
SUPPORT FOR CONSTRUCTING ENVIRONMENTS WITH MULTIPLE VIEWS
John C. Grundy†, John G. Hosking††, Warwick B. Mugridge††, and Robert W. Amor†††

 Department of Computer Science† Department of Computer Science†† Building Research Establishment †††
 University of Waikato University of Auckland Bucknalls Lane, Garston,
 Private Bag 3105, Hamilton, New Zealand Private Bag, Auckland, New Zealand Watford WD2 7JR, UK
 jgrundy@cs.waikato.ac.nz {john,rick}@cs.auckland.ac.nz trebor@bre.co.uk

ABSTRACT

We describe several approaches to supporting the construction of
design environments with multiple views of common information.
We then outline a new approach that draws on the best of each of
them.

KEYWORDS

multiple views, view consistency, change descriptions,
constraints, view mapping languages, process modelling

1. INTRODUCTION

The design of complex artefacts typically involves multiple
designers sharing parts of an evolving design, using multiple
design notations and tools. There can be much overhead in inter-
notation translation and co-ordination of both design parts and
designers to maintain overall design consistency. Automating the
simpler aspects of these processes allows designers more time to
resolve complex inconsistencies and to do creative design. We
present several of our approaches to solving this problem in two
application areas: the design of buildings and large software
systems.

2. MVIEWS

MViews is a framework for constructing Integrated Software
Development Environments (ISDEs) which support multiple
textual and graphical views [8, 9]. MViews provides a general
model for defining software system data structures and tool views,
and a flexible mechanism for propagating changes between
software components, views and tools. ISDE data is described by
components with attributes, linked by a variety of relationships.
Multiple views are supported by representing each view as a
graph linked to the base software system graph. Each view is
rendered and edited in either a graphical or textual form. Tools
can be interfaced at the view level (as editors), via external view
translators, or multiple base layers may be connected via inter-
repository relationships [10]. Figure 1 shows the architecture of
SPE (Snart Programming Environment), an MViews ISDE for
object-oriented software development [11]. All basic graph
editing operations generate change descriptions of the form:
UpdateKind(UpdatedComponent, ...UpdateKind-specific Values...). For
example, an attribute update is represented as:
update(Component,AttrName, OldValue,NewValue).

Change descriptions are propagated to all components related to
the updated one. Receiving components interpret descriptions and
may modify themselves, producing further change descriptions. A
wide range of facilities are supported, including attribute
recalculation, bi-directionally consistent textual and graphical
views, inconsistency recording, undo/redo, versioning, tool
integration, and collaborative editing [12]. Developers specialise
MViews framework classes to define software components, views
and editing tools to produce a new ISDE. A persistent object store
saves ISDE data.

We have built many environments with MViews [2, 11, 12, 13].
Several have been integrated together to produce multi-notational
ISDEs such as OOEER [10], which keeps OOA/D and EER views
fully consistent, and NIAMER [22], which keeps ER and NIAM
views fully consistent. MViews ISDEs are more flexible than
those of generator approaches [18, 20], and MViews has better
abstractions for building multi-view editing systems than other
framework approaches [5, 16, 19].

3. SNART CONSTRAINTS

Snart [15] is an object-oriented extension of Prolog with multi-
directional constraint propagation. It provides imperative features,
together with constraints to maintain consistency when data
values change. Unlike MViews, constraints are specified in a
declarative fashion, with change propagation and response
handled automatically. PlanEntry, a plan drawing system [15],
illustrates use of Snart constraints (Figure 2). PlanEntry provides
multiple 2D views of a building. Constraints maintain consistency
between these views and an underlying 3D representation of the
building. Changes to views propagate through the underlying
model and on to other views. Handles are used to manipulate
plan elements and also to impose constraints between them; for
example, two spaces may be constrained to remain abutted.

As a more specific example, suppose the z dimension of a roof is
represented by three attributes, as in Figure 3(a), related by the
constraint height = z1 - z in class roof (Figure 3(b)). If the value
of any one of height, z, or z1 changes, one of the other attributes
is changed to resatisfy the equality. Thus, if the roof top (z1) is
dragged upwards, the height is changed.

If there are more than two attributes in a constraint it is unclear
which to change. This ambiguity is solved in Snart with
directions. A constraint may have explicit directions specifying
how it is to be interpreted on an attribute value change. Default
directions apply if none are specified: a change to the first
attribute leads to constraint propagation to the second; any other
changes lead to the first attribute being recalculated. The roof
constraint defaults are thus: (height=>z1, z=>height, z1=>height)
where (height=>z1) means that on a change to height the attribute
z1 is recalculated.

view rel. view rel.view rel.

Repository (Base View)

Multiple Views
of Repository

Renderings/
Editors for Views

...

component

relationship

attributeKey:

...

other base view(s)
(Collaborative Edits)

1. Edit view
component

2. propagate change description e.g.
"update(Comp,name,Old,new)"

1.

1.
class_icon

class_icon

gen_glue

class

gen

class
...

features

...

class1

class2

class2

class_text

3. update base component

2.

3.

4. 5.
4.

4.

5.

6.

6.

4. update affected
components

5. propagate to affected views

5. propagate to affected views

6. update affected views
(rerender, expand text headers, etc.)

5.

class1

Figure 1. The SPE architecture as represented in MViews.

rect

y1
y0
x1
x0

rect

y1
y0
x1
x0

space

z1
z
y1
y
x1
x

rendertool
manipulation

tool
manipulation render

x0=x
x1=x1
y0=y
y1=y1

x0=y
x1=y1
y0=-z1
y1=-z

Figure 2: Multiple Views in PlanEntry

height
z

z1

class(roof,
 features(height: int, z: int, z1: int, ...),
 ...
 constraints(height = z1 - z and_with move(z
=>z1))

).

Figure 3: (a) Roof z dimension attributes (b) Snart constraint on roof attributes

The interpretation of a constraint can also depend on the reason
for a change (specified when an assignment is made). The
constraint in Figure 3 has an extra direction and_with
move(z=>z1), meaning that if the current reason is move,
changing z will lead to z1 being recalculated (z1 := height + z).
The overall effect is that the roof top and base can change
independently, with height automatically recalculated, but if the
base is moved the top is also moved, keeping height constant.
Directions and reasons provide a simpler disambiguation
mechanism than hierarchical constraints as in Kaleidoscope [7].

Snart demons are used in PlanEntry to ensure a changed building
component is re-rendered. A demon is a procedure executed
whenever the value of any of the Snart object attributes used in
the demon is changed. In a conventional language, procedural
code would be needed to handle this dependency explicitly. Snart
has other features for constraint processing, including path
handling, constraints over classifiers and objects, constraints over
collections of objects, and relational constraints [17].

4. VML

VML (view mapping language) [3] takes a more abstract
approach than MViews or Snart. VML specifies bidirectional
mappings between two schemas. The schemas can describe
information models of two design tools, a design tool and a
shared common data repository, or even two versions of the same
model. The motivation is to support integration of building design
tools via a common repository [1], but with explicit mapping
specifications rather than ad-hoc techniques as used in other
integration projects [4, 6]. VML thus differs from the previous
two approaches in its primary aim of tool integration rather than
tool construction.

A VML specification consists of several inter_class
specifications, such as that in Figure 4. Each describes a mapping
between objects of specific classes in one schema (space_face,
material_face, building in Figure 4) with matching ones (wall)
in another. Invariants specify applicability of an inter_class for
a particular set of objects. In Figure 4, the space_face location
must be 'ext' and the material_face type_of_face must be 'wall'
and the space_face and material_face planes coincident for
inter_class to be valid.

Equivalences specify mappings between attributes of the objects
involved. These can be constraint-like expressions (possibly with
path references (=>)), function calls, or pairs of procedure calls
(one for each direction). VML includes sophisticated collection
management facilities. For example a bijection can be used to
conditionally partition objects in an associated aggregate. In
Figure 4 bijections partition objects in space_face's openings
(collection) attribute between the separate windows, and doors
collections in wall. The mapping of each object involved in the
bijection is via other inter_class specifications. Method calls can

also be mapped, such as the mapping of the space_face select
method to the wall highlight method. Initialisers specify default
data or constructor calls for objects created when mapping. A
programming environment (VPE) supports VML programming in
both textual and abstract graphical form [3].

inter_class([space_face, material_face,
 building], [wall],
invariants(
 pace_face.location = 'ext',
 material_face.type_of_face = 'wall',
 plane_equivalence(space_face.plane,
 material_face.plane),
),
equivalences(
 space_face.orientation =
wall.orientation,
 aterial_face.material=>r_value =
 all.r_value,
 space_face.max=>x - space_face.min=>x =
 wall.width,

bijection(space_face.openings[]@class(window),
 wall.windows[]),
bijection(space_face.openings[]@class(door),
 wall.doors[]),
 space_face@select = wall@highlight
),
initialisers(
 wall.colour = 'light',
 wall@create(
 building.environment=>degree_days)
))

Figure 4. Example VML inter-class specification.

VML could be compiled to Snart constraints, but we have taken a
more complex transaction-based approach. A mapping manager
supports incremental or batch transfer of data between instances
of the common repository and instances of tool models. Each
attached view accumulates transactions or sets of modifications to
be mapped to the common repository. On commital, the manager
uses the inter_class specifications to determine what objects to
create, delete, or modify in the common repository. The size of a
transaction depends on user and tool needs. Large transactions
equate to a batch version merging style. Small transactions,
corresponding to individual tool manipulations, provide a more
synchronous approach. Changes propagated to the common
repository are made available to other views for incorporation via
their mappings. The manager detects conflicts between changes,
invoking negotiation processes to resolve them. The manager also
maintains traceability, so that the originators or modifiers of data
can be determined. This can be used in conflict arbitration
(preferring user-supplied data over defaults, for example).

5. SERENDIPITY

To make effective use of multiuser/view environments, work
process modelling and coordination mechanisms are needed.
Serendipity is a multiview process modelling, enactment and
work planning environment. It also supports event handling and
group communication and awareness mechanisms [14].

1.

2.

3.
4.

Figure 5. Software process model views and dialogs in Serendipity.

Figure 5 shows a process model for updating a software system
(view 1). The notation adapts and extends Swenson’s VPL [21],
to support artefact, tool and role modelling, and event handling
mechanisms. Stages describe steps in the process of modifying a
software system. Enactment event flows link stages. If labelled,
the label is the finishing state of the stage the flow is from.
Shadowing indicates that multiple implementers can work on a
stage (ie it has multiple subprocess enactments). Other items
include start, finish, AND, and OR stages. Underlined stage IDs
indicate a subprocess model, for example view 2 is a subprocess
for view 1. Italicised stages indicate reuse of a template process
model Serendipity also supports artefact, tool and role modelling,
as in view 3, showing a different perspective of view 1. Usage
connections indicate how stages, artefacts, tools and roles are
used.

Enacted stages are highlighted by colour and shading. The shaded
stage with a bold border (“m1.1.8:fix design”) is the current
enacted stage for the user i.e. their current work context. As a

stage completes, event flows activate to enact linked stages.
Enactments of stages are recorded, as are process model changes,
and all enacted stages for a user can be shown in a “to-do” list
dialog.

Filters and actions specify arbitrary enactment and work artefact
modification event processing. View 4 shows an example of
enactment event filtering. Filters “Made Current” and “finished
testing” determine if “m1.3:check changes” has been made the
current enacted stage or has been finished. If so, then if the
“m1.2:implement changes” process has not completed
(determined by filter “Not Complete”), the role associated with
this stage is notified of testing being started or completed.

6. SUMMARY

Each of the preceeding approaches has advantages. MViews
enables a range of consistency mechanisms that are difficult or
impossible to achieve in our other approaches. Snart constraints
are a language-based approach avoiding the need for procedural

code. However, structural mappings are difficult because Snart
responds to data value changes. Thus it cannot easily deal with
the consistency issues related to insertion and removal of objects
in complex collections. VML is, however, well suited to handling
such mappings. Serendipity is especially useful for event
detection and response. Its use is currently restricted to work
process modelling, but it will be productive to combine this
approach with the propagation techniques of our other
approaches.

All of the above approaches are implemented in an object-
oriented extension of Prolog. This has enabled more rapid
prototyping of systems than by using a conventional language.
However, it has led to two problems: efficiency, due to a
mismatch between the Prolog model and an imperative approach;
and portability, due to the use of Prolog and high-level
MacProlog-specific graphics. We have almost completed an
extension to Java that incorporates Snart-style constraints. The
extended language is currently compiled into Java source. With
JIT compilation, we expect close to a 1000 times increase in
constraint propagation speed over Snart. The next step is to
extend the Java constraints with VML mappings, using
compilation to avoid unnecessary mapping interpretation. To
include the benefits of MViews, the low-level triggering
mechanism that implements constraints will be extended to
provide full information about changes so that change
descriptions can be generated, where needed. Finally,
Serendipity-style event-handling will be incorporated, permitting
more direct event management. The unification of these
mechanisms will allow us to select the appropriate means of
achieving consistency between multiple views, from the
declarative approach of constraints and mappings, to the lower-
level but more powerful change description approach.

REFERENCES

1. Amor, R. and Hosking, J.G. Multi-disciplinary views for
integrated and concurrent design. International Journal of
Construction Information Technology 2, 1 (1994), 45-55.

2. Amor, R., Augenbroe, G., Hosking, J.G., Rombouts, W.,
and Grundy, J.C. Directions in modelling environments.
Automation in Construction , 4 (1995), 173-187.

3. Amor, R.W., Hosking, J.G., and Mugridge, W.B. A
declarative approach to inter-schema mappings. In
Modelling of Buildings Through Their Life-Cycle: Proc CIB
W78/TG10 Conference, CIB Proceedings Publication 180,
Stanford, August 1995.

4. Augenbroe, G. A Joint European Project Towards
Integrated Building Design Systems. Building Systems
Automation-Integration (1993), 731-744.

5. Avrahami, G., Brooks, K.P., and Brown, M.H. A Two-
View Approach to Constructing User Interfaces. ACM
Computer Graphics 23, 3 (1990), 137-146.

6. Böhms, H.M. and Storer, G., “Architecture, methodology
and Tools for computer integrated Large Scale engineering
(ATLAS) - Methodology for Open Systems Integration,” ,
no. ESPRIT 7280, 1993.

7. Freeman-Benson, B., “Constraint imperative
programming,” Technical Report, University of
Washington, Seattle, 1991.

8. Grundy, J.C. and Hosking, J.G. A framework for building
visusal programming environments. In Proceedings of the
1993 IEEE Symposium on Visual Languages, IEEE CS
Press, 1993, pp. 220-224.

9. Grundy, J.C. and Hosking, J.G., “Constructing Integrated
Software Development Environments with Dependency
Graphs,” Working Paper, Department of Computer Science,
University of Waikato, 1995.

10. Grundy, J.C. and Venable, J.R. Providing Integrated
Support for Multiple Development Notations. In
Proceedings of CAiSE'95, Finland, June 1995, LNCS 932,
Springer-Verlag, pp. 255-268.

11. Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge,
W.B. Connecting the pieces, Chapter 11 in Visual Object-
Oriented Programming, Burnett, M., Goldberg, A., Lewis,
T. Eds, Manning/Prentice-Hall (1995).

12. Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Supporting flexible consistency management via discrete
change description propagation. to appear in Software -
Practice and Experience.

13. Grundy, J.C. and Hosking, J.G. ViTABaL: A Visual
Language Supporting Design By Tool Abstraction. In
Proceedings of the 1995 IEEE Symposium on Visual
Languages, IEEE CS Press, Darmsdart, Germany,
September 1995, pp. 53-60.

14. Grundy, J.C., “Serendipity: integrated environment support
for process modelling, enactment and improvement,”
Working Paper, Department of Computer Science,
University of Waikato, 1996.

15. Hosking, J.G., Mugridge, W.B., and Blackmore, S. Objects
and constraints: a constraint based approach to plan
drawing. In Proceedings of TOOLS 15, Prentice-Hall,
Sydney, 1994, pp. 9-19.

16. Krasner, G.E. and Pope, S.T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Programming 1,
3 (1988), 8-22.

17. Mugridge, W.B., Grundy, J.C., Hosking, J.G., and Amor,
R., Snart94 Reference/User Manual, Department�of
Computer Science, University of Auckland, 1995.

18. Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R.
Dora - a structure oriented environment generator. IEE
Software Engineering Journal 7, 3 (1992), 184-190.

19. Reiss, S.P. Connecting Tools Using Message Passing in the
Field Environment. IEEE Software 7, 7, 57-66.

20. Reps, T. and Teitelbaum, T. Language Processing in
Program Editors. COMPUTER 20, 11 (November 1987),
29-40.

21. Swenson, K.D. A Visual Language to Describe
Collaborative Work. In Proceedings of the 1993 IEEE
Symposium on Visual Languages, IEEE CS Press, 1993, pp.
298-303.

22. Venable, J.R. and Grundy, J.C. Integrating and Supporting
Entity Relationship and Object Role Models. In
Proceedings of OO-ER'95, Gold Coast, Australia, 1995,
LNCS 1021, Springer-Verlag.

	SUPPORT FOR CONSTRUCTING ENVIRONMENTS WITH MULTIPLE VIEWS
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. MVIEWS
	3. SNART CONSTRAINTS
	4. VML
	5. SERENDIPITY
	6. SUMMARY
	REFERENCES

