only support consistency management, but
also partial consistency and inconsistency management.
For example, some SPE view updates can not be directly
translated by SPE into changes to other affected views.
A good example is when a client-supplier (method-
calling) relationship is added to an SPE design view.
This cannot be automatically added to textual
implementation views, as SPE doesn’t know the correct
arguments and position for the method call in the textual
code. CPRGs allow such partial inconsistencies to be
documented and presented to users. In SPE this is done
by inserting readable change descriptions into the textual
code views to inform programmers of the graphical view
updates.

Rendering

Ok Cancel

Enter your name:

Enter your age:

(name_prompt)

(dialog)

(age_prompt)

(name)

(age)

drag dialog

CPRG Components

dialog

name("name dialog")

edit field
name("name")

edit field
name("age")

parts

1.

2.

2. 2.

3.

4.

X

Y

X

Y

X

Y

Figure 6: An example of the CPRG approach to consistency management.

Figure 7: A screen dump from SPE (Snart Programming Environment).

Change descriptions can be stored by CPRG
components, as they are first-class objects. These stored
change descriptions can then be presented to users at a
later date (to inform them of possible inconsistencies),
can be stored to document the modification history of
components, or can be used to support version control
and Computer-Supported Collaborative Work systems
(Grundy et al, 1995c). C-MViews extends MViews to
support version control for views and components and to
support both semi-synchronous and synchronous forms
of collaborative work. C-SPE supports collaborative
software development in Snart by reusing these extended
CPRG facilities.

The CPRG architecture is currently implemented as a
framework of Snart classes (not using the constraint
extensions described above). Users of CPRGs specialise
these classes to built new applications incorporating
CPRG consistency management techniques. Several
kinds of generic relationships are provided to assist
programmers in building new applications. So far,
CPRGs have mainly been used in the construction of
MViews. We are currently investigating incorporating
CPRG-style event constraints into Snart, to be used in
conjunction with Snart’s constraint system.

CPRGs are, in many ways, a lower-level mechanism
than the Snart or Kea constraint approaches, requiring
more operational code for their implementation.
However, they are considerably more flexible,
permitting partial consistency and inconsistency to be
represented sensibly as well as having the ability to store
change descriptions to permit reasoning about changes
over time. All of these are difficult, if not impossible,
with the Kea and Snart approaches. Despite being low-
level, the ability to package change responses into
reusable relationship classes permits quite high-level
consistency tools to be developed and reused.

5. VML

In contrast to the fairly low-level, operational nature of
CPRGs, VML (View Mapping Language) is a high
level, declarative language suitable for describing
correspondences between two complex models (Amor,
1994; Amor and Hosking, 1995). VML was developed
for use in the domain of architecture and engineering
design support. Models in this domain are characterised
by their large size, complexity of data structures, and
their individuality. The individuality results from each
design tool (and user) focusing on one small portion of
the domain and attempting to minimise the amount of
data entry to its model. As a result, structures are
developed which are unique to the tool or subdomain.
The architecture and engineering domain is also
characterised by having many designers working
concurrently on portions of the design. When a designer
completes a design task it must be passed to all other
designers whose work is affected by the task so the
modifications can be taken into account in the design
tasks they are performing.

In a VML environment it is assumed that all mappings
will be between two models. As far as practicable a
VML definition treats both models as equal partners in a
mapping. When it is necessary to map information
between several models and a single central model each
mapping is specified independently so that the mapping
implementation can manage updates to and from each
model individually. A mapping is described through a
set of inter_class definitions which specify: the classes
involved in the mapping; the conditions (invariants)
under which the mapping may take place; the attribute
mappings that can be applied; and initial values to be set
on object creation. Fig. 8 shows a single inter_class
definition. This specifies the relationship between
trombe_wall entities in one model and trombe_wall and
trombe_type entities in another. The invariant specifies
that the mapping relates trombe_wall objects with a

particular trombe_type value X with trombe_type objects
with name equal to X. Equivalence mappings are
specified via constraint equations (eg area =
height*width), functions, or procedural code. Where
procedural code is used, two mappings must be specified
to be able to move data in each direction between the
views.

VML also has a graphical notation for specifying a
mapping. Figure 9 show a graphical view of the
trombe_wall inter_class definition. The graphical
notation provides for high level views of the connections
between objects while the textual notation details the
exact connection between classes and their attributes.
Thus, in Fig. 9, the equivalences are indicated iconically
by type (direct equality, or constraint equation in this
case), with links to the attributes involved in each
equivalence or invariant.

A mapping system manages interaction between object
stores representing instances of the models specified in a
VML mapping. The mapping system uses a sophisticated
transaction-based approach to maintain consistency
between the object stores. A transaction denotes a
portion of work completed in one view (where a view is
one user’s model of a building defined using the
structures specified in a schema). For example, a
transaction could be the initial layout of a building, the
results of a simulation, or the results of actioning a
change request. The granularity of transaction size for a
view is under user control, and can vary from coarse,
such as the complete specification of a building's layout,
to fine, such as a change to an individual attribute.

Whenever a user has finished a particular task, or a
design tool has finished its calculations, a transaction
completion record is created. This is passed to all
mapping handlers managing mappings between the
modified object store and other object stores. The
mapping handler action is dependent on the type of
mapping specified. A read-only mapping handler
discards the transaction as there is no authority to update
the other object store. A writable mapping handler
applies the modifications described in the transaction via
the mapping equations to the other view. However, if the
other data store is an integrated view (ie a central view
that coordinates data for several users and applications),
a check is made that the sending store is up to date with
all other transactions applied to the integrated view. If
this is not the case, the model that the transaction was
created in is inconsistent with the integrated model. All
outstanding transactions from the integrated view must
first be applied to the data store before it may pass its
transaction back to the integrated store.

 inter_class([trombe_wall],[trombe_wall, trombe_type],
 invariants(trombe_wall.trombe_type = name),
 equivalences(area = height * width,
 glazing = glazing,
 vent_area = sum(vents=>(height * width)),
 trombe_type = trombe_type,
 perf_ratio = perf_ratio)
).

Figure 8: A lexical VML specification

Figure 9: A graphical VML specification

IDM
Intermediate
Model

DT Model

User

User

User

User

DT Model

DT Model

DT Model
read_only

read_only

integrated

read_write

read_write

read_write

other models

Figure 10: Mixing mapping types to isolate modifications

Being able to define the mapping type in the VML
specification allows a network of connections between
object stores with object stores playing different roles
based on the mapping type. For example Fig. 10 shows
the use of an Intermediate Model (IM) which has a read-
only mapping to a shared Integrated Data Model (IDM).
The IM is then attached to a number of tool models,
acting as an integrated model for these tools. Thus these
tools can interact with the IM, and hence, effectively,
with one another without affecting the IDM. This
permits experimentation on the IDM to occur, without
affecting the IDM itself as changes to the IDM are
reflected in the IM but not vice-versa.

6. Discussion

We have described a number of approaches to
maintaining consistency in software systems. Each
approach offers a more declarative and structured
approach to the problem than do more conventional
solutions. In addition, each of the approaches can be

seen as a means of implementing systems designed using
the tool-abstraction paradigm (Garlan et al, 1992).

The systems we have described are, by no means, the
only declarative or structured approaches to consistency,
but are, rather, representatives of the different styles of
consistency management. For example, the 1-way
dependency approach of Kea has already been compared
to the automatic recalculation facilities of spreadsheets.
The Garnet system (Myers, 1990) also implements 1-
way constraints and has a more comprehensive approach
to user interface development than does Kea.

ThingLab (Borning, 1981), Rendezvous (Hill, 1993) and
Kaleidoscope (Freeman-Benson, 1991) are all Object-
Oriented languages incorporating perturbation-based
multi-directional constraints like Snart. However, none
provide the degree of flexibility and control over
constraint processing as does Snart. Much work has
focussed on the multiple view consistency problem, with
the MVC approach developed for Smalltalk being the
most widely adopted (Krasner and Pope, 1988).

Variations on this approach which have similarities to
CPRGs include ALV’s bidirectional constraints (Hill,
1992), the ItemList structure (Dannenburg, 1990),
Object Dependency Graphs (Wilk, 1991) together with
multi-view editing systems such as LOGGIE (Backlund
et al, 1990) and Unidraw (Vlissides and Linton, 1989).

Recently there have been many projects which have
looked at formalising the specification of complex
mappings through the use of specialised mapping
languages (eg. Bailey 1994; Hardwick 1994; Clark
1992). Unlike VML, languages developed in these
projects are basically procedural in nature and provide a
very low level view of the correspondence between two
models. These new languages also follow the form of
relational database views, so that where the mappings
need to be bi-directional, it is necessary to specify a
separate mapping definition for each direction.

Current work aims to unify the approaches we have
developed, to provide systems supporting several
consistency paradigms within the one
language/framework. For example, Snart is being
extended to incorporate 1-way dependencies over list
operations, similar to those of Kea. CPRG-like
extensions to Snart have been proposed which
incorporate propagation of events as well as data. These
extensions would considerably simplify CPRG
frameworks, such as MViews. The C-MViews
extensions of the CPRG model have much in common
with the VML transaction management system and
unification of these approaches should also be possible.

Acknowledgments

The authors acknowledge the support of the Auckland
University Research Committee, The Building Research
Association of New Zealand, and the Foundation for
Research Science and Technology in pursuing this
research.

References

Amor, R.W., Hosking, J.G., Mugridge, W.B., Hamer, J.,
Williams, M., 1992: ThermalDesigner: an application
of an object-oriented code conformance architecture.
Joint CIB Workshops on Computers and Information
in Construction, CIB Publication 165, Montreal,
Canada, pp 1-11.

Amor, R., Augenbroe, G., Hosking, J., Rombouts, W.
and Grundy, J., 1995: Directions in Modelling
Environments, accepted for publication in Automation
in Construction.

Amor, R., 1994: A Mapping Language for Views,
Department of Computer Science, University of
Auckland, Internal Report, 30pp

Amor, R.W., and Hosking, J.G., 1995: Mappings: the
glue in an integrated system, accepted for publication
in Procs 1st European Conference on product and
process modelling in the building industry.

Bailey, I., 1994: EXPRESS-M Reference Manual,
Product Data Representation and Exchange, ISO
TC184/SC4/WG5 N51, 66p.

Backlund, B., Hagsand, O., and Pherson, B., 1990:
Generation of visual language-oriented design
environments, Journal of Visual Languages and
Computing , 1(4), pp333-354.

Borning A, 1981. The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory,
ACM Trans. Programming Languages and Systems,
3(4), pp353-387.

Clark, S.N., 1992: Transformr: A Prototype STEP
Exchange File Migration Tool, National PDES
Testbed Report Series, NISTIR 4944, US Department
of Commerce, National Institute of Standards and
Technology, 13pp

Dannenberg, R.B., 1990: A structure for efficient update,
incremental redisplay and undo in graphical editors,
Software-Practice and Experience, 20(2), pp109-132.

de Waard, M, 1992: Computer Aided Conformance
Checking, Thesis Technische Universiteit Delft

Fenves, S J, Wright, R N, Stahl, F I and Reed, K A,
1987: Introduction to SASE:Standards Analysis,
Synthesis, and Expression, NBSIR 87-3513, National
Bureau of Standards.

Fenwick, S., Hosking, J., and Mugridge, W., 1994: A
visualization system for object-oriented programs, in
Mingins, C. and Meyer, B. Proc TOOLS 15, Prentice
Hall, Sydney, pp93-103.

Freeman-Benson, B, 1991. Constraint imperative
programming, Tech. report 91-07-02, University of
Washington.

Garlan, D., Kaiser, G.E., and Notkin, D., 1992: Using
tool abstraction to compose systems, COMPUTER,
25(6), pp30-38

Grundy, J.C. and Hosking, J.G., 1993: Constructing
multi-view editing environments using MViews, Proc.
1993 IEEE Symposium on Visual Languages, IEEE
Computer Society Press, Los Alamitos, CA, pp220-
224.

Grundy, J., Hosking, J., Fenwick, S., and Mugridge, W.,
1995a: Connecting the pieces, Chapter 11 of Visual
Object-Oriented Programming, Margaret Burnett,
Adele Golberg, and Ted Lewis (eds), Manning
Publications, Greenwich, CT, USA, pp229-254.

Grundy, J., Hosking, J., and Mugridge, W., 1995b:
Supporting flexible consistency management via
discrete change description propagation, submitted to
Software Practice and Experience.

Grundy, J., Mugridge, W.B. Hosking, J.G. and Amor,
R.W., 1995c: Support for collaborative, integrated
software development, Proc 7th Conference on
Software Engineering Environments, The Netherlands,
IEEE CS Press, pp84-94.

Hamer, J., 1991: Kea 1.0 Reference Manual, BRANZ
Contract 85-024 Technical Report No. 20, Department
of Computer Science, University of Auckland.

Hardwick, M., 1994: Towards Integrated Product
Databases Using Views, Technical Report 94003,
Rensselaer Polytechnic Institute, Troy, New York,
USA, 18pp

Hill, R.D., 1992: The Abstraction-Link-View paradigm:
using constraints to connect user interfaces to

applications, in Proceedings of CHI ‘92: Human
Factors in Computing, ACM Press, pp335-342

Hill, RD, 1993. The Rendezvous constraint maintenance
system, UIST’93.

Hosking, J.G., Mugridge, W.B. and M. Buis, 1987:
FireCode: a case study in the application of expert
systems techniques to a design code. Environment
Planning and Design B, 14, pp267-280, 1987.

Hosking, J.G., Lomas, S., Mugridge, W.B., and A.J.
Cranston, 1989: The development of an expert system
for seismic loading. Civil Engineering Systems, 6 (1-
2), pp 27-35.

Hosking, J.G., Mugridge, W.B., and Blackmore, S.,
Objects and constraints: a constraint based approach to
plan drawing, in Mingins, C. and Meyer, B. Proc
TOOLS 15, Prentice Hall, Sydney, pp9-19, 1994.

Krasner, G.E. and Pope, S.T., 1988: A cookbook for
using the Model-View-Controller user interface
paradigm in Smalltalk-80, Journal of Object-Oriented
Programming, 1(3), pp8-22.

Mugridge, W.B. and J.G. Hosking, 1988: The
development of an expert system for wall bracing
design. Proc. NZES'88 The Third New Zealand Expert
Systems Conference, Wellington, pp10-27.

Mugridge W.B. and Hosking J.G.: Towards a lazy
evolutionary common building model, Building and
Environment, 30, (1), pp99-114, 1995.

Mugridge, W.B. , Blackmore, S., Hosking, J.G., and
Grundy, J.C., 1995: Dual-propagation and higher-
level constraints in Snart, submitted to International
Conference on Principles and Practice of Constraint
Programming to be held in Marseille, September 1995.

Myers, B.A., 1990: Garnet: comprehensive support for
graphical, highly interactive user interfaces,
COMPUTER, vol. 23, no. 11, pp71-85.

Vlissides, J.M. and Linton, M., 1989: Unidraw: A
framework for building domain-specific graphical
editors, in UIST, ACM Press, pp158-167.

Wilk, M.R., 1991: Change propagation in object
dependency graphs, Proc TOOLS US ‘91, pp233-
247.

