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Abstract 

In many applications there is a need to keep shared or 
related information consistent. For example, in a 
CADrafting package it is necessary to keep views of an 
artefact from different perspectives consistent with one 
another. In software development environments there is 
a need to keep diagrammatic views, such as OO analysis 
diagrams, consistent with corresponding textual code. In 
this paper, we describe a number of techniques we have 
developed to solve consistency problems in a wide 
variety of application domains. These techniques include 
uni- and bi-directional constraints, propagation of 
discrete change descriptions, and transaction based 
version merging. 

1. Introduction 

Software designers are often faced with a need to keep 
different parts of an application consistent with one 
another as changes are made to the program or system 
state. These can be quite low-level, such as ensuring the 
rendered image of a figure moves by the appropriate 
amount in response to a drag event, through to very high 
level, such as ensuring a system implementation is kept 
consistent with changes to its requirements or design.  
 
In this paper, we describe a number of approaches to 
maintaining consistency across applications that we have 
developed over the years, together with some of the 
motivation for their development. We commence with a 
description of Kea, which provides one way 
dependencies as a way of keeping the results of function 
applications consistent with changes to input data 
without programmer overhead. This is followed by a 
description of multi-directional constraints as 
implemented in the Snart object-oriented constraint 
language. Such constraints permit multiple 
representations of information to be kept mutually 

consistent with one another in a declarative manner. We 
then introduce the CPRG (Change Propagation and 
Response Graph) model. This elevates the description of 
changes to first class status, allowing complex reasoning 
about changes, and permitting implementation of partial 
consistency and change histories. This is followed by a 
description of VML (View Mapping Language), which 
provides a somewhat more declarative approach than the 
CPRG model to handling complex mappings between 
large, related models. We conclude with a brief 
description of related work and our future directions. 

2. Kea and functional consistency 

Kea is a functional object-oriented language (Hamer, 
1991). Its motivation was to provide a means of 
expressing code of practice provisions in a manner 
allowing their interpretation for conformance checking. 
Several such applications have been developed for 
interpreting building codes, in collaboration with the 
Building Research Association of New Zealand. These 
include FireCode (Hosking et al, 1987), Seismic 
(Hosking et al, 1989), WallBrace (Mugridge and 
Hosking, 1988), and ThermalDesigner (Amor et al, 
1992). Fig. 1 shows a typical provision, taken from the 
thermal insulation code of practice on which 
ThermalDesigner is based. 
 

The seasonal heat loss of a building 
is the air heat loss plus the sum of 
the floor, wall, window, and roof 
heat losses for each space in the 
building. 
The heat loss of a floor is the floor 
area times the annual loss factor of 
the floor divided by the thermal 
resistance of the floor. 

 
Figure 1: Example provision used in the development of 

ThermalDesigner 



 
In typical usage, such provisions are interpreted in a 
functional manner (Fenves et al, 1987) as opposed to a 
multi-way constraint. For this reason, Kea uses a 
functional representation of provisions. In addition, a 
code conformance system requires a representation of 
the building being checked. Kea uses an object-oriented 
approach, which is the norm in code interpretation 
systems (de Waard, 1992). The code provision 
representation is then incorporated with the 
representation by integrating the code provision 
functions within the object-oriented building model.  
 
As an example, Fig. 2 is a Kea representation of the 
provision of Fig. 1 and its implicit building model. 
Classes represent buildings, spaces, floors, etc. Buildings 
contain a collection of Spaces (indicated by the spaces 
attribute of Building), while Spaces contain collections 
of Floors, Walls, Windows, and Roofs. The provision is 
represented by a function seasonal_heat_loss in class 
Building, which makes use of functions in the other 
classes (eg heat_loss in Space). Liberal use is made of 
Kea's list manipulation functions which allow projection 
of values from lists (eg collect), accumulation of values 
from a list (eg sum), and mapping of functions over lists. 
 
I/O facilities are also needed for entering building 
information such as plan and materials data. Kea handles 
this via PlanEntry, a specialised plan drawing system 
(written in C), plus a forms interface that allows objects 
to be associated with forms and object attributes with 
menus, edit fields etc. Thus information for checking 
conformance of the seasonal_heat_loss provision is 
obtained from PlanEntry data supplemented by form 
data (see Fig. 3). Provision calculation is initiated by 
ThermalDesigner constructing a form requiring (directly 
or indirectly) the provision's results. This in turn triggers 
access to the PlanEntry data, and construction of forms 
for supplementary data. 
 
In design-assistance type applications, such as 
ThermalDesigner, it is important to allow users to 
experiment with modifications to their designs. In a 
conventional application, this requires large amounts of 
code to handle modification of input data and 
appropriate recalculation of results. Kea takes a very 
different approach to handling such modifications. Each 
Kea function application also implicitly defines a one 
way constraint between its result and the values used in 

deriving that result. Any change to one of those latter 
values causes recalculation of the function result (with 
caching of  intermediate results for efficiency). Thus, 
changing an input field on a form, or an element of the 
plan in PlanEntry, automatically causes recalculation of 
any values dependent on that data item.  
 
Object creation and destruction can be conditionally 
dependent on the values of input data items. Thus, 
changing an input data value may cause new objects to 
be created and old objects destroyed (together with their 
associated forms) to maintain consistency with the new 
value. The dependency mechanism also works over list 
operations, such as the list accumulations used in the 
seasonal_heat_loss calculation of Fig. 2. Thus, the 
addition of a new Space using PlanEntry will trigger 
recalculation of seasonal_heat_loss due to the change in 
the Building's spaces attribute.  
 

class Building 
  spaces: list Space. 
  public seasonal_heat_loss: float 
 := air_heat_loss + sum(collect(s  
  in spaces, s^heat_loss)). 
  air_heat_loss: float := ... 
end Building. 
 
class Space 
  floors:list Floor.  walls: list 
Wall. 
  windows:list Window. roofs: list 
Roof. 
 public heat_loss: float  
       := floor_heat_loss +  
    wall_heat_loss +  
    window_heat_loss +   
   roof_heat_loss. 
 floor_heat_loss: float :=  
  sum(collect(f in floors,  
   f^heat_loss)). 
  :  % detailed code elided 
end Space. 
 
class Floor 
 public heat_loss: float := area *  
   annual_loss_factor /  
   thermal_resistance. 
  annual_loss_factor: float := ... 
  :  % etc 
end Floor 

 
Figure 2: Kea representation of the provision of Fig. 1. 
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Figure 3: ThermalDesigner framework 
 

This approach to consistency is in marked contrast to the 
typical procedural approach. In writing a Kea program, 
the programmer constructs programs as if input data, 
once supplied, remains unchanged. Thus there is no 
explicit code required to maintain consistency when 
input values do change; the effects are instead calculated 
automatically. Thus the programmer can concentrate on 
writing a "clean" declarative representation of the code 
of practice provisions, without worrying about the 
effects of modifications to the program state.  
 
Kea's one way dependency mechanism is similar to the 
automatic recalculation facilities of spreadsheets. Kea 
differs in that the dependency is set up from the tree of 
function applications, rather than through statically 
specified cell equations, and the dependencies are 
distributed over all of the objects, forms, and PlanEntry 
windows involved. 
 
Kea provides a relatively clean approach to consistency 
maintenance. However, there is a price to pay in terms of 
the limited expressiveness of the language. The 
functional nature of Kea, while being exceptionally good 
for expressing code of practice provisions, makes it 
difficult to direct the flow of control. This makes issues 
such as directing a dialogue, or managing inter-form 
navigation difficult to do within the language. As a result 
Kea has been extended with procedures and conditional 
procedures (triggered by changes to data values). This 
allows sequences of actions, in particular the hiding and 
displaying of forms, to be executed. The addition of 
these language features, however, considerably 
complicates an otherwise relatively clean and elegant 
architecture for managing the one way dependencies.  
 
A more serious problem, though, is the inability of the 
Kea one way dependency approach to handle bi-
directional consistency. For example, in the PlanEntry 
component it is desirable to have multiple editable views 
of a building (eg plan and elevation) with editing 
changes in either view reflected in the other (and of 
course in the underlying building model). Keeping such 
views mutually consistent is beyond the ability of Kea's 
one way dependencies. A similar problem arises with 
multiple data entry points when integrating tools for 
code conformance checking (Mugridge and Hosking, 
1995). To provide a solution to this problem alternative 
techniques, such as those described in the next three 
sections, are needed 

3. Snart and multi-directional 
constraints 

Snart (Hosking et al, 1994) is an object-oriented 
extension of Prolog with multi-directional constraint 
propagation (Hill, 1993; Freeman-Benson, 1991).  The 
imperative features of Snart and Prolog provide general-
purpose facilities for procedural programming within an 
object-oriented setting.  This, for example, permits all 

user-interface processing to be developed within the 
language, rather than having to use a separate language 
(as with Kea). 
 
The addition of multi-directional constraints to Snart was 
motivated by the multi-view plan and data entry 
problems described above. We felt that a multi-
directional constraint approach would allow changes to 
be made at any of several inter-dependent points and 
propagated to the others.  
 
Fig. 4 shows the use of multiple views in a version of 
PlanEntry implemented in Snart (Hosking et al, 1994). 
Tools for creating spaces, roofs, walls and windows are 
provided. Handles are used to manipulate plan elements. 
Equality constraints may be placed between the handles 
of spaces. For example, two spaces may be constrained 
to remain abutted, so that moving (or resizing) either 
space will move the other. A labelled view line in a view 
indicates the plane of another orthogonal view;  a view 
line may be moved to provide a different view or may be 
constrained to be aligned to a surface of one of the 
spaces making up the building.  Additional views may 
be added as desired.   
 
In PlanEntry, multi-directional constraints are used for 
defining inter-dependencies between building elements 
(such as abutment) and also to maintain consistency 
between multiple views of the building. This is 
illustrated at the bottom of Fig. 4, where the objects 
representing a plan view and a view from the left of a 
building space are shown.  A change to the 2-D 
representation in one view is propagated by multi-
directional constraints to an underlying 3-D model of the 
building;  this change is then propagated to any other 
views affected by the change. 
 
As a more specific example, consider roofs. The z 
dimension of a roof is represented by three attributes 
(Fig. 5(a)). A change to any one of these attributes leads 
to a change to one of the others. For example, if the top 
of the roof (z1) is dragged upwards, the height is 
changed. The relationship between these attributes is 
handled by the constraint height = z1 - z in class roof 
(Fig. 5(b)). When the value of any one of height, z, or z1 
changes, one of the other attributes is changed in order 
to resatisfy the equality specified by the constraint.  
 
In general, when there are more than two attributes in a 
constraint it is unclear how the change is to be handled. 
This problem is solved in Snart with directions.  A 
constraint may have explicit directions that specify how 
the constraint is to be interpreted when an attribute value 
is changed.  Default directions are applied if none are 
specified. The defaults are as follows: a change to the 
first attribute leads to constraint propagation to the 
second;  any other changes lead to the first attribute 
being recalculated.  Thus, the default directions for the 
constraint in Fig. 5 are: (height=>z1, self=>height, 
z=>height, z1=>height) where (height=>z1) means that 
on a change to height the attribute z1 is recalculated.  



The direction (self=>height) means that the height will imposed.   
be calculated (if possible) when the constraint is first 
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Figure 4: PlanEntry system in use 
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class(roof, 
   features(height: int, z: int,  
    z1: int, ...), 
   ... 
   constraints(height = z1 - z  
   and_with move(z =>z1)) 
). 

 
Figure 5: (a) Roof z dimension attributes (b) Snart 

constraint on roof attributes 
 
The interpretation of a constraint can also depend on the 
reason for a change (as specified at the time an 
assignment is made).  The constraint in Fig. 5 has an 
additional direction (following and_with), move(z=>z1), 
which means that if the current reason  is move, a 
change to z will lead to z1 being recalculated (z1 := 
height + z). The overall effect of the constraint is that the 
top and bottom of the roof can be changed 
independently, with height automatically recalculated 

each time, but if the bottom of the roof is moved the top 
of the roof is also moved, keeping height constant. 
Snart demons are used in PlanEntry to ensure that a 
changed building component is rendered afresh.  A 
demon is a piece of Prolog code that is executed 
whenever the value of any of the Snart class attributes 
used in the demon is changed. In that respect they are 
very similar to the conditional procedures introduced 
into Kea. In a conventional language, procedural code 
would be needed to handle this dependency explicitly. 
 
Snart has other features for constraint processing, 
including path handling, constraints over classifiers and 
objects, and relational constraints (Mugridge et al, 
1995).  However, it lacks one feature available in Kea 
which is particularly valuable for our work on code 
conformance systems: constraints over collections, such 
as the implicit 1-way dependencies over the 
accumulations in Fig. 2. Current work aims to add uni-
directional collection constraints to Snart to rectify this. 



4. Change Propagation and Response 
Graphs 

CPRGs (Grundy et al, 1995b) provide an alternative 
consistency management approach to Kea's 1-way 
dependencies and Snart's n-way constraints. CPRGs 
represent information as attributed components linked by 
relationships (relationships are themselves components, 
ie. they are able to be linked by other relationships. 
Whenever a component is modified, a change 
description is generated documenting the exact change in 
the component's state. Thus, if a component Comp has 
its attribute Name changed from John to Rick, a change 
description of the form update(Comp,Name,John,Rick) 
is generated. Change descriptions may be low-level, 
documenting simple attribute changes, or may describe a 
more abstract change in the component's state. 

Change descriptions are propagated to all relationships 
that the updated component participates in. These 
relationships then interpret the change description and 
either (i) update their own or related component states, 
(ii) propagate the change description to related 
components, or (iii) ignore the change in state of the 
updated component. 

A simple example is shown in Fig. 6. This shows a 
dialogue editor and its corresponding CPRG 
components, representing the state and structure of the 
dialog and its controls. The dialog box border has been 
interactively dragged to a new location and the dialog’s 
associated components must then be updated to move 
with the dialog box they belong to: 1) The drag causes 
the dialog CPRG component’s X and Y co-ordinates to 
be changed; 2) dialog propagates change descriptions to 
its parts relationship, which forwards them to the 
name and age edit field controls; 3) name and age 
respond to the change descriptions by updating their own 
co-ordinates, to be consistent with that of dialog’s (ie. 
name and age are constrained to follow dialog’s 
positional changes); 4) name  propagates the change 
descriptions its operations produced to parts, which 
propagates them to dialog. dialog ignores the changes 
in name’s state, as it is not constrained to follow its 
fields’ positional changes. The graphical or textual 
renderings of the changed CPRG components are 
redrawn, to reflect their changed states (using an 
approach similar to that of Snart demons). 

Programmers using CPRGs must define appropriate 
responses to change descriptions using operational-style 

code, in contrast to Kea and Snart constraints, which use 
functional and dependency-driven recalculation. CPRGs 
are thus less declarative than the Kea and Snart 
approaches, but more flexible, as programmers can 
define complex structures and responses to changes 
based on before/after update information. 

CPRGs support several other consistency management 
techniques in addition to the simple attribute dependency 
described above. One powerful abstraction is generic 
relationships, which encapsulate a predefined set of 
change description responses. Examples include 
relationships implementing general graphical figure 
constraints (as above), aggregation structures, multiple 
views of information, and flexible attribute recalculation. 

MViews, a framework for building multi-view editing 
environments, is based on the CPRG architecture 
(Grundy and Hosking, 1993). MViews provides extra 
abstractions for specifying base information repositories, 
multiple views of these repositories, and graphical and 
textual renderers and editors for manipulating view 
information. MViews has been used to implement 
several multi-view editing environments, including: 
MViewsDP, a dialogue box editor; MViewsER, an ER 
diagram/relation schema editor; EPE (Amor et al, 1995), 
an environment for EXPRESS programming; Cerno 
(Fenwick et al, 1994), a visualisation tool; and SPE 
(Grundy et al, 1995a). A screen dump from SPE (Snart 
Programming Environment) is shown in Fig. 7. SPE 
supports multiple textual and graphical views of a Snart 
program. These include graphical analysis and design, 
and textual implementation and documentation views. 
All of these views are kept consistent with one another 
via the CPRG consistency management mechanism. 

CPRGs not only support consistency management, but 
also partial consistency and inconsistency management. 
For example, some SPE view updates can not be directly 
translated by SPE into changes to other affected views. 
A good example is when a client-supplier (method-
calling) relationship is added to an SPE design view. 
This cannot be automatically added to textual 
implementation views, as SPE doesn’t know the correct 
arguments and position for the method call in the textual 
code. CPRGs allow such partial inconsistencies to be 
documented and presented to users. In SPE this is done 
by inserting readable change descriptions into the textual 
code views to inform programmers of the graphical view 
updates. 
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Figure 6: An example of the CPRG approach to consistency management. 

 

 

Figure 7: A screen dump from SPE (Snart Programming Environment). 
 

Change descriptions can be stored by CPRG 
components, as they are first-class objects. These stored 
change descriptions can then be presented to users at a 
later date (to inform them of possible inconsistencies), 
can be stored to document the modification history of 
components, or can be used to support version control 
and Computer-Supported Collaborative Work systems 
(Grundy et al, 1995c). C-MViews extends MViews to 
support version control for views and components and to 
support both semi-synchronous and synchronous forms 
of collaborative work. C-SPE supports collaborative 
software development in Snart by reusing these extended 
CPRG facilities.  

The CPRG architecture is currently implemented as a 
framework of Snart classes (not using the constraint 
extensions described above). Users of CPRGs specialise 
these classes to built new applications incorporating 
CPRG consistency management techniques. Several 
kinds of generic relationships are provided to assist 
programmers in building new applications. So far, 
CPRGs have mainly been used in the construction of 
MViews. We are currently investigating incorporating 
CPRG-style event constraints into Snart, to be used in 
conjunction with Snart’s constraint system. 



CPRGs are, in many ways, a lower-level mechanism 
than the Snart or Kea constraint approaches, requiring 
more operational code for their implementation. 
However, they are considerably more flexible, 
permitting partial consistency and inconsistency to be 
represented sensibly as well as having the ability to store 
change descriptions to permit reasoning about changes 
over time. All of these are difficult, if not impossible, 
with the Kea and Snart approaches. Despite being low-
level, the ability to package change responses into 
reusable relationship classes permits quite high-level 
consistency tools to be developed and reused. 

5. VML 

In contrast to the fairly low-level, operational nature of 
CPRGs, VML (View Mapping Language) is a high 
level, declarative language suitable for describing 
correspondences between two complex models (Amor, 
1994; Amor and Hosking, 1995). VML was developed 
for use in the domain of architecture and engineering 
design support. Models in this domain are characterised 
by their large size, complexity of data structures, and 
their individuality. The individuality results from each 
design tool (and user) focusing on one small portion of 
the domain and attempting to minimise the amount of 
data entry to its model. As a result, structures are 
developed which are unique to the tool or subdomain. 
The architecture and engineering domain is also 
characterised by having many designers working 
concurrently on portions of the design. When a designer 
completes a design task it must be passed to all other 
designers whose work is affected by the task so the 
modifications can be taken into account in the design 
tasks they are performing. 
 
In a VML environment it is assumed that all mappings 
will be between two models. As far as practicable a 
VML definition treats both models as equal partners in a 
mapping. When it is necessary to map information 
between several models and a single central model each 
mapping is specified independently so that the mapping 
implementation can manage updates to and from each 
model individually. A mapping is described through a 
set of inter_class definitions which specify: the classes 
involved in the mapping; the conditions (invariants) 
under which the mapping may take place; the attribute 
mappings that can be applied; and initial values to be set 
on object creation. Fig. 8 shows a single inter_class 
definition. This specifies the relationship between 
trombe_wall entities in one model and trombe_wall and 
trombe_type entities in another. The invariant specifies 
that the mapping relates trombe_wall objects with a 

particular trombe_type value X with trombe_type objects 
with name equal to X. Equivalence mappings are 
specified via constraint equations (eg area = 
height*width), functions, or procedural code. Where 
procedural code is used, two mappings must be specified 
to be able to move data in each direction between the 
views. 
 
VML also has a graphical notation for specifying a 
mapping. Figure 9 show a graphical view of the 
trombe_wall inter_class definition. The graphical 
notation provides for high level views of the connections 
between objects while the textual notation details the 
exact connection between classes and their attributes. 
Thus, in Fig. 9, the equivalences are indicated iconically 
by type (direct equality, or constraint equation in this 
case), with links to the attributes involved in each 
equivalence or invariant. 
 
A mapping system manages interaction between object 
stores representing instances of the models specified in a 
VML mapping. The mapping system uses a sophisticated 
transaction-based approach to maintain consistency 
between the object stores. A transaction denotes a 
portion of work completed in one view (where a view is 
one user’s model of a building defined using the 
structures specified in a schema). For example, a 
transaction could be the initial layout of a building, the 
results of a simulation, or the results of actioning a 
change request. The granularity of transaction size for a 
view is under user control, and can vary from coarse, 
such as the complete specification of a building's layout, 
to fine, such as a change to an individual attribute. 
 
Whenever a user has finished a particular task, or a 
design tool has finished its calculations, a transaction 
completion record is created. This is passed to all 
mapping handlers managing mappings between the 
modified object store and other object stores. The 
mapping handler action is dependent on the type of 
mapping specified. A read-only mapping handler 
discards the transaction as there is no authority to update 
the other object store. A writable mapping handler 
applies the modifications described in the transaction via 
the mapping equations to the other view. However, if the 
other data store is an integrated view (ie a central view 
that coordinates data for several users and applications), 
a check is made that the sending store is up to date with 
all other transactions applied to the integrated view. If 
this is not the case, the model that the transaction was 
created in is inconsistent with the integrated model. All 
outstanding transactions from the integrated view must 
first be applied to the data store before it may pass its 
transaction back to the integrated store. 

 



 inter_class([trombe_wall],[trombe_wall, trombe_type], 
  invariants(trombe_wall.trombe_type = name), 
  equivalences(area = height * width, 
    glazing = glazing, 
    vent_area = sum(vents=>(height * width)), 
    trombe_type = trombe_type, 
    perf_ratio = perf_ratio) 
  ). 

Figure 8: A lexical VML specification 
 

 
Figure 9: A graphical VML specification 
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Figure 10: Mixing mapping types to isolate modifications  
 

Being able to define the mapping type in the VML 
specification allows a network of connections between 
object stores with object stores playing different roles 
based on the mapping type. For example Fig. 10 shows 
the use of an Intermediate Model (IM) which has a read-
only mapping to a shared Integrated Data Model (IDM). 
The IM is then attached to a number of tool models, 
acting as an integrated model for these tools. Thus these 
tools can interact with the IM, and hence, effectively, 
with one another without affecting the IDM. This 
permits experimentation on the IDM to occur, without 
affecting the IDM itself as changes to the IDM are 
reflected in the IM but not vice-versa.  

6. Discussion 

We have described a number of approaches to 
maintaining consistency in software systems. Each 
approach offers a more declarative and structured 
approach to the problem than do more conventional 
solutions. In addition, each of the approaches can be 

seen as a means of implementing systems designed using 
the tool-abstraction paradigm (Garlan et al, 1992). 
 
The systems we have described are, by no means, the 
only declarative or structured approaches to consistency, 
but are, rather, representatives of the different styles of 
consistency management. For example, the 1-way 
dependency approach of Kea has already been compared 
to the automatic recalculation facilities of spreadsheets. 
The Garnet system (Myers, 1990) also implements 1-
way constraints and has a more comprehensive approach 
to user interface development than does Kea. 
 
ThingLab (Borning, 1981), Rendezvous (Hill, 1993) and 
Kaleidoscope (Freeman-Benson, 1991) are all Object-
Oriented languages incorporating perturbation-based 
multi-directional constraints like Snart. However, none 
provide the degree of flexibility and control over 
constraint processing as does Snart. Much work has 
focussed on the multiple view consistency problem, with 
the MVC approach developed for Smalltalk being the 
most widely adopted (Krasner and Pope, 1988). 



Variations on this approach which have similarities to 
CPRGs include ALV’s bidirectional constraints (Hill, 
1992), the ItemList structure (Dannenburg, 1990), 
Object Dependency Graphs (Wilk, 1991) together with 
multi-view editing systems  such as LOGGIE (Backlund 
et al, 1990) and Unidraw (Vlissides and Linton, 1989). 
 
Recently there have been many projects which have 
looked at formalising the specification of complex 
mappings through the use of specialised mapping 
languages (eg. Bailey 1994; Hardwick 1994; Clark 
1992). Unlike VML, languages developed in these 
projects are basically procedural in nature and provide a 
very low level view of the correspondence between two 
models. These new languages also follow the form of 
relational database views, so that where the mappings 
need to be bi-directional, it is necessary to specify a 
separate mapping definition for each direction. 
 
Current work aims to unify the approaches we have 
developed, to provide systems supporting several 
consistency paradigms within the one 
language/framework. For example, Snart is being 
extended to incorporate 1-way dependencies over list 
operations, similar to those of Kea. CPRG-like 
extensions to Snart have been proposed which 
incorporate propagation of events as well as data. These 
extensions would considerably simplify CPRG 
frameworks, such as MViews. The C-MViews 
extensions of the CPRG model have much in common 
with the VML transaction management system and 
unification of these approaches should also be possible.  
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