
Support for Collaborative, Integrated Software Development

John C. Grundy*, Warwick B. Mugridge†, John G. Hosking† and Robert W. Amor†

*Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand

†Department of Computer Science, University of Auckland, Private Bag, Auckland, New Zealand
email: jgrundy@cs.waikato.ac.nz

A new model for supporting collaborative software
development with shared multiple textual and graphical
views is presented. Multiple views of software
development can be synchronously, semi-synchronously
and asynchronously edited by different developers. View
versions can be incrementally merged, and view updates
broadcast to other developers and incrementally
incorporated as required in their alternative versions.
The model is illustrated by its use in a software
development environment for an object-oriented
language.

1. Introduction

Software systems are growing ever larger and more
complex. Two related approaches to managing this
complexity are integrated software development
environments (ISDEs) and programming environments
which facilitate Computer Supported Cooperative Work
(CSCW).

ISDEs support multiple tools, and multi-view editing
in these environments allows developers to work with
software components at different levels of abstraction,
using different representations []. For example, analysis
and design views might support graphical construction
and representation of the high-level aspects of a
program, while textual views might support detailed
implementation. Consistency management is required to
keep all of these views consistent under change.

Large software systems require the collaboration of
multiple developers [,]. Support for collaboration can be
provided by two types of tool: version control systems,
which allow alternative designs to be created and
merged asynchronously; and synchronous editors, which
allow concurrent manipulation of a system by two or
more collaborators []. Ideally environments should
support both synchronous and asynchronous modes for
all types of system data.

We describe a new model for constructing
collaborative, multi-view ISDEs. Different environment
tools and multiple views of the software under
construction are integrated by change description
broadcasting via a shared data repository.
Asynchronous collaborative software development is
facilitated by sharing multiple versions of software
components between developers. Both fine-grained and
coarse-grained versions of software components and
multiple views are supported, with incremental version
revision and merging. Synchronous and semi-
synchronous <<define this here?>> collaboration are
supported by real-time change broadcasting between

environments, together with incremental change
description presentation and version merging.

Section 2 discusses related collaborative ISDE
research. Section 3 describes the user’s perspective of
our collaborative ISDE for object-oriented software
development. Section 4 discusses the model this
environment is based on and Section 5 describes the
implementation of this model as a reusable object-
oriented framework. Section 6 summarises the
contributions of this research and outlines possible
future research directions.

2. Related Collaborative ISDEs

SCCS [] supports version control for text source
code files, with different versions regenerated and
merged asynchronously. This technique does not work
well for more structured information, such as diagrams,
and the version merging process can be tedious and
error-prone.

Mercury [] extends the Cornell Program Synthesizer
[] to support a restricted form of collaborative
programming. Changes to module interfaces are
broadcast to other users, but program module versioning
and multiple views are not supported. Nascimento and
Dollimore [] describe a programming environment
which supports manual, asynchronous version control
for multiple programmers working on a shared Smalltalk
program. Mjølner/ORM [] uses a fine-grained version
control system to support both asynchronous and semi-
synchronous editing. All of these environments provide
only one view: a textual, structure-edited view of
program code.

Garden [] supports software development via
multiple textual and graphical views. Garden allows
programmers to share software components and their
views via an object-oriented database. FIELD
environments [] allow Unix tools to be integrated by
selective broadcasting of editing changes. Neither
support true collaborative, multi-view editing.

Collaborative document editors support
synchronous, collaborative work on a shared document
[]. They do not usually support asynchronous editing and
version control, as the users are assumed to be working
on the same document. ConversationBuilder [] provides
flexible, active support for cooperative work activities,
and is designed to facilitate tasks which can be
constantly changing.

[] aim to support lazy consistency management for
cooperative software development, where changes to
software are broadcast before the changes are made. []

support multiple viewpoints for software development,
with inconsistency management via logial predicates.

Dora [] provides multiple textual and graphical
views of software developmen. It does not support the
propagation of “partial” view updates between analysis,
design and implementation views, and thus makes
reconciliation of these views dependent on programmers
remembering old updates.

3. C-SPE

SPE

SPE (Snart Programming Environment) is an ISDE
which provides multiple textual and graphical views for
constructing programs in Snart, an object-oriented
Prolog []. SPE supports integrated analysis, design,
implementation, debugging and documentation tools.
Figure shows a screen dump from SPE with two
graphical views (one for analysis and one for design),
and two textual views (a class interface and a method
implementation). There is full consistency management
between all view types, so changes to one view are
always reflected in other views that share the updated
information, no matter how loose the connection
between the view representations.

Additional analysis and design views, such as class
contract and documentation views, as well as graphical
and textual debugging views, are also provided by SPE.
Graphical views are interactively edited and are kept
consistent with other views by the environment directly
updating changed icons. Descriptions of changes

affecting graphical view components can also be viewed
in dialog boxes.

Textual views are free-edited and parsed. Textual
view consistency involves expanding descriptions of
changes, called change descriptions, into the view’s text
in a special header annotation. Some changes can be
automatically applied by SPE to update the view’s text,
such as renaming classes and features and adding or
deleting features. Other changes represent “partial”
changes affecting the view (eg a design level change
propagated to an implementation view) which must be
implemented manually by the software developer. To aid
developers in determining the consequence to other
views of a change, SPE supports a rich set of view
navigation facilities, utilising hypertext
techniques.<<How does it help determine
consequences?>>

Asynchronous Collaboration

C-SPE extends SPE to provide a collaborative
object-oriented programming environment. SPE
automatically generates descriptions of all view and
software component updates as change descriptions. C-
SPE uses these change descriptions to inform other
programmers of changes applied at the analysis, design
and implementation levels. This is done by broadcasting
these change descriptions as they occur to other
programmers’ environments and either storing them in
different, shared versions or presenting them to
programmers.

Figure . A screen dump from SPE.

The loosest form of collaborative software

development supported by C-SPE involves sharing
multiple versions of views, classes and class methods
among software developers. After update by different
developers, alternate versions of the same view or
software component are merged to produce a new
version.

Rather than the check-out style of SCCS, C-SPE
adopts an optimistic approach to version control. This is
especially appropriate when the software under
development cannot be easily partitioned between the
developers [,]. For example, the addition of a single
function to an OO software system can lead to changes
in several classes.

“Evolution graph” <<Diagram of this type of
graph or ref>>views show the relationships between
component and view versions. They are used to
graphically specify new versions, alternate versions and
alternate merges, and allow developers to view all
change descriptions in different versions (the
“modification history” of a view or software
component).

Developers edit their own versions of views, and/or

the software components rendered in the views
asynchronously. Developers may create and modify new
versions of a component based on their current version.
This “freezes” the current version (ie new changes are
locked out)‚ and allows it to be exported for other
developers to use. Another developer may subsequently
import an exported (frozen) version, and merge it with
his/her own version, exporting or further modifying the
resulting version.

C-MViews
environment

developer 1 repository

V1.0

V1.0 V1.1aV1.0 V1.1b V1.2

C-MViews
environment

developer 2 repository

developer 3 repository

C-MViews
environment

V1.1a

Figure . Asynchronous view editing and
exporting/importing.

Figure illustrates this asynchronous editing and

merging approach to collaborative development.
Developer 1 copies version V1.0 of a component from
developer 3 and creates a new version (denoted by
V1.1a). Developer 2 also imports V1.0 and creates a
new version (V1.1b), so they can modify it at the same
time. After updating their alternatives, developers 1 and
2 freeze their component versions. Developer 2 then
takes responsibility for integrating the changes, obtains a

copy of version 1.1.a and merges it with version 1.1b.
This merged component version is then exported as
V1.2, for other developers to use.

Alternatives are merged by having C-SPE apply
change descriptions selected from one alternative
version to the other alternative’s view or component, or
reverting to a common ancestor version and applying all
change descriptions from both alternatives to this earlier
version. Developers can choose a subset of the version’s
change descriptions to have C-SPE apply, and can have
groups of change descriptions applied out of the
sequence they occured, if desired.

C-SPE applies the change descriptions to be merged
incrementally to a view. Developers can observe how
the view is updated by each incremental change, thus
animating the effects of the merge. This allows
developers to more clearly identify the effects of a merge
operation in terms of actual changes to views.

Developer 1's updates on class alternative

Developer 2's updates on class alternative

fig . Example of two class alternative update lists to
merge.

Two alternative versions may contain conflicts that

must be resolved when merging them. For example, one
version may delete something that the other updates. C-
SPE identifies change descriptions it can’t merge
automatically and informs the developer of the conflict.
For example, in Figure C-SPE must carry out both sets

 Page 3

of change descriptions, but developer 1 has deleted
feature “method1” while developer 2 has updated it.
This problem is identified by C-SPE and the merging
developer informed of the conflict. The developer can
then decide which update to allow (if either) or make
other changes to reconcile the two alternatives. A similar
problem occurs with the renaming of method1 by
developer 1 and the addition of method2 by developer 2
(a semantic error). This can be resolved if method1 is
deleted or if one of the updates is disallowed. C-SPE
does not currently check for such semantic errors during
alternative merging but identifies them when checking
the semantic correctness of the merged class. Figure
shows the Merge Conflicts dialogue which displays
conflicts that C-SPE has detected.

Figure . Conflicts detected when merging two
alternatives.

One interesting complication to the view merging

process is SPE’s support for free-edited textual views.
These are stored as blocks of text which are parsed to
recover structural information and thus to update
information shared by other views. C-SPE supports
multiple versions of these text components, but only
stores change descriptions generated by the parsing
process. Other aspects of the views which are updated
between two versions of the same component (such as
comments, expressions or code statements) need to be
reconciled either manually or by using a traditional
SCCS-style textual differencing approach. <<this para
could go>>

Synchronous Collaboration

Synchronous collaboration allows two or more
developers to simultaneously examine and alter a view,
communicating the changes they make between
themselves as they occur. There are two main
approaches to handling the integration of the changes
made. The first approach is to consider that the
developers are communicating and negotiating in order
to derive a single result. In this case, it is appropriate
that all the developers concerned share a common view,
so that a change can be rejected by any participant and
thus undone in all of the shared views.

The second approach does not aim for a single
result, so that developers may end up with their own
distinct versions that reflect their current thinking. In this
case, each developer can choose whether or not to accept
the changes of others in the collaboration without

affecting the others. This results in “semi-synchronous”
collaborative editing.

C-SPE supports both types of collaboration. With
semi-synchronous collaboration, developers have their
own alternative and are incrementally informed of
updates other developers are making to their alternative
versions by the receipt of change descriptions, which are
then displayed in dialogs or textual views. With
synchronous collaboration, developers share the same
version and view updates are shown simultaneously in
other developers’ views.

Figure . Semi-synchronous view edits in C-SPE.

Figure illustrates semi-synchronous view editing in

C-SPE. The dialog shown allows a developer to view
change descriptions of the changes before deciding to
apply them, ignore the changes, or view the effect of
(some or all of) the changes on their version. Developers
can request C-SPE to automatically merge received
change descriptions with their current alternative
incrementally as they arrive. Change descriptions can
also be viewed in textual view headers.

During synchronous collaboration, developers share
the same version of a view. Changes made by one
developer are reflected immediately in the view the other
developers interact with. Whereas view alternatives
edited semi-synchronously may have different layouts
and viewed components, synchronously edited views are
always identical among all collaborating developers.

Developers can move between semi-synchronous
and asynchronous development at will. To move from
synchronous to asynchronous collaboration, however,
developers must obtain the shared version, and create an
alternative of it, before asynchronously editing it.
4. C-MViews

We now describe C-MViews, the framework used to
construct C-SPE, commencing with a description of the

single user MViews framework, and following with
extensions to support collaborative environments.

MViews

SPE is implemented as a collection of Snart classes,
specialised from the MViews framework []. MViews
supports the construction of new ISDEs by providing a
general model for defining software system data
structures and tool views, with a flexible mechanism for
propagating changes between software components,
views and distinct software development tools.

As shown in Figure , ISDE data is described as
components with attributes, linked by a variety of
relationships. Multiple views are supported by
representing each view as a graph linked to the base
software system graph structure. Each view is rendered
and edited in either a graphical or textual form. Distinct
environment tools can be interfaced at the view level (as
editors), via external view translators, or multiple base
views maybe connected via inter-view relationships, as
described in [].

When a software or view component is updated, a
change description is generated. This is of the form
UpdateKind(UpdatedComp, UpdateKind-specific Values). For example,
an attribute update on Comp1 of attribute Name might be
represented as: update(Comp1,Name,OldValue,NewValue)

All basic graph editing operations generate change
descriptions and pass them to the propagation system.
Change descriptions are propagated to all related
components dependent upon the updated component’s
state. Dependents interpret these update descriptions
and possibly modify their own state, producing further
change descriptions. The change description mechanism

supports a diverse range of software development
environment facilities, including semantic attribute value
recalculation, multiple views of a component, flexible,
bi-directional textual and graphical view consistency
management, a generic undo/redo mechanism, and
component “update history” information [].

New software components and editing tools are
constructed by reusing abstractions provided by an
object-oriented framework. ISDE developers specialise
MViews classes to define software components, views
and editing tools to produce the new environment. A
persistent object store is used to store component and
view data.

Multiple Versions

Software system components usually have a natural
hierarchy, with some components being “composed of”
other (sub-)components. An object-oriented program in
SPE is made up of several class frameworks, a
framework is composed of several classes and class
relationships, and a class is composed of various features
and inter-class relationships.

Several approaches to managing hierarchical
versioning exist: a new version of the whole system can
be created whenever any change is made; individual
version numbers at a particular level of the component
hierarchy can be maintained; or individual versions for
any component in the hierarchy can be stored, with a
configuration management tool used to reconstruct a
system version from lower-level sub-component
versions.

Display/
External
Layers

View
Layers

Base
Layer

class

class

generalisations

window

drawing_window text

text forms

features

class_icon

class_icon

gen_glue
class_text feature_text

text

drawing_window

window

external_class

External Interface
(Data/Event interchange)

External
Tool

...

feature

text forms

view rel. view rel.view rel. view rel. view rel.

component

relationship

attribute
Key:

... ...

Figure The MViews Architecture.

C-MViews aims to support all of these approaches

by providing a tailorable low-level versioning
mechanism, based on stored sequences of change
descriptions, called version records. Version records can
be associated with any C-MViews component or view,
and contain a record of changes made to that component
(as change descriptions) since the previous version.
These can include change descriptions describing
changes to the component itself, its sub-components, or
the configuration (version used) of sub-components.

For example, Figure shows how C-MViews version
records are used for C-SPE’s version control. C-SPE
adopts a component-level versioning approach where
each component in the component hierarchy down to
the level of individual classes has multiple versions
with associated version records.

program

framework

class

feature

...

...

... ...

...

...

program

framework

...

...

program

version
records

version
records

version
records

version
records

∆

∆

∆

∆

∆∆

... ∆

class

class

class
∆

Aggregation

Versioning

revision

alternative

merge

Figure . The general structure of C-SPE

versions. <<The version record should be removed
from the feature in the diagram>>

The most recent version of a C-SPE component is

either frozen, and hence closed to change, or open, and
hence able to be further modified. When a new C-SPE
component version is created a new version record for
that component is also created. The component’s parent,
eg the feature’s class, is also notified of this new sub-
component version. If the parent’s version is frozen, a
new version of the parent is also created.

For small sub-components it is useful to record
changes only in their parents' version records, for
efficiency. For example, in C-SPE, version records are
associated with classes but not individual class features.
This reduces the number of version records needed, but
means versioning only proceeds down to the class level,
with no individual feature versions. C-MViews
aggregation (part-of) relationships between components
automatically propagate a sub-component (eg class
feature) change description to its parent component (eg
class) which can then store the change description in its
version record.

View Versioning

An important distinction between C-MViews and
other ISDE models is its support for view versioning.

View versions are kept separate from base component
versions, as a view may render several different base
components. Changing any base component will thus
partially change the view (and vice versa). Views may
also change independently of their base components, as,
for example, layout information is view-specific. Figure
shows view versioning as used by C-SPE. In this case a
single version record is held for the view as a whole
rather than having individual records for view
components, such as class icons and connectors.

program

framework

class

feature

...

...

...

version
records

version
records

version
records

version
records

Aggregation

view

class view

feature view

version
records

View-of

...

Figure . C-SPE multiple view versions.

Views complicate the versioning process, as each
view can have multiple versions and each base software
component rendered in the view can also have multiple
versions. Changing the current version of a view will
modify affected base components, which should also
cause modifications to other views that render these base
components. This can result in large scale changes from
simple view version merging or when switching between
a previous or subsequent view version.

A further complication is that some view changes
are view-specific, for example layout and view
composition, eg which components and viewed and
which aren’t, while others affect the underlying base
information, eg component renaming, adding or deleting
relationships. Merging of two alternatives needs to
resolve layout and composition conflicts (which often
occur) with underlying base information conflicts
(which occur less often). C-MViews currently presents
the developer with a list of all conflicting change
descriptions for manual resolution. Heuristics may be
useful to assist in automation of some of this decision
making.

Version Merging

Change descriptions stored in a version record,
including change descriptions specifying changes to sub-
component configurations, are used as deltas to
(re)generate previous or subsequent versions. In order to
convert one version to another, C-MViews will undo the
change descriptions (to go back a version) or apply them
(to go forward a version). Previous or subsequent

versions may also be cached for more efficient
configuration management.

C-MViews based environments, such as C-SPE,
provide user interface facilities for capturing information
about why a change is made, and to present this
information appropriately in views. The capture and
presentation of this information needs to be of limited
“interference”, as developers typically do not want to
supply or see all of it every time they make a minor view
modification. C-MViews attempts to overcome some of
this interference by allowing an application to capture
and present this information on demand via the evolution
graph dialogs used to browse version records.

During version merging, any structural update
conflicts encountered during merging (such as deleting
components updated in another version) are identified
and presented to the merging developer. Semantic errors
can be detected by incrementally reevaluating semantic
attribute values and constraints after each change
description merge. Any “error” change descriptions
generated can be presented to the programmer, as they
indicate a semantic merge conflict has occured.

View update animation during merging is achieved
by updating and re-rendering view components for each
change description merged. Developers can choose a
sequence of change descriptions to merge with another
version, and can step through the application of each
change as it is applied, seeing the view dynamically
updated. Unlike most other systems, developers can
even merge version updates out-of-sequence, with C-
MViews detecting any structural or semantic conflicts
this produces.

Synchronous Collaboration

Synchronous and semi-synchronous collaboration
are supported by broadcasting change descriptions to
other developers’ environments as they are generated, as
shown in Figure .

C-MViews
environment

developer 1 repository

V1.0
V1.0 V1.1b V1.2

C-MViews
environment

developer 2 repository

V1.1a

Shared Repository
V1.2

V1.2

asynchronous
edits

change description
applied/displayed

change description
applied

change description
applied

change description
generated/appliedchange description

generated

synchronous
edits

Figure . Synchronous software development.

To support semi-synchronous editing, broadcast
change descriptions are received by other developers and
cached in special version records. They are then
presented in dialogs or textual view headers to inform
other developers of changes made to other alternatives.
These change descriptions can then be incrementally
merged with other developers’ view alternatives using

the same merging techniques as employed for
asynchronous merging.

To support synchronous editing, no developer
“owns” the shared version of a view. All updates
attempted by developers are sent to a central server
which then updates the shared version itself. Generated
change description(s) are then broadcast to all
collaborating developers’ environments, whose views
are then re-rendered to reflect the change. Fine-grained
locking is maintained by the server so only one edit of
the same view component is accepted at a time.

Change Description Broadcasting

Change description broadcasting is handled as part
of the general C-MViews mechanism of propagating
change descriptions. The current version record for a
component records other developers’ interest in updates
to the component. When a change description is stored
in this version record, it is also broadcast to the
environments of these other, interested developers.
Shared version records used for synchronous editing
also co-ordinate updates made to the shared version.

Broadcast change descriptions are either stored by
the current version record of the other developer’s
component or applied immediately to shared versions.
Stored updates are presented to these developers when
they work on the version record’s component or view.
An indication of new change descriptions is usually
given by shading icons or changing a menu bar item
which results in a context-dependent communication
mechanism. This is important in making C-MViews
environments useable, so developers aren’t inundated
with messages at inappropriate times.

Broadcast change descriptions include who, when
and optional why information, which assists developers
in understanding why the changes have been made.
User-defined change descriptions can also be broadcast
to facilitate flexible, context-dependent communication.

C-MViews also timestamps each broadcast change
description by attaching a version record ID and unique
sequence number. They are then stored in special
“broadcasted” and “received” version records in each
developers’ environment. Thus, no matter whether semi-
synchronous view editing is switched on or off for an
alternative, changes the developer is not notified about
can still be incrementally merged at a later date, using
the timestamp information.

This also helps to support fault-tolerance, eg when
one developer’s network connection or machine fails.
Change descriptions cached by the developer’s
environment and the central server can be rebroadcast
when the connection is re-established. Failure of the
central server prevents any form of synchronous
collaboration form taking place, but as developers have
their own alternatives, asynchronous development can
continue. We plan to extend C-MViews to support
synchronous collaboration between developers without
using the central server, which will improve the
robustness of resulting environments.

5. Implementation

A prototype of C-MViews has been implemented in
Snart and has been used to construct the prototype C-
SPE environment. C-MViews extends persistent Snart
object stores to support multiple versions of an object,
for multiple component versions. Change descriptions
are stored in these version records, and include
additional information, such as time-stamp, user id, and
change reason. Each version record object contains a
sequence of change descriptions together with links to
its predecessor(s) and successor(s), giving an evolution
graph for the component.

C-MViews currently uses a common, shared
component repository as a shared object store, and high-
performance, single-user repositories. A database server
is provided to moderate access to the shared object store.
This allows a group of collaborating environments to
provide high-speed data storage for each developer’s
alternatives, supports sharing of these alternatives, and
handles change description broadcasting between
developers. A central server is used, rather than
developer-to-developer communication, so a definitive
copy of the whole system is always available for new
developers. This also allows synchronous editing to be
controlled from one location.

A component alternative in one developer’s object
store may be merged with a version in another’s object
store. Thus a component’s object, its sub-component
objects, and its version objects must be copied from one
object store to another. As C-MViews knows about the
aggregation structures present between software
components, it can import and export the sub-
components of a component automatically.

The shared repository acts as a form of distributed
database by ensuring objects created in any developer’s
object space are always unique. When editing different
alternatives two developers may create different objects
which represent the same conceptual view or base
component. Subsequent merging of these alternatives
will result in redundancy that can be resolved by any of
the collaborators discarding one of these objects in
favour of the other.

Our current C-SPE prototype detects structural and
semantic conflicts as they occur during the merging
process, and presents invalid or error change
descriptions to the merging developer. C-MViews
currently does not, however, give developers any
assistance in rearranging updates to resolve conflicts and
at present only allows two versions to be merged at a
time. Free-edited textual views may have multiple
versions but C-SPE does not give any support to
merging these alternatives (this must be done manually).
C-SPE currently lacks a mechanism for relating different
component versions. For example, if changes are made
to several classes to implement one new system feature,
these version relationships are not documented. It is thus
difficult for developers to trace between related updates
to different classes and frameworks.

6. Conclusions

Our experience in developing integrated software
development environments indicates that multiple views
of software development, integrated development tools,
and collaborative software development are important
when building large software systems. C-MViews
supports multiple versions of software components and
their textual and graphical views. Tools are integrated
at the view level or data repository level. Collaborative
development is via asynchronous, semi-synchronous and
synchronous editing of multiple views. Semi-automatic
version merging is supported, including incremental
version merging. Two forms of synchronous
collaboration are supported by broadcasting change
descriptions between developers’ environments.

Experience with C-SPE suggests that asynchronous
development is most useful for low-level design and
implementation views, or when major system changes
are being carried out. Semi-synchronous development is
useful for higher-level collaboration where different
alternatives are maintained by each developer.
Synchronous development seems most appropriate when
high-level designs are being worked on and alternatives
are not desired during the collaboration process.

We are currently working on several improvements
to C-MViews and C-SPE. This includes determining
how changes broadcast via synchronous and semi-
synchronous editing can be most usefully presented to
developers. The capture of extra information,
particularly a description of why a change was made,
usually occurs above the change description level but
below the version level. We are experimenting with
various “development tasks” for each developer and for
groups of developers. These are used for associating
groups of related change descriptions and for relating
change descriptions on different components, giving
developers a high-level view of the relationships
between different component versions. This is
particularly useful for object-oriented systems, where
changes are often made to several classes to provide one
new system function. Propagation of partial changes
between higher-level software components, as done for
multiple view consistency, would also assist in
supporting programming-in-the-large.

Acknowledgements

The helpful comments of the anonymous reviewers
on the draft of this paper are gratefully acknowledged.

References

