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ABSTRACT 

We describe several approaches to supporting the construction of 
design environments with multiple views of common information.  
We then outline a new approach that draws on the best of each of 
them.  

KEYWORDS 

multiple views, view consistency, change descriptions, 
constraints, view mapping languages, process modelling 

1. INTRODUCTION 

The design of complex artefacts typically involves multiple 
designers sharing parts of an evolving design, using multiple 
design notations and tools. There can be much overhead in inter-
notation translation and co-ordination of both design parts and 
designers to maintain overall design consistency. Automating the 
simpler aspects of these processes allows designers more time to 
resolve complex inconsistencies and to do creative design. We 
present several of our approaches to solving this problem in two 
application areas: the design of buildings and large software 
systems. 

2. MVIEWS 

MViews is a framework for constructing Integrated Software 
Development Environments (ISDEs) which support multiple 
textual and graphical views [8, 9]. MViews provides a general 
model for defining software system data structures and tool views, 
and a flexible mechanism for propagating changes between 
software components, views and tools. ISDE data is described by 
components with attributes, linked by a variety of relationships. 
Multiple views are supported by representing each view as a 
graph linked to the base software system graph. Each view is 
rendered and edited in either a graphical or textual form. Tools 
can be interfaced at the view level (as editors), via external view 
translators, or multiple base layers may be connected via inter-
repository relationships [10]. Figure 1 shows the architecture of 
SPE (Snart Programming Environment), an MViews ISDE for 
object-oriented software development [11].  All basic graph 
editing operations generate change descriptions of the form: 
UpdateKind(UpdatedComponent, ...UpdateKind-specific Values...). For 
example, an attribute update is represented as: 
update(Component,AttrName, OldValue,NewValue). 

Change descriptions are propagated to all components related to 
the updated one. Receiving components interpret descriptions and 
may modify themselves, producing further change descriptions. A 
wide range of facilities are supported, including attribute 
recalculation, bi-directionally consistent textual and graphical 
views, inconsistency recording, undo/redo, versioning, tool 
integration, and collaborative editing [12]. Developers specialise 
MViews framework classes to define software components, views 
and editing tools to produce a new ISDE. A persistent object store 
saves ISDE data. 

We have built many environments with MViews [2, 11, 12, 13]. 
Several  have been integrated together to produce multi-notational 
ISDEs such as OOEER [10], which keeps OOA/D and EER views 
fully consistent, and NIAMER [22], which keeps ER and NIAM 
views fully consistent. MViews ISDEs are more flexible than 
those of generator approaches [18, 20], and MViews has better 
abstractions for building multi-view editing systems than other 
framework approaches [5, 16, 19]. 

3. SNART CONSTRAINTS 

Snart [15] is an object-oriented extension of Prolog with multi-
directional constraint propagation. It provides imperative features, 
together with constraints to maintain consistency when data 
values change. Unlike MViews, constraints are specified in a 
declarative fashion, with change propagation and response 
handled automatically. PlanEntry, a plan drawing system [15], 
illustrates use of Snart constraints (Figure 2). PlanEntry provides 
multiple 2D views of a building. Constraints maintain consistency 
between these views and an underlying 3D representation of the 
building. Changes to views propagate through the underlying 
model and on to other views.  Handles are used to manipulate 
plan elements and also to impose constraints between them; for 
example, two spaces may be constrained to remain abutted. 

As a more specific example, suppose the z dimension of a roof is 
represented by three attributes, as in Figure 3(a), related by the 
constraint height = z1 - z in class roof (Figure 3(b)). If the value 
of any one of height, z, or z1 changes, one of the other attributes 
is changed to resatisfy the equality. Thus, if the roof top (z1) is 
dragged upwards, the height is changed. 

If there are more than two attributes in a constraint it is unclear 
which to change. This ambiguity is solved in Snart with 
directions. A constraint may have explicit directions specifying 
how it is to be interpreted on an attribute value change.  Default 
directions apply if none are specified: a change to the first 
attribute leads to constraint propagation to the second;  any other 
changes lead to the first attribute being recalculated. The roof 
constraint defaults are thus: (height=>z1, z=>height, z1=>height) 
where (height=>z1) means that on a change to height the attribute 
z1 is recalculated.  
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Figure 1. The SPE architecture as represented in MViews. 
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Figure 2: Multiple Views in PlanEntry 



 

height
z

z1

 

class(roof, 
  features(height: int, z: int, z1: int, ...), 
  ... 
  constraints(height = z1 - z and_with move(z 
=>z1)) 

). 

Figure 3: (a) Roof z dimension attributes (b) Snart constraint on roof attributes 

The interpretation of a constraint can also depend on the reason 
for a change (specified when an assignment is made). The 
constraint in Figure 3 has an extra direction and_with 
move(z=>z1), meaning that if the current reason  is move, 
changing z will lead to z1 being recalculated (z1 := height + z). 
The overall effect is that the roof top and base can change 
independently, with height automatically recalculated, but if the 
base is moved the top is also moved, keeping height constant. 
Directions and reasons provide a simpler disambiguation 
mechanism than hierarchical constraints as in Kaleidoscope [7]. 

Snart demons are used in PlanEntry to ensure a changed building 
component is re-rendered. A demon is a procedure executed 
whenever the value of any of the Snart object attributes used in 
the demon is changed. In a conventional language, procedural 
code would be needed to handle this dependency explicitly. Snart 
has other features for constraint processing, including path 
handling, constraints over classifiers and objects, constraints over 
collections of objects, and relational constraints [17]. 

4. VML 

VML (view mapping language) [3] takes a more abstract 
approach than MViews or Snart. VML specifies bidirectional 
mappings between two schemas. The schemas can describe 
information models  of two design tools, a design tool and a 
shared common data repository, or even two versions of the same 
model. The motivation is to support integration of building design 
tools via a common repository [1], but with explicit mapping 
specifications rather than ad-hoc techniques as used in other 
integration projects [4, 6]. VML thus differs from the previous 
two approaches in its primary aim of tool integration rather than 
tool construction. 

A VML specification consists of several inter_class 
specifications, such as that in Figure 4. Each describes a mapping 
between objects of specific classes in one schema (space_face, 
material_face, building in Figure 4) with matching ones (wall) 
in another. Invariants specify applicability of an inter_class for 
a particular set of objects. In Figure 4, the space_face location 
must be 'ext' and the material_face  type_of_face must be 'wall' 
and the space_face and material_face planes coincident for 
inter_class to be valid. 

Equivalences specify mappings between attributes of the objects 
involved. These can be constraint-like expressions (possibly with 
path references (=>)), function calls, or pairs of procedure calls 
(one for each direction). VML includes sophisticated collection 
management facilities. For example a bijection can be used to 
conditionally partition objects in an associated aggregate. In 
Figure 4 bijections partition objects in space_face's openings 
(collection) attribute between the separate windows, and doors 
collections in wall. The mapping of each object involved in the 
bijection is via other inter_class specifications. Method calls can 

also be mapped, such as the mapping of the space_face select 
method to the wall highlight method. Initialisers specify default 
data or constructor calls for objects created when mapping. A 
programming environment (VPE) supports VML programming in 
both textual and abstract graphical form [3]. 

inter_class([space_face, material_face,  
 building], [wall], 
invariants( 
    pace_face.location = 'ext',  
    material_face.type_of_face = 'wall', 
    plane_equivalence(space_face.plane,            
                      material_face.plane), 
 ), 
equivalences( 
    space_face.orientation =  
wall.orientation, 
    aterial_face.material=>r_value =   
      all.r_value,  
 space_face.max=>x - space_face.min=>x =  
      wall.width, 
   
bijection(space_face.openings[]@class(window),  
      wall.windows[]), 
bijection(space_face.openings[]@class(door),  
    wall.doors[]), 
 space_face@select = wall@highlight 
 ), 
initialisers( 
 wall.colour = 'light', 
  wall@create( 
  building.environment=>degree_days) 
)) 

Figure 4. Example VML inter-class specification. 

VML could be compiled to Snart constraints, but we have taken a 
more complex transaction-based approach. A mapping manager 
supports incremental or batch transfer of data between instances 
of the common repository and instances of tool models. Each 
attached view accumulates transactions or sets of modifications to 
be mapped to the common repository. On commital, the manager 
uses the inter_class specifications to determine what objects to 
create, delete, or modify in the common repository. The size of a 
transaction depends on user and tool needs. Large transactions 
equate to a batch version merging style. Small transactions, 
corresponding to individual tool manipulations, provide a more 
synchronous approach. Changes propagated to the common 
repository are made available to other views for incorporation via 
their mappings. The manager detects conflicts between changes, 
invoking negotiation processes to resolve them. The manager also 
maintains traceability, so that the originators or modifiers of data 
can be determined. This can be used in conflict arbitration 
(preferring user-supplied data over defaults, for example). 

5. SERENDIPITY 

To make effective use of multiuser/view environments, work 
process modelling and coordination mechanisms are needed. 
Serendipity is a multiview process modelling, enactment and 
work planning environment. It also supports event handling and 
group communication and awareness mechanisms [14].  
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Figure 5. Software process model views and dialogs in Serendipity. 

Figure 5 shows a process model for updating a software system 
(view 1). The notation adapts and extends Swenson’s VPL [21], 
to support artefact, tool and role modelling, and event handling 
mechanisms. Stages describe steps in the process of modifying a 
software system. Enactment event flows link stages. If labelled, 
the label is the finishing state of the stage the flow is from. 
Shadowing indicates that multiple implementers can work on a 
stage (ie it has multiple subprocess enactments). Other items 
include start, finish, AND, and OR stages. Underlined stage IDs 
indicate a subprocess model, for example view 2 is a subprocess 
for view 1. Italicised stages indicate reuse of a template process 
model Serendipity also supports artefact, tool and role modelling, 
as in view 3, showing a different perspective of view 1. Usage 
connections indicate how stages, artefacts, tools and roles are 
used. 

Enacted stages are highlighted by colour and shading. The shaded 
stage with a bold border (“m1.1.8:fix design”) is the current 
enacted stage for the user i.e. their current work context. As a 

stage completes, event flows activate to enact linked stages. 
Enactments of stages are recorded, as are process model changes, 
and all enacted stages for a user can be shown in a “to-do” list 
dialog. 

Filters and actions specify arbitrary enactment and work artefact 
modification event processing. View 4 shows an example of 
enactment event filtering. Filters “Made Current” and “finished 
testing” determine if “m1.3:check changes” has been made the 
current enacted stage or has been finished. If so, then if the 
“m1.2:implement changes” process has not completed 
(determined by filter “Not Complete”), the role associated with 
this stage is notified of testing being started or completed. 

6. SUMMARY 

Each of the preceeding approaches has advantages. MViews 
enables a range of consistency mechanisms that are difficult or 
impossible to achieve in our other approaches. Snart constraints 
are a language-based approach avoiding the need for procedural 



code. However, structural mappings are difficult because Snart 
responds to data value changes. Thus it cannot easily deal with 
the consistency issues related to insertion and removal of objects 
in complex collections. VML is, however, well suited to handling 
such mappings. Serendipity is especially useful for event 
detection and response. Its use is currently restricted to work 
process modelling, but it will be productive to combine this 
approach with the propagation techniques of our other 
approaches. 

All of the above approaches are implemented in an object-
oriented extension of Prolog. This has enabled more rapid 
prototyping of systems than by using a conventional language. 
However, it has led to two problems: efficiency, due to a 
mismatch between the Prolog model and an imperative approach;  
and portability, due to the use of Prolog and high-level 
MacProlog-specific graphics. We have almost completed an 
extension to Java that incorporates Snart-style constraints. The 
extended language is currently compiled into Java source. With 
JIT compilation, we expect close to a 1000 times increase in 
constraint propagation speed over Snart. The next step is to 
extend the Java constraints with VML mappings, using 
compilation to avoid unnecessary mapping interpretation. To 
include the benefits of MViews, the low-level triggering 
mechanism that implements constraints will be extended to 
provide full information about changes so that change 
descriptions can be generated, where needed. Finally, 
Serendipity-style event-handling will be incorporated, permitting 
more direct event management. The unification of these 
mechanisms will allow us to select the appropriate means of 
achieving consistency between multiple views, from the 
declarative approach of constraints and mappings, to the lower-
level but more powerful change description approach. 
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