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ABSTRACT 

The development of a system capable of integrating a range of building design tools 
poses many challenges. Our framework for integrating design tools provides a 
structured approach, allowing individual parts to be tackled independently. In this paper 
we detail the framework and its individual components. A method for modelling and 
implementing each component is described, showing how such an integrated system can 
be realised. To illustrate, a system developed using the framework and which integrates 
several design tools is described. 
 

1. Introduction 

It can be difficult to effectively use a set of disparate design tools in architecture and 
engineering due to a lack of integration. Even with a computerised plan of a building, it 
is unlikely that, using current practice, building information can be extracted from it for 
use in other design tools. Practitioners are typically forced to re-enter building 
information into their design tools by hand, taking measurements off the printed plans. 
This means that despite the existence of a wide range of technically excellent design 
tools, such tools are seldom used because of the difficulty and time required to enter the 
requisite building information. In addition, changes to the design have to be transferred 
individually to each of the tools, increasing the possibility of inconsistencies between 
them. As a result, the majority of claims made for computerisation and integration in 
these fields have never been achieved.  

These incompatibility problems have a number of causes, but result primarily from the 
conceptual building models involved. Many tools lack soundly based conceptual 
models. Others utilise building models oriented heavily to the types of computation they 
perform. In most cases, this is a minimal model, in order to ease the burden of data 
entry for the user. Hence models of buildings for tools such as thermal simulation, 
structural simulation, lighting analysis, fire-code compliance, quantity surveying, etc. 
have very different structures, and hence very different data entry requirements.  

Another important problem is that of consistency and coordination. In a building project 
there are often several design professionals responsible for different parts of the design. 
A project manager has the task of coordinating the various designers. In a manual 
design practice, a range of procedures are used to ensure that the design is kept 
consistent between all designers. In a computerised design environment it has become 
no easier to perform this task, and in many cases much more difficult, as the number of 



plan portions which can be generated with computerised tools is much greater than with 
manual design. 

In this paper we present ICAtect-II, an approach, together with a set of tools, that permit 
the development of integrated building design environments which alow building data 
to be shared between multiple tools, and multiple building design professionals, 
alleviating the problems noted above. Section 2 introduces the integration approach we 
have taken. Sections 3 to 6 describe tools and methods we have developed for 
implementing various components of an integrated design system. Section 7 descibes an 
example design system developed using ICAtect-II. Section 8 describes related work, 
and Section 9 presents conclusions. 

2. An Integrated Data Model (IDM) Approach 

ICAtect-II's approach to solving the problem of data sharing is to have a central 
Integrated Data Model (IDM) describing all of the relevant data needed for a building. 
Instances of this model then correspond to individual building designs. To apply a 
design tool to a building design, an appropriate translation of the data is made from the 
IDM instance into the form of data that the tool requires (see Fig. 1). Data generated or 
modified by the tool is also translated back into changes to the IDM instance.  
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Figure 1 General IDM/Tool/Translation approach 

This approach is a common one in integrated building design research (eg [1], [2]). Our 
variant, based on our earlier ICAtect work [3, 4], is a refinement of the approach of 
Figure 1, as illustrated in Figure 2. In our approach a control system draws upon a 
project model to determine the next set of allowable actions by users of the system. 
Users utilise their design tools (DT) to accomplish certain design tasks, the results of 
which are passed into the integrated design system and merged with data stored in the 
integrated data model (IDM). Conflicts between the data from various users are 
detected and the affected users negotiate compromises to their problems. The control 
system monitors the problems and resolutions, and, dependent upon the results, 
determines the next set of available design tasks for the attached users.  
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Figure 2 Refined integration model 

To support this IDM-based approach, a number of tools and components are needed. 
These include: 

• A notation for defining information models (usually called a schema 
definition language) for the IDM and design tools. 

• Techniques for defining information models (schema) for the data needs of 
each of the design tools and users of the system.  

• Techniques for synthesising the IDM schema from the various user and tool 
schemas. 

• A notation for defining the translations (inter-model mappings) between the 
IDM schema and the user or design tool schemas.  

• A means of specifying mappings from the conceptual design tool models to 
the physical data requirements of the design tools (the design tool interface) 

• Tools to create instances of the IDM and DT models (ie actual building 
designs). 

• Tools to move data between the IDM instances and the design tools based 
on the inter-model mapping and design tool interface specifications.  

• A notation and tool to specify project models. 

• A control system to co-ordinate user activity and tool invocation based on a 
project model. 

ICAtect-II comprises a suite of tools covering these requirements. Figure 3 outlines the 
tool suite and their inter-relationship. The following sections describe the tools and their 
use in detail. 
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Figure 3. Tools used in constructing and manipulating integrated building models in 
ICAtect-II 

3.  Specification of Schemas  

The conceptual model required for completely specifying building design information is 
probably the largest and most complex information model under active development in 
the world to date. A primary focus of this work has been the development of the ISO 
STEP standard [5]. This has been a massive collaborative effort, which has had an 
impact on, or has incorporated results from, all of the major integration projects. In 
particular, as part of the STEP work the EXPRESS object-oriented specification 
language has been developed and adopted for use as a schema specification notation [6]. 
For compatibility purposes, we have used EXPRESS to specify user, DT and IDM 
schemas in our work.  

The creation of design tool data models is a task that must be undertaken by modellers 
who have great familiarity with the particular design tool being modelled. This is 
because the model must capture: the data structures explicitly defined by the tool; the 
data constraints explicitly specified by the design tool (eg. ranges on attribute values, 



cardinality constraints on lists, etc.); and also the constraints defined implicitly by the 
design tool (eg. that all walls are vertical). A fully specified DT model allows the 
system to determine whether there is enough data to create the input file (or other type 
of interface) for the DT to execute and to determine whether a semantically correct 
description of the building can be created from the data available.  

 

Fig. 4. Modelling the IDM in a multi-view environment 

The DT model is developed as an EXPRESS schema for the tool. Concurrently, a 
simple translator is defined which maps from the EXPRESS schema to the actual format 
of data that the tool requires, such as a flat file (the Design Tool Interface of Fig. 2). 
Despite the widespread use of EXPRESS in integrated projects, there has been little 
development of tools that fully support EXPRESS modelling and programming. To 
remedy this, we have developed the Express Programming Environment (EPE), for the 
EXPRESS lexical and EXPRESS-G graphical modelling languages [6]. EPE permits 
multiple textual and graphical views of EXPRESS entities to be specified [7]. 
Overlapping information in each of these views is kept consistent through a canonical 
form of the model which is used to propagate all changes to an entity to all views which 
reference it. The modelling environment automatically makes modifications to affected 
graphical views and allows both automatic and user assisted modifications to the textual 
views to maintain view consistency. EPE maintains a central log of all modifications to 
all entities, which can be annotated to provide development documentation. Navigation 
between any view referencing a particular entity is supported to allow easy access to the 
various design level views of an entity. Figure 4 shows several graphical and textual 
views of a technical_system entity modelled with EPE. 

EPE supports the translation of the EXPRESS schema to and from Snart, an object-
oriented implementation language [7, 8]. EPE is, in fact, a specialised implementation 



of the SPE modelling environment, which provides visual and textual programming 
support for Snart [9]1. The Snart translation facilities allow realisation of the EXPRESS 
schema in an executable form. The realised schema may also be extended with 
additional Snart code (method implementations, additional attributes, etc). This 
provides a means of defining the simple design tool interface, or, alternatively, EPE can 
be used as a complete development environment for designing and implementing the 
design tools themselves, using Snart as the implementation language. 

EPE is also used to specify the IDM schema. The development of this schema requires 
the input of domain experts for all the sub-domains being modelled as well as the help 
of modelling experts to structure the model. The IDM remains as a fairly static model, 
although the introduction of new design tools, construction techniques and building 
constructs force modifications to the model. Several collaborative projects have worked 
on general models of buildings, based on the ISO STEP fundamentals for restricted 
aspects of buildings [6 1, 2], which could be used directly in our work. These models 
are, however, preliminary in nature. To demonstrate the viability of our techniques, we 
have instead developed a simple IDM incorporating the requirements of a small number 
of design tools. This has been developed in an evolutionary manner, with the model 
being incrementally extended as each new tool is integrated into the evolving system 
[11]. 

4. Specification of Mappings Between Schemas 

The specification of inter-model mappings is an area which has, until quite recently, 
been neglected by most researchers. In the majority of international integration projects, 
translations have been done using conventional procedural programming. This can lead 
to obscure and difficult to maintain code, as well as presenting problems of 
maintainability due to schema evolution. One of the important contributions of our 
work has been the definition of a high level declarative language, VML, for describing 
these translations and which avoids many of the practical problems encountered using 
conventional programming techniques [12, 13]. 

VML has both a lexical and a graphical notation for specifying a mapping. Fig. 5 shows 
a simple example mapping between classes, with Fig. 6 showing the equivalent 
graphical form. Mappings are specified through a set of inter_class definitions (as in 
Fig. 5) which specify: the classes involved with the mapping; the conditions under 
which the mapping may take place (invariants); and the attribute and procedure 
mappings that can be applied (equivalences).  

For example, in Figure 5, the trombe_wall class of one schema and the trombe_wall and 
trombe_type classes of a second schema are involved. The invariant specifies that this 
mapping is only applicable when the trombe_type attribute of a trombe_wall object 
(second schema) has the same vaue as the name attribute of a trombe_type object 
(second schema). Equivalences are specified through the use of equations, which can be 
used in both directions, invertible functions and procedural code. Where procedural 
code is used two mappings must be specified to be able to move data between both 
views. Procedure calls (methods) may also be mapped by specifying the procedure 

                                                 

1SPE has also been extended to support NIAM modelling with translation to Snart [10]. NIAM is also 
used extensively in STEP-related modelling work. 



name and any parameter values required as part of the equivalence. Chains of references 
can be specified with the => operator allowing the mapping to access values from other 
referenced objects. Thus, the sum(vents=>(height * width)) expression in Fig. 5 sums 
the product of height and width for every vent object referenced in the vents (list) 
attribute of trombe_wall. The graphical notation is not as expressive as the lexical 
notation, and is analagous to the EXPRESS-G graphical variant of EXPRESS. 

inter_class([trombe_wall],[trombe_wall, trombe_type], 
  invariants(trombe_wall.trombe_type = name), 
  equivalences(area = height * width, 
    glazing = glazing, 
    vent_area = sum(vents=>(height * width)), 
    trombe_type = trombe_type, 
    perf_ratio = perf_ratio) 
  ). 
 

Fig. 5. Mapping specification in VML 

 

Fig. 6. Graphical specification of a VML mapping using VPE 

Taken as a whole, the collection of inter-class definitions relating two schemas defines 
their overall relationship. The inter-class invariants determine which particular 
mappings are relevant for a given dataset. 
 
The VML Programming Environment (VPE) supports specification of VML mappings 
using schemas developed by EPE or imported from external sources. Mappings may be 
developed using either the lexical or graphical forms and consistency is maintained 
between the two forms. Figure 6 is a screen dump of the VPE graphical specification 
browser/editor.  

VPE can also be used as an aid in defining and extending the schemas involved in the 
mappings, thus assisting with the task of schema integration. For example, during the 
mapping definition users can specify classes, and attributes of classes, not currently 
existing in the schemas being manipulated. The schemas are then modified accordingly.  

In addition to its use in specifying DT-IDM mappings, VML can also be used to 
describe mappings between different versions of a schema (DT or IDM). The resulting 
mappings can then be used to migrate datasets between versions. 



5. Model Realisation and Instance Management 

Having developed the design tools, schemas, mappings, and design tool interfaces, tools 
are required to both create model instances and to move data between them 
accordinging to the mappings. To support these activities, ICAtect-II includes the 
following tools: 

• The Snart translation facilities of EPE are used to realise schemas as executable 
object-oriented programs. 

• Model instances are constructed either directly by design tool invocations or by 
using the Cerno-II visualisation tool, originally developed as a companion for SPE [9, 
14]. Models may also be imported to and exported from ICAtect systems in the form of 
STEP data transfer format files. Internally, Snart supports object persistence and thus 
provides object-oriented database facilities for storing model data. 

• Model instances may be visualised using Cerno-II, which permits multiple views 
of a model instance to be displayed and edited, provides navigation support to follow 
object references, and allows custom visualisations to be developed using a user-
editable display specification language. A screen dump of Cerno visualising a small 
portion of an object model is shown in Fig. 7. Alternatively, instances may be browsed 
using the InSTEP building model visualisation tool developed as part of the COMBINE 
project [7].  

 
Fig. 7. Cerno-II visualising a small portion of a building instance. 

• The underlying Snart system also provides a query language which allows a data 
model to be searched for objects matching a general query term, together with an object 
viewer, which can be used to provide a lower level data visualisation facility than that 
provided by Cerno-II or InSTEP. 



• A mapping manager supports incremental or batch transfer of data between 
instances of the IDM and instances of tool models (controlled by the VML mapping 
specifications), ensuring consistency of the IDM at all times [12, 13]. The manager uses 
a transaction-based approach to receive notifications from attached views of a set of 
modifications to be mapped to the other view. The mapping system takes the 
modifications and uses the inter_class specifications to determine whether to create new 
objects, delete objects, or to calculate modifications to object values in the other view. 
The size of the transaction depends on the mode of operation of the tool. In coarse 
mode, transactions are large, and hence similar to a batch mode of operation. In fine 
mode, tranactions are small, corresponding to individual tool manipulations (eg adding 
a window in a plan package), providing a more incremental approach to consistency. 
The mapping manager also detects conflicts between various sets of data, invoking 
processes to negotiate over conflicting data from different design tools and users. A 
further important function of the manager is to maintain tracability, so that the 
originators or modifiers of data can be determined at any time. This can be used in the 
conflict arbitration process. 

Combined, these facilities provide the low level "glue" for integrating the various 
design tools at execution time. 

6. Project Management 

The instance management facilities described in the previous section provide low level 
co-ordination between tool invocations and building designers. However, there is also a 
need for higher level project management tools to assist in the specification of design 
team responsibilities and to manage the flow of work between the designers and design 
tools. To provide these capabilities, we have developed, in collaboration with the 
COMBINE project [1], the COMBINET project modelling system. This comprises a 
specification tool, together with an execution time control system. The specification 
tool provides two interlinked modelling formalisms. One of the formalisms allows users 
to specify flows of control in a project by means of ordering constraints on design tasks. 
This is used in conjunction with the other formalism which models the designers and 
the roles they take in performing design tasks. As the design process is often not fully 
understood, it cannot always be completely described at the start of a project. Therefore, 
it is likely that during the course of the design, new designers may need to be involved 
in the design or new design tools used for difficult aspects of the design. To enable this 
flexibility the project model is able to be modified during the project to be able to take 
into account changes in personnel and new flows of control 

A project role model defines the designers who will be working on a project, their roles 
in the project and the design functions required to fulfil those roles. Fig. 8 shows a 
small project role model, illustrating the graphical notation developed. In this formalism 
the links between designers and their design roles are made explicit, as well as the link 
between design role and the design functions they require. Each design function is 
connected to a particular design tool and the schema representing the input and output 
to the design tool are specified. 



 
Fig. 8. Specifying actors, design roles, and design functions in a project 

A workflow model is used to define the flow of control in a project, specifying hand-
over points between various designers and sequences of specification that must be 
followed to help guarantee an optimal design at the termination of the design process. 
This uses another graphical notation drawn from ideas in Petri-Nets [15]. Flow of 
control is depicted as moving from one design function to another through a set of 
transition points at which time the flow of control can branch to various design 
functions (Fig 9. shows a simple flow of control specification). This specification 
allows for aggregate and global functions (not shown in the figure) as well as looping 
transitions (shown as a double bar). Workflow models may be hierarchically organised 
in project windows, to permit modularisation of the model. 

 
Fig. 9. Specifying flow of control 

The Exchange Executive is the runtime control system that directs both the inter-model 
mapping and design tool interface modules to perform their tasks as required by the 
designers or directed by the project manager. This module simulates the flow of control 
defined in the project model, determining what design functions are able to be 
performed at any particular time. It also interfaces with designers to let them specify the 
tasks that they wish to perform next and with the project manager for decisions upon 
which designers should be involved in new phases of the project. This system directs 
the inter-model mapping module to map data between different models, or to ascertain 
whether it is possible to perform the mapping. It also directs the design tool interface to 
invoke a design tool with appropriate data and to collect results upon termination. 



7. A Demonstration Integrated System 

In order to test the value of this system, and to extend our work, we have implemented a 
demonstration integrated system using several tools that we have developed or had 
available to us. These tools are:  

• ThermalDesigner, a code conformance tool [16, 17]. This calculates the 
thermal resistance of the elements of a building, heat losses, and heat gains, 
in order to check conformance of a building against a thermal insulation 
standard for residential buildings. ThermalDesigner was originally 
developed as a Kea application [16], but was recently reimplemented in 
Snart [17]. 

• PlanEntry, a novel constraint-based plan drawing system [18, 19], also 
implemented in Snart. This provide multiple orthogonal views of a building. 
A change in any view is reflected in the other views. PlanEntry permits 
definition of the building envelope,  internal walls and openings.  

• MaterialsEditor, another Snart application, for specifying materials and 
bracing information [20] for wall planes. Walls and other faces on a plane 
are provided to this tool, and the user may overlay wall, roof or floor 
material information on that plane. 

• VISION3D, a package for rendering and manipulating 3-D models [21]. 
This has been used purely as a visualisation tool in this work, permitting 3-
D visualisations of the building models developed by the other design tools. 

The integrated system will later include WallBrace [22], another code conformance tool 
(for checking wall bracing requirements of a loadings code) that we have previously 
developed. The overall system design is shown in Fig. 10. 
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Figure 10. Demonstration System Design 

Schema for the three Snart-based tools were developed by directly translating the Snart 
object definitions for their building models into EXPRESS using EPE's translation 



facilities. The Snart implementation of these tools also obviated the need for a design 
tool interface to be separately developed for them. Rather, the VML mappings defined 
for translating the IDM to the design tool models represented all of the information 
necessary to directly create or otherwise manipulate Snart objects belonging to the 
design tools. VISION-3D is capable of a variety of data entry formats. For this 
application we chose a flat file description. An EXPRESS schema conceptually 
representing the fairly simple file format was developed, together with a Snart translator 
to translate from the realised schema objects into the concrete file format.  

The IDM for this demonstration system was developed in an evolutionary manner, 
being extended as each tool was integrated [11]. Schema realisation resulted in a Snart 
object model for the IDM. Concurrently, VML code for the DT-IDM inter-model 
mappings was developed. This exposed a number of weaknesses in the DT and IDM 
schema, resulting in incremental improvement of both. 

A very simple project model for the system was also developed, with two designers in 
the project role model (one responsible for the PlanEntry and MaterialsEditor, and the 
other responsible for ThermalDesigner) and a simple workflow model. 

A user's view of the integrated system is shown in Fig. 11. This is a composite view 
showing all of the facilities in use specifying and visualising charactersitics of a small 
residential building. Changes in any component are propagated through the IDM to 
other, affected components. For example, the changes resulting from resizing a space in 
the PlanEntry model (label 1 in the Figure) are propagated to the IDM, and then to the 
MaterialsEditor (label 2), VISION3D (label 3), and, eventually, to ThermalDesigner 
(label 4). Such changes can be propagated incrementally, ie as each change is made, or 
can be batched together to reflect a complete design modification where a number of 
changes are propagated at once. Change propagation is handled using the transaction 
model described earlier and a user specific management tool (label 5). 
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Figure 11. Example of the demonstration system in use 

8. Related Work 

Much research has been carried out on the schemas for integrated design models [1, 2, 
5, 23, 24].  However,  little attention has been given to the design and construction of 
software architectures that are suitable for managing an IDM;  for example, [1] 
discusses several tools to help manage this process at its completion. At the design 
level, our work is novel in providing an integrated toolset covering the complete design 
and implementation of an integrated system.  

At the implementation level, our work is also unusual in that we have started with the 
assumption that data mappings between tools will be most useful when they are 
dynamic, rather than necessarily assuming a batch mode of operation. We have also 
made extensive use of a constraint-based language (Snart) for the development of 
design tools that are integrated through an IDM, simplifying the task of building new 
tools that are to be integrated. While our IDM architecture supports such a dynamic 
model, it also allows for traditional, procedure-based tools, which must explicitly 
manage changes to data values, and may be required to act in a batch-like manner. 

The work that is closest at the implementation level to the research reported here is that 
of Eastman [25, 26] in developing the EDM-2 system. EDM-2 is organised around a 
database model. It also makes use of mappings and constraints, but there are several 
major differences from our work: 



• Constraints are only used in the declaration of the IDM. They are defined for 
two purposes: as database-style constraints to determine whether a changed data model 
is consistent with respect to the constraints (to ensure across-tool consistency) and as 
functions which compute new values when data values change. There are two forms of 
consistency constraints: variants need not be satisfied (at the users discretion) while 
invariant constraints must be satisfied, otherwise a commit is aborted. 

• EDM-2 constraints and mappings are written in C and thus do not enjoy the 
declarative benefits of Snart constraints and VML's equivalences. 

• EDM-2 includes "accumulations" to allow for external code to compute values. 
When any of the preconditions of the external code are changed, the results (post-
conditions) of the external code in the IDM are marked as inconsistent. Hence other 
applications know that data is invalid at the moment and any affected external code can 
be automatically scheduled for execution (assuming that only one tool is available for 
computing the given result). This approach is functional, as compared to the more 
general mappings provided by VML. 

9. Conclusions and Future Work 

We have described a framework which enables the integration of a range of disparate 
design tools from a single domain. It incorporates various modules that are necessary to 
implement tasks such as flow of control and mapping of data between design tools and 
the central model. Where modelling tasks were found to be necessary in the 
specification of the integrated system, but where existing formalisms were unsuitable, 
we created high level modelling tools and modelling formalisms  for such tasks. 

An implementation of all the modules in the described framework gives a system which 
allows multiple users to work concurrently on a single design, yet still maintain data 
consistency between each other. In contrast to other workers' efforts, which require 
extensive hand-coding to tie all the pieces together, the implemented system highlights 
the ability to create a working system through high-level modelling of data models, 
correspondences between data models, and the required flow of control in a project. 

The small illustration system presented demonstrates the viability of our approach. 
Current work aims to extend the number of design tools in this system, to demonstrate 
scaling of the architecture.  

The process of constructing the demonstration system led to two observations.  First, 
the provision of an integrated data model, plus a simple method of defining and 
implementing mappings, encourages the development of small, specialised design tools, 
such as the MaterialsEditor. These interact directly with the central model, and, by 
change propagation, the other design tools. This approach is in contrast to existing 
practice, which sees individual design tools being extended to encompass additional 
functionality, in the process becoming difficult to maintain. 

The second observation regards the implementation of individual design tools when 
assuming an IDM-based architecture. As remarked earlier, the ThermalDesigner 
application was rewritten in Snart prior to integration. The main purpose of this was to 
see the effect having an integrated data model available made to the development of an 
individual design tool. In this case, it meant almost complete elimination of 
ThermalDesigner's procedural code which, in the original implementation was primarily 



used to drive the data gathering in an appropriate sequence. The user interface code 
(forms definitions etc) was also almost entirely eliminated as the data sought was often 
better sourced from other design tools, such as PlanEntry, via the IDM. The net result is 
that the new design tool is much simpler in structure, and hence easier to maintain. Also 
the declarative nature of the code conformance "rules" is much more obvious than in the 
original application. 

One drawback of the current ICAtect implementation is its reliance on Snart. While 
Snart has proved to be a very useful vehicle for proof of concept implementation, it's 
reliance on MacProlog for its own implementation has two drawbacks. First, the 
accessibility of our work to others is diminished as a result of using this platform; 
portability is a problem. Second, the double interpretation involved results in a 
perfomance penalty that will limit the ultimate scalability of the existing 
implementation. For these reasons we are re-implementing the major runtime 
components of our system in Java and plan to port the design components at a later 
stage. 
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